MIT OpenCourseWare
http://ocw.mit.edu

16.346 Astrodynamics

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 8 Analytic and Geametric Properties of the BUP

Orbital Parameter from the Semimajor Axis

If $\quad \mathbf{r}_{1} \times \mathbf{r}_{2} \neq \mathbf{0}$, write $\quad \mathbf{e}=A \mathbf{i}_{r_{1}}+B \mathbf{i}_{r_{2}}$
Then, from the equation of orbit $r=p-\mathbf{e} \cdot \mathbf{r} \quad$ obtain

$$
\begin{aligned}
& \mathbf{e} \cdot \mathbf{i}_{r_{1}}=\frac{p}{r_{1}}-1=A+B \cos \theta \\
& \mathbf{e} \cdot \mathbf{i}_{r_{2}}=\frac{p}{r_{2}}-1=A \cos \theta+B
\end{aligned} \quad \Longrightarrow \quad \begin{aligned}
& A \sin ^{2} \theta=\left(\frac{p}{r_{1}}-1\right)-\left(\frac{p}{r_{2}}-1\right) \cos \theta \\
& B \sin ^{2} \theta=\left(\frac{p}{r_{2}}-1\right)-\left(\frac{p}{r_{1}}-1\right) \cos \theta
\end{aligned}
$$

Next

$$
\mathbf{e} \cdot \mathbf{e}=e^{2}=1-\frac{p}{a}=A^{2}+2 A B \cos \theta+B^{2}
$$

so that $\quad\left(\frac{p}{r_{1}}-1\right)^{2}-2\left(\frac{p}{r_{1}}-1\right)\left(\frac{p}{r_{2}}-1\right) \cos \theta+\left(\frac{p}{r_{2}}-1\right)^{2}=\left(1-\frac{p}{a}\right) \sin ^{2} \theta$ or, after simplification (using the trig formulas for the semiperimeter on Page 4),

$$
\left(\frac{p}{p_{m}}\right)^{2}-2 D \frac{p}{p_{m}}+1=0 \quad \text { where } \quad D=\frac{r_{1}+r_{2}}{c}-\frac{r_{1} r_{2}}{a c} \cos ^{2} \frac{1}{2} \theta \equiv \frac{r_{1}+r_{2}}{c}-\frac{s(s-c)}{a c}
$$

Therefore:

$$
\frac{p}{p_{m}}=D \pm \sqrt{D^{2}-1}
$$

Semimajor Axis from the Parameter
Alternately, from the quadratic equation, $1 / a$ can be determined from p / p_{m} using

$$
\frac{r_{1}+r_{2}}{c}-\frac{s(s-c)}{a c}=D=\frac{1}{2}\left(\frac{p_{m}}{p}+\frac{p}{p_{m}}\right) \Longrightarrow \frac{1}{a}=\frac{r_{1}+r_{2}-c D}{s(s-c)}
$$

Semimajor Axis of the Minimum-Energy Orbit
Since the parameter of the minimum-energy orbit is $p=p_{m}$, then a_{m} can be determined from the last boxed equation (with $p / p_{m}=1$). This equation becomes

$$
D=1 \quad \text { or } \quad a_{m}\left(r_{1}+r_{2}\right)-r_{1} r_{2} \cos ^{2} \frac{1}{2} \theta=a_{m} c
$$

Introduce the semiperimeter of the triangle $s=\frac{1}{2}\left(r_{1}+r_{2}+c\right)$ and use one of the equations from Problem G-4 in Appendix G of the textbook to write

$$
a_{m}\left(r_{1}+r_{2}-c\right)=\underbrace{r_{1} r_{2} \cos ^{2} \frac{1}{2} \theta=s(s-c)}_{\text {Problem G-4 }} \quad \text { or } \quad 2 a_{m}(s-c)=s(s-c)
$$

Hence

$$
a_{m}=\frac{1}{2} s=\frac{1}{4}\left(r_{1}+r_{2}+c\right)
$$

The line connecting the focus and the point of intersection of the orbital tangents at the terminals bisects the transfer angle.

$$
\sqrt{r_{1} r_{2}}= \begin{cases}F N \cos \frac{1}{2}\left(E_{2}-E_{1}\right) & \text { ellipse } \\ F N & \text { parabola } \\ F N \cosh \frac{1}{2}\left(H_{2}-H_{1}\right) & \text { hyperbola }\end{cases}
$$

Fig. 6.7 from An Introduction to the Mathematics and Methods of Astrodynamics. Courtesy of AIAA. Used with permission.

Locus of the Eccentricity Vectors of the Boundary-Value Problem
Equation of orbit $\mathbf{e} \cdot \mathbf{r}=p-r$ at P_{1} and P_{2} :

$$
\begin{aligned}
& \mathbf{e} \cdot \mathbf{r}_{1}=p-r_{1} \\
& \mathbf{e} \cdot \mathbf{r}_{2}=p-r_{2}
\end{aligned} \quad \Longrightarrow \quad \mathbf{e} \cdot\left(\mathbf{r}_{2}-\mathbf{r}_{1}\right)=r_{1}-r_{2} \quad \text { or } \quad-\mathbf{e} \cdot \mathbf{i}_{c}=\frac{r_{2}-r_{1}}{c}
$$

Elliptic Orbits: $\quad \begin{aligned} & r_{1}+P_{1} F^{*}=2 a \\ & r_{2}+P_{2} F^{*}=2 a\end{aligned} \Longrightarrow P_{2} F^{*}-P_{1} F^{*}=-\left(r_{2}-r_{1}\right)=2 a^{*}$
Note: $2 a \geq r_{1}+r_{2}+c=2 s=2 a_{m}$

Hyperbolic Orbits: $\begin{aligned} & r_{1}-P_{1} F^{*}=2 a \\ & r_{2}-P_{2} F^{*}=2 a\end{aligned} \Longrightarrow P_{1} F^{*}-P_{2} F^{*}=-\left(r_{2}-r_{1}\right)=2 a^{*}$
Note: F_{0}^{*} : Rectilinear orbit from P_{1} to P_{2} with $a=0$ and $e=\infty$
Note: \widetilde{F}_{0}^{*} : Two straight-line segments P_{2} to F to P_{1} with $a=0$ and $e=\sec \frac{1}{2} \theta$
Hyperbolic locus of vacant foci: $\quad 2 a^{*}=-\left(r_{2}-r_{1}\right) \quad e^{*}=\frac{c}{r_{2}-r_{1}}$

Fig. 6.17 and 6.18 from An Introduction to the Mathematics and Methods of Astrodynamics. Courtesy of AIAA. Used with permission.

16.346 Astradynamics

Lecture 8

The Semiperimeter of a Triangle

One of the twelve greatest theorems of all times, according to the author William Dunham in his book Journey through Genius published by John Wiley \& Sons, Inc., was the formula for the area of a triangle involving only the lengths of the three sides which was discovered by either Archimedes (287 B.C. -212 B.C.) or a centuary later, by Heron.

$$
\text { Area of a Triangle }=\sqrt{s(s-a)(s-b)(s-c)}
$$

where

$$
s=\frac{1}{2}(a+b+c)
$$

There are other remarkable formulas given in Appendix G on Page 364 of our textbook, namely, Problems G-6 and G-7.

Several trigonometric formulas given in Problem G-5 are useful for our work with the Boundary-Value Problem. In particular

$$
\sin \frac{1}{2} \alpha=\sqrt{\frac{(s-b)(s-c)}{b c}} \quad \text { and } \quad \cos \frac{1}{2} \alpha=\sqrt{\frac{s(s-a)}{b c}}
$$

Indeed, you might find it instructive to derive these and the equation

$$
\sin \alpha=\frac{2}{b c} \sqrt{s(s-a)(s-b)(s-c)}
$$

The angle α is the angle opposite side a and between the sides b and c.

Lecture 8

