MIT OpenCourseWare
http://ocw.mit.edu

16.346 Astrodynamics

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Fig. 6.13 from An Introduction to the Mathematics and Methods of Astrodynamics. Courtesy of AIAA. Used with permission.

Recall: Equation of orbit $\mathbf{e} \cdot \mathbf{r}=p-r$ at P_{1} and P_{2} so that

$$
\begin{aligned}
& \mathbf{e} \cdot \mathbf{r}_{1}=p-r_{1} \\
& \mathbf{e} \cdot \mathbf{r}_{2}=p-r_{2}
\end{aligned} \quad \Longrightarrow \quad \mathbf{e} \cdot\left(\mathbf{r}_{2}-\mathbf{r}_{1}\right)=r_{1}-r_{2} \quad \text { or } \quad-\mathbf{e} \cdot \mathbf{i}_{c}=\frac{r_{2}-r_{1}}{c}
$$

Orbital Elements of the Fundamental (Minimum Eccentricity) Ellipse

$$
e_{F}=\frac{\left|r_{2}-r_{1}\right|}{c} \quad a_{F}=\frac{1}{2}\left(r_{1}+r_{2}\right) \quad \frac{p_{F}}{p_{m}}=\frac{r_{1}+r_{2}}{c}
$$

Page 258

Since $\quad p_{F}=a_{F}\left(1-e_{F}^{2}\right) \quad$ and

$$
\begin{aligned}
1-e_{F}^{2} & =\frac{c^{2}-\left(r_{2}-r_{1}\right)^{2}}{c^{2}}=\frac{1}{c^{2}}\left(c+r_{2}-r_{1}\right)\left(c+r_{1}-r_{2}\right) \\
& =\frac{4}{c^{2}}\left(s-r_{1}\right)\left(s-r_{2}\right)=\frac{4 r_{1} r_{2}}{c^{2}} \sin ^{2} \frac{1}{2} \theta=\frac{2 p_{m}}{c}
\end{aligned}
$$

From the figure at the top of this page, we see that $\sin \phi_{F}=e_{F}$. Also the angle ω_{p} is the complement of ϕ_{F} so that $\cos \omega_{p}=e_{F}$. Therefore:

The axes of the conjugate parabolic orbits coincide with the lines through the focus F and the extremities of the minor axis of the fundamental ellipse.

Definition of mean point: At the point \mathbf{r}_{0}, the velocity \mathbf{v}_{0} is parallel to the chord.
Using the eccentricity vector at this point, we have $\mathbf{v}_{0} \times \mathbf{h} \cdot\left(\mathbf{r}_{2}-\mathbf{r}_{1}\right)=0 \quad$ Therefore:

$$
\begin{aligned}
& \mu \mathbf{e} \cdot\left(\mathbf{r}_{2}-\mathbf{r}_{1}\right)=\left(\mathbf{v}_{0} \times \mathbf{h}-\frac{\mu}{r_{0}} \mathbf{r}_{0}\right) \cdot\left(\mathbf{r}_{2}-\mathbf{r}_{1}\right)=0-\frac{\mu}{r_{0}} \mathbf{r}_{0} \cdot\left(\mathbf{r}_{2}-\mathbf{r}_{1}\right) \\
\text { Hence: } & \underbrace{\mathbf{e} \cdot\left(\mathbf{r}_{2}-\mathbf{r}_{1}\right)}_{=r_{1}-r_{2}}=-\frac{1}{r_{0}} \mathbf{r}_{0} \cdot\left(\mathbf{r}_{2}-\mathbf{r}_{1}\right) \Longrightarrow \mathbf{r}_{0} \cdot\left(\mathbf{r}_{2}-\mathbf{r}_{1}\right)=r_{0}\left(r_{2}-r_{1}\right)
\end{aligned}
$$

The loci of all mean points are the lines through the focus F and the extremities of the minor axis of the fundamental ellipse.

The Line Segment FS:
Page 266
The line $F S$ is the distance along mean point locus from the focus F to intersection with chord. The flight direction angle at P_{0} is γ_{0} and δ is the angle opposite the line segment $S P_{1}$. Use the law of sines for the triangles:

$$
\triangle F P_{1} S: \quad \frac{F S}{\sin \left(\gamma_{0}+\delta\right)}=\frac{r_{1}}{\sin \gamma_{0}} \quad \triangle F P_{1} P_{2}: \quad \frac{c}{\sin \theta}=\frac{r_{2}}{\sin \left(\gamma_{0}+\delta\right)}
$$

and use the calculation on the previous page for $1-e_{F}^{2}$:

$$
\triangle F P_{0} C: \quad \sin \gamma_{0}=\frac{b_{F}}{a_{F}}=\sqrt{1-e_{F}^{2}}=\frac{2}{c} \sqrt{r_{1} r_{2}} \sin \frac{1}{2} \theta
$$

Therefore:

$$
F S=\sqrt{r_{1} r_{2}} \cos \frac{1}{2} \theta
$$

Recall the proposition:

Lecture 8, Page 2

The line connecting the focus and the point of intersection of the orbital tangents at the terminals bisects the transfer angle.

$$
\sqrt{r_{1} r_{2}}= \begin{cases}F N \cos \frac{1}{2}\left(E_{2}-E_{1}\right) & \text { ellipse } \\ F N & \text { parabola } \\ F N \cosh \frac{1}{2}\left(H_{2}-H_{1}\right) & \text { hyperbola }\end{cases}
$$

Fig. 6.7 from An Introduction to the Mathematics and Methods of Astrodynamics. Courtesy of AIAA. Used with permission.

For the ellipse $\quad F N_{1} \cos \frac{1}{2}\left(E_{0}-E_{1}\right)=\sqrt{r_{1} r_{0}} \quad F N_{2} \cos \frac{1}{2}\left(E_{2}-E_{0}\right)=\sqrt{r_{0} r_{2}}$
and for the parabola $\quad F N_{1 p}=\sqrt{r_{1} r_{0 p}} \quad F N_{2 p}=\sqrt{r_{0 p} r_{2}}$
Triangle $\Delta F N_{1_{p}} N_{2 p}$ is similar to triangle $\Delta F N_{1} N_{2}$. Therefore

$$
\frac{F N_{1 p}}{F N_{2 p}}=\frac{F N_{1}}{F N_{2}} \quad \Longrightarrow \quad \cos \frac{1}{2}\left(E_{0}-E_{1}\right)=\cos \frac{1}{2}\left(E_{2}-E_{0}\right)
$$

Fig. 6.16 from An Introduction to the Mathematics and Methods of Astrodynamics. Courtesy of AIAA. Used with permission.

Hence

$$
E_{0}=\frac{1}{2}\left(E_{1}+E_{2}\right)
$$

The eccentric anomaly of the mean point of an orbit connecting two termini is the arithmetic mean between the eccentric anomalies of those termini.

Mean-Point Radius of the Parabolic Orbit Lecture 8, Page 1
The parameter of the parabola is obtained from

$$
\left(\frac{p_{p}}{p_{m}}\right)^{2}-2 D \frac{p_{p}}{p_{m}}+1=0 \quad \text { where } \quad D=\frac{r_{1}+r_{2}}{c}-\frac{s(s-c)}{a c}=\frac{r_{1}+r_{2}}{c}
$$

so that

$$
\frac{p_{p}}{p_{m}}=\frac{1}{c}\left(r_{1}+r_{2}+2 \sqrt{r_{1} r_{2}} \cos \frac{1}{2} \theta\right)=\frac{1}{c}(\sqrt{s}+\sqrt{s-c})^{2}
$$

The mean point radius of the parabola is

$$
r_{0 p}=\frac{p_{p}}{1+\cos 2 \phi_{F}}=\frac{p_{p}}{2 \cos ^{2} \phi_{F}}=\frac{p_{p}}{2\left(1-e_{F}^{2}\right)}=\frac{p_{p} c}{4 p_{m}}
$$

Hence

$$
r_{0 p}=\frac{1}{4}\left(r_{1}+r_{2}+2 \sqrt{r_{1} r_{2}} \cos \frac{1}{2} \theta\right)=\frac{1}{2}\left(a_{F}+F S\right)
$$

The mean point radius of the parabola extends to the midpoint between the chord and the extremity of the minor axis of the fundamental ellipse.

Mean-Point Radius of Ellipic and Hyperbolic Orbits
Page 270
From the derivation of the eccentric anomaly of the mean point, we have

$$
\begin{aligned}
F N_{2} \cos \frac{1}{2}\left(E_{2}-E_{0}\right)=F N_{2} \cos \frac{1}{2}\left[E_{2}-\frac{1}{2}\left(E_{1}+E_{2}\right)\right]=F N_{2} \cos \frac{1}{4}\left(E_{2}-E_{1}\right) & =\sqrt{r_{0} r_{2}} \\
F N_{2 p} & =\sqrt{r_{0 p} r_{2}}
\end{aligned}
$$

so that

$$
\frac{F N_{2}}{F N_{2 p}} \cos \frac{1}{4}\left(E_{2}-E_{1}\right)=\sqrt{\frac{r_{0}}{r_{0 p}}}
$$

But, from similar triangles,

$$
\frac{F N_{2}}{F N_{2 p}}=\frac{r_{0}}{r_{0 p}}
$$

Therefore, we have the truly elegant expression

$$
r_{0}=r_{0_{p}} \sec ^{2} \frac{1}{4}\left(E_{2}-E_{1}\right)=r_{0 p} \sec ^{2} \frac{1}{2} \psi=r_{0 p}\left(1+\tan ^{2} \frac{1}{2} \psi\right)
$$

and, as we might expect,

$$
r_{0}=r_{0 p} \operatorname{sech}^{2} \frac{1}{4}\left(H_{2}-H_{1}\right)
$$

obtains also for hyperbolic orbits.

$$
r_{0}=\left\{\begin{array}{l}
a\left[1-e \cos \frac{1}{2}\left(E_{1}+E_{2}\right)\right]=a(1-\cos \phi) \\
a\left[1-e \cosh \frac{1}{2}\left(H_{1}+H_{2}\right)\right]
\end{array}=\left\{\begin{array}{l}
r_{0 p}\left(1+\tan ^{2} \frac{1}{2} \psi\right) \\
r_{0 p}\left(1-\tanh ^{2} \frac{1}{4}\left(H_{2}-H_{1}\right)\right.
\end{array}\right.\right.
$$

