MIT OpenCourseWare
http://ocw.mit.edu

16.346 Astrodynamics

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 24

The Rotation Matrix

Basic Elements of the Three Body Problem

Let $\mathbf{i}_{x}, \mathbf{i}_{y}, \mathbf{i}_{z}$ and $\mathbf{i}_{\xi}, \mathbf{i}_{\eta}, \mathbf{i}_{\zeta}$ be two sets of orthogonal unit vectors.

$$
\begin{aligned}
& \mathbf{i}_{\xi}=l_{1} \mathbf{i}_{x}+m_{1} \mathbf{i}_{y}+n_{1} \mathbf{i}_{z} \\
& \mathbf{i}_{\eta}=l_{2} \mathbf{i}_{x}+m_{2} \mathbf{i}_{y}+n_{2} \mathbf{i}_{z} \\
& \mathbf{i}_{\zeta}=l_{3} \mathbf{i}_{x}+m_{3} \mathbf{i}_{y}+n_{3} \mathbf{i}_{z}
\end{aligned}
$$

where $l_{1}, m_{1}, \ldots, n_{3}$ are called direction cosines.
Any vector \mathbf{r} can be expressed as $\mathbf{r}=x \mathbf{i}_{x}+y \mathbf{i}_{y}+z \mathbf{i}_{z}=\xi \mathbf{i}_{\xi}+\eta \mathbf{i}_{\eta}+\zeta \mathbf{i}_{\zeta}$. Then

$$
\mathbf{R}=\left[\begin{array}{ccc}
\mathbf{i}_{x} \cdot \mathbf{i}_{\xi} & \mathbf{i}_{x} \cdot \mathbf{i}_{\eta} & \mathbf{i}_{x} \cdot \mathbf{i}_{\zeta} \\
\mathbf{i}_{y} \cdot \mathbf{i}_{\xi} & \mathbf{i}_{y} \cdot \mathbf{i}_{\eta} & \mathbf{i}_{y} \cdot \mathbf{i}_{\zeta} \\
\mathbf{i}_{z} \cdot \mathbf{i}_{\xi} & \mathbf{i}_{z} \cdot \mathbf{i}_{\eta} & \mathbf{i}_{z} \cdot \mathbf{i}_{\zeta}
\end{array}\right]=\left[\begin{array}{ccc}
l_{1} & l_{2} & l_{3} \\
m_{1} & m_{2} & m_{3} \\
n_{1} & n_{2} & n_{3}
\end{array}\right]
$$

is the rotation matrix and

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\mathbf{R}\left[\begin{array}{l}
\xi \\
\eta \\
\zeta
\end{array}\right] \quad \text { or } \quad\left[\begin{array}{l}
\xi \\
\eta \\
\zeta
\end{array}\right]=\mathbf{R}^{\mathrm{T}}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

Since

$$
\mathbf{R R}^{\mathbf{T}}=\mathbf{R}^{\mathrm{T}} \mathbf{R}=\mathbf{I} \quad \text { so that } \mathbf{R}^{\mathrm{T}}=\mathbf{R}^{-1}
$$

then \mathbf{R} is an orthogonal matrix.

Kinematics in Rotating Coordinates
\#2.5
Use an asterisk to distinguish a vector resolved along fixed axes from the same vector resolved along the rotating axes:

$$
\mathbf{r}^{*}=\mathbf{R r} \quad \mathbf{v}^{*}=\mathbf{R} \mathbf{v} \quad \mathbf{a}^{*}=\mathbf{R} \mathbf{a}
$$

where \mathbf{r}, \mathbf{v}, a are the position, velocity, and acceleration vectors whose components are understood to be projections along the moving axes.

$$
\begin{gathered}
\mathbf{v}^{*}=\frac{d \mathbf{r}^{*}}{d t}=\mathbf{R}\left[\frac{d \mathbf{r}}{d t}+\mathbf{\Omega} \mathbf{r}\right]=\mathbf{R}\left[\frac{d \mathbf{r}}{d t}+\boldsymbol{\omega} \times \mathbf{r}\right]=\mathbf{R} \mathbf{v} \\
\boldsymbol{\Omega}=\mathbf{R}^{\mathrm{T}} \frac{d \mathbf{R}}{d t}=\left[\begin{array}{ccc}
0 & -\omega_{\zeta} & \omega_{\eta} \\
\omega_{\zeta} & 0 & -\omega_{\xi} \\
-\omega_{\eta} & \omega_{\xi} & 0
\end{array}\right] \quad \boldsymbol{\omega}=\left[\begin{array}{l}
\omega_{\xi} \\
\omega_{\eta} \\
\omega_{\zeta}
\end{array}\right] \quad \Omega^{\mathrm{T}}=-\boldsymbol{\Omega}
\end{gathered}
$$

where

The angular velocity vector $\boldsymbol{\omega}$ is identified as the angular velocity of the moving coordinate system with respect to the fixed system.

For the acceleration vector

$$
\begin{aligned}
\mathbf{a}^{*} & =\frac{d^{2} \mathbf{r}^{*}}{d t^{2}}=\mathbf{R}\left[\frac{d^{2} \mathbf{r}}{d t^{2}}+2 \boldsymbol{\Omega} \frac{d \mathbf{r}}{d t}+\frac{d \boldsymbol{\Omega}}{d t} \mathbf{r}+\boldsymbol{\Omega} \mathbf{r}\right] \\
& =\mathbf{R}\left[\frac{d^{2} \mathbf{r}}{d t^{2}}+2 \boldsymbol{\omega} \times \frac{d \mathbf{r}}{d t}+\frac{d \boldsymbol{\omega}}{d t} \times \mathbf{r}+\boldsymbol{\omega} \times(\boldsymbol{\omega} \times \mathbf{r})\right]=\mathbf{R a}
\end{aligned}
$$

The four terms which comprise the acceleration referred to rotating axes are called the Observed, the Coriolis, the Euler, and the Centripetal accelerations, respectively. (The observed velocity and acceleration vectors $d \mathbf{r} / d t$ and $d^{2} \mathbf{r} / d t^{2}$ will sometimes be denoted by $\mathbf{v}_{r e l}$ and $\mathbf{a}_{\text {rel }}$ since they are quantities measured relative to the rotating axes. The symbols \mathbf{v} and a will be reserved for the total velocity and acceleration vectors which include the effects of the moving axes relative to the fixed axes.)

$$
\begin{aligned}
& \mathbf{v}=\frac{d \mathbf{r}}{d t}+\boldsymbol{\omega} \times \mathbf{r} \\
& \mathbf{a}=\frac{d^{2} \mathbf{r}}{d t^{2}}+2 \boldsymbol{\omega} \times \frac{d \mathbf{r}}{d t}+\frac{d \boldsymbol{\omega}}{d t} \times \mathbf{r}+\boldsymbol{\omega} \times(\boldsymbol{\omega} \times \mathbf{r})
\end{aligned}
$$

The Lagrange Solutions of the Three-Body Problem

Circular, coplanar orbits with constant angular velocity $\boldsymbol{\omega}=\omega \mathbf{i}_{\zeta} \equiv \omega \mathbf{i}_{z}$

1. Two bodies of equal mass $m_{1}=m_{2}=m$ separated by the distance r

$$
m \omega^{2} \frac{r}{2}=\frac{G m m}{r^{2}} \quad \Longrightarrow \quad \omega^{2}=\frac{2 G m}{r^{3}}
$$

2. Two bodies m_{1} at a distance ρ and m_{2} at a distance $r-\rho$ from the center of rotation

$$
\begin{aligned}
m_{1} \omega^{2} \rho & =\frac{G m_{1} m_{2}}{r^{2}} \\
m_{2} \omega^{2}(r-\rho) & =\frac{G m_{1} m_{2}}{r^{2}}
\end{aligned} \quad \Longrightarrow \quad \omega^{2}=\frac{G\left(m_{1}+m_{2}\right)}{r^{3}}
$$

3. Three bodies of equal mass $m_{1}=m_{2}=m_{3}=m$ at the corners of an equilateral triangle with sides r

$$
m \omega^{2} \frac{r}{2} \sec 30^{\circ}=\left(\frac{G m m}{r^{2}}+\frac{G m m}{r^{2}}\right) \cos 30^{\circ} \quad \Longrightarrow \quad \omega^{2}=\frac{3 G m}{r^{3}}
$$

4. Three bodies m_{1}, m_{2}, m_{3} at the corners of an equilateral triangle with sides r

$$
\begin{aligned}
& m_{1} \omega^{2}\left(\mathbf{r}_{1}-\mathbf{r}_{c m}\right)+G \frac{m_{1} m_{2}}{r^{3}}\left(\mathbf{r}_{2}-\mathbf{r}_{1}\right)+G \frac{m_{1} m_{3}}{r^{3}}\left(\mathbf{r}_{3}-\mathbf{r}_{1}\right)=\mathbf{0} \\
& m_{2} \omega^{2}\left(\mathbf{r}_{2}-\mathbf{r}_{c m}\right)+G \frac{m_{2} m_{1}}{r^{3}}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)+G \frac{m_{2} m_{3}}{r^{3}}\left(\mathbf{r}_{3}-\mathbf{r}_{2}\right)=\mathbf{0} \\
& m_{3} \omega^{2}\left(\mathbf{r}_{3}-\mathbf{r}_{c m}\right)+G \frac{m_{3} m_{1}}{r^{3}}\left(\mathbf{r}_{1}-\mathbf{r}_{3}\right)+G \frac{m_{3} m_{2}}{r^{3}}\left(\mathbf{r}_{2}-\mathbf{r}_{3}\right)=\mathbf{0}
\end{aligned}
$$

Add the three equations to obtain

$$
\mathbf{r}_{c m}=\frac{m_{1} \mathbf{r}_{1}+m_{2} \mathbf{r}_{2}+m_{3} \mathbf{r}_{3}}{m_{1}+m_{2}+m_{3}}
$$

Let the origin of coordinates be at the center of mass. Then $m_{1} \mathbf{r}_{1}+m_{2} \mathbf{r}_{2}+m_{3} \mathbf{r}_{3}=\mathbf{0}$.

$$
\begin{aligned}
& {\left[\omega^{2} r^{3}-G\left(m_{2}+m_{3}\right)\right] \mathbf{r}_{1}+G m_{2} \mathbf{r}_{2}+G m_{3} \mathbf{r}_{3}=\mathbf{0}} \\
& {\left[\omega^{2} r^{3}-G\left(m_{1}+m_{3}\right)\right] \mathbf{r}_{2}+G m_{1} \mathbf{r}_{1}+G m_{3} \mathbf{r}_{3}=\mathbf{0}} \\
& {\left[\omega^{2} r^{3}-G\left(m_{1}+m_{2}\right)\right] \mathbf{r}_{3}+G m_{1} \mathbf{r}_{1}+G m_{2} \mathbf{r}_{2}=\mathbf{0}}
\end{aligned}
$$

or

$$
\begin{aligned}
& {\left[\omega^{2} r^{3}-G\left(m_{1}+m_{2}+m_{3}\right)\right] \mathbf{r}_{1}=\mathbf{0}} \\
& {\left[\omega^{2} r^{3}-G\left(m_{1}+m_{2}+m_{3}\right)\right] \mathbf{r}_{2}=\mathbf{0}} \\
& {\left[\omega^{2} r^{3}-G\left(m_{1}+m_{2}+m_{3}\right)\right] \mathbf{r}_{3}=\mathbf{0}}
\end{aligned}
$$

Hence

$$
\omega^{2}=\frac{G\left(m_{1}+m_{2}+m_{3}\right)}{r^{3}}
$$

5. Three collinear masses m_{1}, m_{2}, m_{3} on ξ axis with

$$
\mathbf{r}_{1}=r \mathbf{i}_{\xi} \quad \mathbf{r}_{2}=(r+\rho) \mathbf{i}_{\xi} \quad \mathbf{r}_{3}=(r+\rho+\rho \chi) \mathbf{i}_{\xi}
$$

The force balance equations are

$$
\begin{aligned}
m_{1} \omega^{2} r+\frac{G m_{1} m_{2}}{\rho^{2}}+\frac{G m_{1} m_{3}}{\rho^{2}(1+\chi)^{2}} & =0 \\
m_{2} \omega^{2}(r+\rho)-\frac{G m_{2} m_{1}}{\rho^{2}}+\frac{G m_{2} m_{3}}{\rho^{2} \chi^{2}} & =0 \\
m_{3} \omega^{2}(r+\rho+\rho \chi)-\frac{G m_{3} m_{1}}{\rho^{2}(1+\chi)^{2}}-\frac{G m_{3} m_{2}}{\rho^{2} \chi^{2}} & =0
\end{aligned}
$$

Replace last equation by sum of three equations $m_{1} r+m_{2}(r+\rho)+m_{3}(r+\rho+\rho \chi)=0$. Then

$$
\begin{aligned}
m_{1} \omega^{2} r+\frac{G m_{1} m_{2}}{\rho^{2}}+\frac{G m_{1} m_{3}}{\rho^{2}(1+\chi)^{2}} & =0 \\
m_{2} \omega^{2}(r+\rho)-\frac{G m_{2} m_{1}}{\rho^{2}}+\frac{G m_{2} m_{3}}{\rho^{2} \chi^{2}} & =0 \\
m_{1} r+m_{2}(r+\rho)+m_{3}[r+\rho(1+\chi)] & =0
\end{aligned}
$$

Third equation $\Longrightarrow \quad r=-\rho \frac{m_{2}+(1+\chi) m_{3}}{m_{1}+m_{2}+m_{3}}$
First equation $\Longrightarrow \quad \omega^{2}=\frac{G\left(m_{1}+m_{2}+m_{3}\right)}{\rho^{3}(1+\chi)^{2}} \frac{m_{2}(1+\chi)^{2}+m_{3}}{m_{2}+(1+\chi) m_{3}}$
Second equation $\Longrightarrow \quad\left(m_{1}+m_{2}\right) \chi^{5}+\left(3 m_{1}+2 m_{2}\right) \chi^{4}+\left(3 m_{1}+m_{2}\right) \chi^{3}$

$$
-\left(m_{2}+3 m_{3}\right) \chi^{2}-\left(2 m_{2}+3 m_{3}\right) \chi-\left(m_{2}+m_{3}\right)=0
$$

