MIT OpenCourseWare
http://ocw.mit.edu

16.346 Astrodynamics

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Secture 32 Powered Olight Guidance to Maximize Final Energy

Lagrange Multipliers Example

Consider a simple example of the use of Lagrange Multipliers:
Find the point on the curve $x^{2} y=2$ which is nearest the origin.
Here we must make $x^{2}+y^{2}$ a minimum subject to the constraint $x^{2} y-2=0$.
Solution: Find the minimum of the function $f(x, y)=x^{2}+y^{2}-\lambda\left(x^{2} y-2\right)$ when x and y are unconstrained:

$$
\frac{\partial f}{\partial x}=2 x-\lambda 2 x y=0 \quad \frac{\partial f}{\partial y}=2 y-\lambda x^{2}=0
$$

from which we find: $\lambda=1 \quad x= \pm \sqrt{2} \quad y=1 \quad$ so that the two points at minimum distance from the origin are $\sqrt{2}, 1$ and $-\sqrt{2}, 1$.
Thrust Vector Attitude Control to Maximize Total Energy
State Equations

$$
\frac{d}{d t}\left[\begin{array}{c}
x \\
y \\
v_{x} \\
v_{y}
\end{array}\right]=\left[\begin{array}{c}
v_{x} \\
v_{y} \\
a_{T} \cos \beta(t) \\
a_{T} \sin \beta(t)-g
\end{array}\right] \Longleftrightarrow \frac{d \mathbf{x}}{d t}=\mathbf{f}[\mathbf{x}(t), \beta(t)]
$$

Performance Index

$$
J=g y\left(t_{1}\right)+\frac{1}{2}\left[v_{x}^{2}\left(t_{1}\right)+v_{y}^{2}\left(t_{1}\right)\right] \quad \Longleftrightarrow \quad J=g x_{2}\left(t_{1}\right)+\frac{1}{2}\left[x_{3}^{2}\left(t_{1}\right)+x_{4}^{2}\left(t_{1}\right)\right]
$$

Admissible Variations

$$
\begin{aligned}
& \mathbf{x}(t)=\mathbf{x}_{m}(t)+\alpha \boldsymbol{\epsilon}(t) \quad \text { with } \quad \boldsymbol{\epsilon}\left(t_{0}\right)=\mathbf{0} \\
& \beta(t)=\beta_{m}(t)+\alpha \gamma(t)
\end{aligned}
$$

Lagrange Multipliers

Introduce the vector Lagrange Multiplier $\boldsymbol{\lambda}(t)$ (also called the Co-State) and write

$$
I=\int_{t_{0}}^{t_{1}} \boldsymbol{\lambda}^{\mathbf{T}}(t)\left(\frac{d \mathbf{x}}{d t}-\mathbf{f}[\mathbf{x}(t), \beta(t)]\right) d t=0
$$

The Problem
To maximize $J-I$ as a function of α

$$
\begin{aligned}
& \left.\frac{d J}{d \alpha}\right|_{\alpha=0}=g \epsilon_{2}\left(t_{1}\right)+x_{3 m}\left(t_{1}\right) \epsilon_{3}\left(t_{1}\right)+x_{4 m}\left(t_{1}\right) \epsilon_{4}\left(t_{1}\right) \\
& \left.\frac{d I}{d \alpha}\right|_{\alpha=0}=\int_{t_{0}}^{t_{1}} \boldsymbol{\lambda}^{\mathrm{T}}(t)\left(\frac{d \boldsymbol{\epsilon}}{d t}-\frac{\partial \mathbf{f}}{\partial \mathbf{x}} \boldsymbol{\epsilon}-\frac{\partial \mathbf{f}}{\partial \beta} \gamma\right) d t
\end{aligned}
$$

Integration by Parts

$$
\begin{aligned}
\left.\frac{d I}{d \alpha}\right|_{\alpha=0} & =\int_{t_{0}}^{t_{1}} \boldsymbol{\lambda}^{\mathrm{T}}(t)\left(\frac{d \boldsymbol{\epsilon}}{d t}-\frac{\partial \mathbf{f}}{\partial \mathbf{x}} \boldsymbol{\epsilon}-\frac{\partial \mathbf{f}}{\partial \beta} \gamma\right) d t \\
& =\left.\boldsymbol{\lambda}^{\mathrm{T}}(t) \boldsymbol{\epsilon}(t)\right|_{t_{0}} ^{t_{1}}-\int_{t_{0}}^{t_{1}}\left(\frac{d \boldsymbol{\lambda}^{\mathrm{T}}}{d t}+\lambda^{\mathrm{T}}(t) \frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right) \boldsymbol{\epsilon}(t) d t-\int_{t_{0}}^{t_{1}} \boldsymbol{\lambda}^{\mathrm{T}}(t) \frac{\partial \mathbf{f}}{\partial \beta} \gamma(t) d t \\
& =\boldsymbol{\lambda}^{\mathrm{T}}\left(t_{1}\right) \boldsymbol{\epsilon}\left(t_{1}\right)-\int_{t_{0}}^{t_{1}} \boldsymbol{\lambda}^{\mathrm{T}}(t) \frac{\partial \mathbf{f}}{\partial \beta} \gamma(t) d t \quad \text { must equal }\left.\quad \frac{d J}{d \alpha}\right|_{\alpha=0}
\end{aligned}
$$

Here we require the Co-State $\boldsymbol{\lambda}(t)$ to satisfy the differential equation

$$
\frac{d \boldsymbol{\lambda}^{\mathrm{T}}}{d t}=-\boldsymbol{\lambda}^{\mathrm{T}} \frac{\partial \mathbf{f}}{\partial \mathbf{x}}
$$

In our case

$$
\frac{\partial \mathbf{f}}{\partial \mathbf{x}}=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \text { so that } \quad \begin{aligned}
& \lambda_{1}(t)=c_{1} \\
& \lambda_{2}(t)=c_{2} \\
& \lambda_{3}(t)=c_{1} t+c_{3} \\
& \lambda_{4}(t)=c_{2} t+c_{4}
\end{aligned} \quad \text { Also } \quad \frac{\partial \mathbf{f}}{\partial \beta}=\left[\begin{array}{c}
0 \\
0 \\
-a_{T} \sin \beta \\
a_{T} \cos \beta
\end{array}\right]
$$

Choose the constants $c_{1}, c_{2}, c_{3}, c_{4}$ so that

$$
\begin{array}{ll}
\lambda_{1}(t)=0 & \lambda_{3}(t)=v_{x m}\left(t_{1}\right) \\
\lambda_{2}(t)=g & \lambda_{4}(t)=g\left(t_{1}-t\right)+v_{y m}\left(t_{1}\right)
\end{array}
$$

Then, if we are to have

$$
\left.\frac{d J}{d \alpha}\right|_{\alpha=0}-\left.\frac{d I}{d \alpha}\right|_{\alpha=0}=0 \quad \text { we must require that } \quad \int_{t_{0}}^{t_{1}} \boldsymbol{\lambda}^{\mathrm{T}}(t) \frac{\partial \mathbf{f}}{\partial \beta} \gamma(t) d t=0
$$

From the Fundamental Lemma of the Calculus of Variations it follows that

$$
\boldsymbol{\lambda}^{\mathrm{T}}(t) \frac{\partial \mathbf{f}}{\partial \beta}=0
$$

which is called the Optimality Condition.
In our case, we have

$$
-\lambda_{3}(t) \sin \beta_{m}(t)+\lambda_{4}(t) \cos \beta_{m}(t)=0
$$

Thus, the optimum program for $\beta(t)$ is

$$
\frac{\lambda_{4}(t)}{\lambda_{3}(t)}=\tan \beta_{m}(t)=\frac{g\left(t_{1}-t\right)+v_{y m}\left(t_{1}\right)}{v_{x m}\left(t_{1}\right)}
$$

called the Linear-Tangent Law.
This result formed the basis of the so-called Iterated Guidance Mode used by the Saturn launch vehicle's guidance system to place the Apollo spacecraft in an earth parking orbit prior to its voyage to the moon.

