MIT OpenCourseWare http://ocw.mit.edu

16.346 Astrodynamics Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 8 Analytic and Geometric Properties of the BUP

Orbital Parameter from the Semimajor Axis

Pages 274–275

If
$$\mathbf{r}_1 \times \mathbf{r}_2 \neq \mathbf{0}$$
, write $\mathbf{e} = A \mathbf{i}_{r_1} + B \mathbf{i}_{r_2}$

 \mathbf{e}

Then, from the equation of orbit $r = p - \mathbf{e} \cdot \mathbf{r}$ obtain

$$\mathbf{e} \cdot \mathbf{i}_{r_1} = \frac{p}{r_1} - 1 = A + B\cos\theta \qquad \qquad A\sin^2\theta = \left(\frac{p}{r_1} - 1\right) - \left(\frac{p}{r_2} - 1\right)\cos\theta$$
$$\mathbf{e} \cdot \mathbf{i}_{r_2} = \frac{p}{r_2} - 1 = A\cos\theta + B \qquad \qquad \Longrightarrow \qquad \qquad B\sin^2\theta = \left(\frac{p}{r_2} - 1\right) - \left(\frac{p}{r_1} - 1\right)\cos\theta$$

Next

$$\cdot \mathbf{e} = e^2 = 1 - \frac{p}{a} = A^2 + 2AB\cos\theta + B^2$$

so that $\left(\frac{p}{r_1} - 1\right)^2 - 2\left(\frac{p}{r_1} - 1\right)\left(\frac{p}{r_2} - 1\right)\cos\theta + \left(\frac{p}{r_2} - 1\right)^2 = \left(1 - \frac{p}{a}\right)\sin^2\theta$

or, after simplification (using the trig formulas for the semiperimeter on Page 4),

$$\left(\frac{p}{p_m}\right)^2 - 2D\frac{p}{p_m} + 1 = 0 \quad \text{where} \quad D = \frac{r_1 + r_2}{c} - \frac{r_1 r_2}{ac} \cos^2 \frac{1}{2}\theta \equiv \frac{r_1 + r_2}{c} - \frac{s(s-c)}{ac}$$

Therefore:
$$\frac{p}{p_m} = D \pm \sqrt{D^2 - 1}$$

Semimajor Axis from the Parameter

Alternately, from the quadratic equation, 1/a can be determined from p/p_m using

$$\frac{r_1 + r_2}{c} - \frac{s(s-c)}{ac} = \boxed{D = \frac{1}{2} \left(\frac{p_m}{p} + \frac{p}{p_m}\right)} \implies \boxed{\frac{1}{a} = \frac{r_1 + r_2 - cD}{s(s-c)}}$$

Semimajor Axis of the Minimum-Energy Orbit

Since the parameter of the minimum-energy orbit is $p = p_m$, then a_m can be determined from the last boxed equation (with $p/p_m = 1$). This equation becomes

$$D = 1$$
 or $a_m(r_1 + r_2) - r_1 r_2 \cos^2 \frac{1}{2}\theta = a_m c$

Introduce the semiperimeter of the triangle $s = \frac{1}{2}(r_1 + r_2 + c)$ and use one of the equations from Problem G–4 in Appendix G of the textbook to write

$$a_m(r_1 + r_2 - c) = \underbrace{r_1 r_2 \cos^2 \frac{1}{2} \theta = s(s - c)}_{\text{Problem G-4}} \quad \text{or} \quad 2a_m(s - c) = s(s - c)$$

Hence

$$a_m = \frac{1}{2}s = \frac{1}{4}(r_1 + r_2 + c)$$

16.346 Astrodynamics

Lecture 8

Orbit Tangents and the Transfer-Angle Bisector

The line connecting the focus and the point of intersection of the orbital tangents at the terminals bisects the transfer angle.

Locus of the Eccentricity Vectors of the Boundary-Value Problem #6.3

Equation of orbit $\mathbf{e} \cdot \mathbf{r} = p - r$ at P_1 and P_2 :

Lecture 8

#6.2

Locus of the Vacant Focus

Hyperbolic Orbits:
$$r_1 - P_1 F^* = 2a$$

 $r_2 - P_2 F^* = 2a$ \implies $P_1 F^* - P_2 F^* = -(r_2 - r_1) = 2a^*$

ŕ

2am^{-r}

202 - 11

Note: F_0^* : Rectilinear orbit from P_1 to P_2 with a = 0 and $e = \infty$ Note: \widetilde{F}_0^* : Two straight-line segments P_2 to F to P_1 with a = 0 and $e = \sec \frac{1}{2}\theta$

Hyperbolic locus of vacant foci:

20m-12

F_m*

202

2a.

Fig. 6.17 and 6.18 from *An Introduction to the Mathematics and Methods of Astrodynamics.* Courtesy of AIAA. Used with permission.

16.346 Astrodynamics

Lecture 8

The Semiperimeter of a Triangle

One of the twelve greatest theorems of all times, according to the author William Dunham in his book *Journey through Genius* published by John Wiley & Sons, Inc., was the formula for the area of a triangle involving only the lengths of the three sides which was discovered by either Archimedes (287 B.C. – 212 B.C.) or a centuary later, by Heron.

Area of a Triangle =
$$\sqrt{s(s-a)(s-b)(s-c)}$$

where

$$s = \frac{1}{2}(a+b+c)$$

There are other remarkable formulas given in Appendix G on Page 364 of our textbook, namely, Problems G–6 and G–7.

Several trigonometric formulas given in Problem G-5 are useful for our work with the Boundary-Value Problem. In particular

$$\sin \frac{1}{2}\alpha = \sqrt{\frac{(s-b)(s-c)}{bc}}$$
 and $\cos \frac{1}{2}\alpha = \sqrt{\frac{s(s-a)}{bc}}$

Indeed, you might find it instructive to derive these and the equation

$$\sin \alpha = \frac{2}{bc}\sqrt{s(s-a)(s-b)(s-c)}$$

The angle α is the angle opposite side a and between the sides b and c.