MIT OpenCourseWare
http://ocw.mit.edu

16.346 Astrodynamics

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 31 The Calculus of Variations \& Sunar Landing Guidance

The Brachistochrone Problem

In a vertical $x y$-plane a smooth curve $y=f(x)$ connects the origin with a point $P\left(x_{1}, y_{1}\right)$ in such a way that the time taken by a particle sliding without friction from O to P along the curve propelled by gravity is as short as possible. What is the curve?

Assume the positive y-axis is vertically downward. Then the equation of motion is

$$
\begin{aligned}
m \frac{d^{2} s}{d t^{2}} & =m g \sin \gamma=m g \frac{d y}{d s} \quad \text { with } \quad d s^{2}=d x^{2}+d y^{2} \\
\frac{d^{2} s}{d t^{2}} \frac{d s}{d t} & =g \frac{d y}{d s} \frac{d s}{d t} \\
\frac{d}{d t}\left(\frac{d s}{d t}\right)^{2} & =2 g \frac{d y}{d t} \quad \Longrightarrow \quad \frac{d s}{d t}=\sqrt{2 g y}
\end{aligned}
$$

Then

$$
\int_{0}^{T} d t=T=\int_{0}^{x_{1}} \frac{d s}{\sqrt{2 g y}}=\frac{1}{\sqrt{2 g}} \int_{0}^{x_{1}} \frac{\sqrt{1+y^{\prime 2}}}{\sqrt{y}} d x=\frac{1}{\sqrt{2 g}} \int_{0}^{x_{1}} F\left(y, y^{\prime}\right) d x
$$

Deriving Euler's Equation

To minimize the integral $\quad I=\int_{x_{0}}^{x_{1}} F\left(x, y, y^{\prime}\right) d x \quad$ let $\quad y(x, \alpha)=y_{m}(x)+\alpha \epsilon(x)$

Then

$$
\frac{d I}{d \alpha}=\int_{x_{0}}^{x_{1}}\left[\frac{\partial F}{\partial y} \epsilon(x)+\frac{\partial F}{\partial y^{\prime}} \frac{d \epsilon}{d x}\right] d x=\int_{x_{0}}^{x_{1}}\left[\frac{\partial F}{\partial y}-\frac{d}{d x} \frac{\partial F}{\partial y^{\prime}}\right] \epsilon(x) d x
$$

Therefore, from the Fundamental Lemma of the Calculus of Variations

$$
\frac{\partial F}{\partial y}-\frac{d}{d x} \frac{\partial F}{\partial y^{\prime}}=0
$$

is a Necessary Condition which F must satisfy if the integral I is to be a minimum.
Special Case of Euler's Equation
Also

$$
\frac{d}{d x}\left(F-\frac{\partial F}{\partial y^{\prime}} y^{\prime}\right)=\frac{\partial F}{\partial x}+\underbrace{\left(\frac{\partial F}{\partial y}-\frac{d}{d x} \frac{\partial F}{\partial y^{\prime}}\right)}_{=0} y^{\prime}=\frac{\partial F}{\partial x}
$$

which will be zero if F is not a function of x. Therefore

$$
F-\frac{\partial F}{\partial y^{\prime}} y^{\prime}=\text { constant }
$$

Prob. 11-33
which establishes the necessary condition used to solve the Brachistochrone Problem.

16.346 Astradynamics

Solution of the Brachistochrone Problem

If T is to be a minimum, then, using Euler's Special Case of the Necessary Condition, we have

$$
y\left(1+y^{\prime 2}\right)=2 c \quad \text { or } \quad \int d x=x=\int \sqrt{\frac{y}{2 c-y}} d y
$$

Now let

$$
y=2 c \sin ^{2} \theta=c(1-\cos 2 \theta)
$$

so that

$$
x=2 c \int(1-\cos 2 \theta) d \theta=c(2 \theta-\sin 2 \theta)
$$

Therefore, the equation of the curve in parametric form is

$$
\begin{aligned}
& x=c(\phi-\sin \phi) \\
& y=c(1-\cos \phi)
\end{aligned} \quad \text { with } \quad \phi=2 \theta
$$

and represents a cycloid- the path of a point on a circle of radius c as it rolls along the underside of the x axis.

Terminal State Vector Control

Find the acceleration vector $\mathbf{a}(t)$ to minimize

$$
J=\int_{t_{0}}^{t_{1}} a(t)^{2} d t=\int_{t_{0}}^{t_{1}} \mathbf{a}^{\mathrm{T}}(t) \mathbf{a}(t) d t
$$

subject to

$$
\begin{array}{lll}
\frac{d \mathbf{r}}{d t}=\mathbf{v} & \mathbf{r}\left(t_{0}\right)=\mathbf{r}_{0} & \mathbf{r}\left(t_{1}\right)=\mathbf{r}_{1} \\
\frac{d \mathbf{v}}{d t}=\mathbf{a} & \mathbf{v}\left(t_{0}\right)=\mathbf{v}_{0} & \mathbf{v}\left(t_{1}\right)=\mathbf{v}_{1}
\end{array}
$$

Define the Admissible Functions:

$$
\begin{aligned}
& \mathbf{r}(t, \alpha)=\mathbf{r}_{m}(t)+\alpha \boldsymbol{\delta}(t) \quad \boldsymbol{\delta}\left(t_{0}\right)=\boldsymbol{\delta}\left(t_{1}\right)=\mathbf{0} \\
& \mathbf{v}(t, \alpha)=\mathbf{v}_{m}(t)+\alpha \boldsymbol{\delta}^{\prime}(t) \quad \text { where } \quad \boldsymbol{\delta}^{\prime}\left(t_{0}\right)=\boldsymbol{\delta}^{\prime}\left(t_{1}\right)=\mathbf{0} \\
& \mathbf{a}(t, \alpha)=\mathbf{a}_{m}(t)+\alpha \boldsymbol{\delta}^{\prime \prime}(t) \quad \delta^{\prime \prime}\left(t_{0}\right)=\delta^{\prime \prime}\left(t_{1}\right)=\mathbf{0}
\end{aligned}
$$

Then

$$
J(\alpha)=\int_{t_{0}}^{t_{1}} \mathbf{a}_{m}^{\mathrm{T}}(t) \mathbf{a}_{m}(t) d t+2 \alpha \int_{t_{0}}^{t_{1}} \mathbf{a}_{m}^{\mathrm{T}}(t) \delta^{\prime \prime}(t) d t+\alpha^{2} \int_{t_{0}}^{t_{1}} \delta^{\prime \prime}(t)^{\mathrm{T}} \delta^{\prime \prime}(t) d t
$$

A Necessary Condition for

$$
J(\alpha)=\int_{t_{0}}^{t_{1}} \mathbf{a}_{m}^{\mathrm{T}}(t) \mathbf{a}_{m}(t) d t+2 \alpha \int_{t_{0}}^{t_{1}} \mathbf{a}_{m}^{\mathrm{T}}(t) \boldsymbol{\delta}^{\prime \prime}(t) d t+\alpha^{2} \int_{t_{0}}^{t_{1}} \delta^{\prime \prime}(t)^{\mathrm{T}} \delta^{\prime \prime}(t) d t
$$

to be a minimum is that

$$
\left.\frac{d J}{d \alpha}\right|_{\alpha=0}=0=2 \int_{t_{0}}^{t_{1}} \mathbf{a}_{m}^{\mathrm{T}}(t) \boldsymbol{\delta}^{\prime \prime}(t) d t
$$

Use integration by parts

$$
\begin{aligned}
\int_{t_{0}}^{t_{1}} \mathbf{a}_{m}^{\mathrm{T}}(t) \boldsymbol{\delta}^{\prime \prime} d t & =\left.\mathbf{a}_{m}^{\mathrm{T}}(t) \boldsymbol{\delta}^{\prime}(t)\right|_{t_{0}} ^{t_{1}}-\int_{t_{0}}^{t_{1}} \frac{d \mathbf{a}_{m}^{\mathrm{T}}(t)}{d t} \frac{d \boldsymbol{\delta}(t)}{d t} d t=0-\int_{t_{0}}^{t_{1}} \frac{d \mathbf{a}_{m}^{\mathrm{T}}(t)}{d t} \frac{d \boldsymbol{\delta}(t)}{d t} d t \\
& =-\left.\frac{d \mathbf{a}_{m}^{\mathrm{T}}(t)}{d t} \boldsymbol{\delta}(t)\right|_{t_{0}} ^{t_{1}}+\int_{t_{0}}^{t_{1}} \frac{d^{2} \mathbf{a}_{m}^{\mathrm{T}}(t)}{d t^{2}} \boldsymbol{\delta}(t) d t=0+\int_{t_{0}}^{t_{1}} \frac{d^{2} \mathbf{a}_{m}^{\mathrm{T}}(t)}{d t^{2}} \boldsymbol{\delta}(t) d t
\end{aligned}
$$

Hence

$$
\left.\frac{d J}{d \alpha}\right|_{\alpha=0}=0 \quad \Longrightarrow \quad \int_{t_{0}}^{t_{1}} \frac{d^{2} \mathbf{a}_{m}^{\mathrm{T}}(t)}{d t^{2}} \delta(t) d t=0
$$

Again using the Fundamental Lemma of the Calculus of Variations it follows that

$$
\frac{d^{2} \mathbf{a}_{m}^{\mathrm{T}}(t)}{d t^{2}}=\mathbf{0}^{\mathrm{T}} \quad \Longrightarrow \quad \mathbf{a}_{m}(t)=\mathbf{c}_{1} t+\mathbf{c}_{2}
$$

Therefore, with $t_{g o}=t_{1}-t$, we have

$$
\mathbf{a}_{m}(t)=\mathbf{c}_{1} t+\mathbf{c}_{2}=\frac{4}{t_{g o}}\left[\mathbf{v}_{1}-\mathbf{v}(t)\right]+\frac{6}{t_{g o}^{2}}\left\{\mathbf{r}_{1}-\left[\mathbf{r}(t)+\mathbf{v}_{1} t_{g o}\right]\right.
$$

Lunar-Landing Guidance for Apollo Missions
To include the effects of gravity

$$
\mathbf{a}(t)=\mathbf{a}_{T}(t)+\mathbf{g}(\mathbf{r})
$$

we could use

$$
\mathbf{a}_{T}(t)=\frac{4}{t_{g o}}\left[\mathbf{v}_{1}-\mathbf{v}(t)\right]+\frac{6}{t_{g o}^{2}}\left\{\mathbf{r}_{1}-\left[\mathbf{r}(t)+\mathbf{v}_{1} t_{g o}\right]\right\}-\mathbf{g}[\mathbf{r}(t)]
$$

for the thrust acceleration which would be an exact solution if \mathbf{g} were constant.

