MIT OpenCourseWare
http://ocw.mit.edu

16.346 Astrodynamics

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 2 The Twa Bady Problem Cantinued

The Eccentricity Vector or The Laplace Vector

$$
\mu \mathbf{e}=\mathbf{v} \times \mathbf{h}-\frac{\mu}{r} \mathbf{r}
$$

Explicit Form of the Velocity Vector

Using the expansion of the triple vector product $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}$ we have

$$
\mathbf{h} \times \mu \mathbf{e}=\mathbf{h} \times(\mathbf{v} \times \mathbf{h})-\frac{\mu}{r} \mathbf{h} \times \mathbf{r}=h^{2} \mathbf{v}-(\mathbf{h} \cdot \mathbf{v}) \mathbf{h}-\mu \mathbf{h} \times \mathbf{i}_{r}=h^{2} \mathbf{v}-\mu h \mathbf{i}_{h} \times \mathbf{i}_{r}
$$

since \mathbf{h} and \mathbf{v} are perpendicular. Therefore:

$$
\mathbf{h} \times \mu \mathbf{e} \quad \Longrightarrow \quad \mathbf{v}=\frac{\mu}{h} \mathbf{i}_{h} \times\left(\mathbf{e}+\mathbf{i}_{r}\right)
$$

or

$$
\frac{h \mathbf{v}}{\mu}=\mathbf{i}_{h} \times\left(e \mathbf{i}_{e}+\mathbf{i}_{r}\right)=e \mathbf{i}_{h} \times \mathbf{i}_{e}+\mathbf{i}_{h} \times \mathbf{i}_{r}=e \mathbf{i}_{p}+\mathbf{i}_{\theta}
$$

Then since

$$
\mathbf{i}_{p}=\sin f \mathbf{i}_{r}+\cos f \mathbf{i}_{\theta}
$$

we have

$$
\frac{h \mathbf{v}}{\mu}=e \sin f \mathbf{i}_{r}+(1+e \cos f) \mathbf{i}_{\theta}
$$

which is the basic relation for representing the velocity vector in the Hodograph Plane.

See Page 1 of Lecture 4

Conservation of Energy

$$
\frac{h \mathbf{v}}{\mu} \cdot \frac{h \mathbf{v}}{\mu}=\frac{p}{\mu} \mathbf{v} \cdot \mathbf{v}=2(1+e \cos f)+e^{2}-1=2 \times \frac{p}{r}-\left(1-e^{2}\right)=p\left(\frac{2}{r}-\frac{1}{a}\right)
$$

which can be written in either of two separate forms each having its own name:

$$
\begin{aligned}
& \text { Energy Integral } \frac{1}{2} v^{2}-\frac{\mu}{r}=-\frac{\mu}{2 a}=\frac{1}{2} c_{3} \\
& \text { Vis-Viva Integral } v^{2}=\mu\left(\frac{2}{r}-\frac{1}{a}\right)
\end{aligned}
$$

The constant c_{3} is used by Forest Ray Moulton, a Professor at the University of Chicago in his 1902 book "An Introduction to Celestial Mechanics" - the first book on the subject written by an American.

16.346 Astradynamics

Lecture 2

Conic Sections

Ellipse or Hyperbola in rectangular coordinates $(e \neq 1)$

$$
\begin{aligned}
y^{2}=r^{2}-x^{2} & =(p-e x)^{2}-x^{2}=\left(1-e^{2}\right)\left[a^{2}-(x+e a)^{2}\right] \\
& \frac{(x+e a)^{2}}{a^{2}}+\frac{y^{2}}{a^{2}\left(1-e^{2}\right)}=1
\end{aligned}
$$

Semiminor Axis:

$$
b^{2}=\left|a^{2}\left(1-e^{2}\right)\right|=|a| p
$$

Fig. 3.1 from An Introduction to the Mathematics and Methods of Astrodynamics. Courtesy of AIAA. Used with permission.

Auperbala

Fig. 3.2 from An Introduction to the Mathematics and Methods
of Astrodynamics. Courtesy of
AIAA. Used with permission.
Parabola in rectangular coordinates $(e=1)$

$$
y^{2}=r^{2}-x^{2}=(p-x)^{2}-x^{2} \quad \Longrightarrow \quad y^{2}=2 p\left(\frac{1}{2} p-x\right)
$$

Origin at focus $\quad r+e x=p$
Origin at center $\quad r+e x=a$
With x now measured from the center which is at a distance $a e$ from the focus, then

$$
\begin{aligned}
r+e x & =p \\
r+e(x-a e) & =p=a\left(1-e^{2}\right) \\
r+e x & =a
\end{aligned}
$$

Origin at pericenter $\quad r+e x=q$

With x now measured from pericenter which is at a distance of a from the center and a distance of $q=a(1-e)$ from the focus, then

$$
\begin{aligned}
r+e x & =p \\
r+e(x+q) & =p=q(1+e) \\
r+e x & =q
\end{aligned}
$$

These are useful to derive other properties of conic sections:

- Focus-Directrix Property: $\quad r=p-e x$: Page 144

$$
P F=r=e\left(\frac{p}{e}-x\right)=e \times P N
$$

or

$$
\frac{P F}{P N}=e
$$

- Focal-Radii Property:

$$
\begin{gathered}
r=a-e x: \quad \text { Page 145 } \\
P F^{2}=(x-e a)^{2}+y^{2} \\
P F^{* 2}=(x+e a)^{2}+y^{2}
\end{gathered}
$$

so that

$$
\begin{gathered}
P F^{* 2}=P F^{2}+4 a e x \\
=r^{2}+4 a e x \\
=(a-e x)^{2}+4 a e x=(a+e x)^{2} \\
P F^{*}=\left\{\begin{array}{cll}
a+e x & \text { ellipse } & a>0 \\
-(a+e x) & \text { hyperbola } & a<0, x<0
\end{array}\right.
\end{gathered}
$$

Thus,

$$
\begin{array}{ll}
\hline P F^{*}+P F=2 a & \text { ellipse } \\
P F^{*}-P F=-2 a & \text { hyperbola }
\end{array}
$$

- Euler's Universal Form: From $r=q-e x: \quad$ Page 143

$$
y^{2}=r^{2}-(q+x)^{2}=(q-e x)^{2}-(q+x)^{2}
$$

Then

$$
y^{2}=-(1+e)\left[2 q x+(1-e) x^{2}\right]
$$

Basic Twa-Bady Relations

Vector Equations of Motion

$$
\frac{d^{2} \mathbf{r}}{d t^{2}}+\frac{\mu}{r^{3}} \mathbf{r}=\mathbf{0} \quad \text { or } \quad \frac{d \mathbf{v}}{d t}=-\frac{\mu}{r^{3}} \mathbf{r}
$$

Angular Momentum Vector $\quad \mathbf{r} \times \frac{d \mathbf{v}}{d t}=\mathbf{0} \quad \Longrightarrow \quad \mathbf{r} \times \mathbf{v}=\mathbf{c o n s t a n t} \equiv \mathbf{h}$

Eccentricity Vector

$$
\frac{d \mathbf{v}}{d t} \times \mathbf{h} \quad \Longrightarrow \quad \frac{1}{\mu} \mathbf{v} \times \mathbf{h}-\mathbf{i}_{r}=\mathbf{c o n s t a n t} \equiv \mathbf{e}
$$

Equation of Orbit $\quad \mu \mathbf{e} \cdot \mathbf{r} \quad \Longrightarrow \quad r=\frac{h^{2} / \mu}{1+e \cos f}=\frac{p}{1+e \cos f}$
Velocity Vector

$$
\mathbf{h} \times \mu \mathbf{e} \quad \Longrightarrow \quad \mathbf{v}=\frac{1}{p} \mathbf{h} \times\left(\mathbf{e}+\mathbf{i}_{r}\right)
$$

Orbital Parameter p
Dynamics Definition: $\quad p \equiv \frac{h^{2}}{\mu} \quad$ Geometric Definition: $\quad p=a\left(1-e^{2}\right)$

Total Energy or Semimajor Axis or Mean Distance $\quad a$
Dynamics Definition: $\frac{1}{2} v^{2}-\frac{\mu}{r}=$ constant $\equiv-\frac{\mu}{2 a}$
Geometric Definition: $\frac{(x+e a)^{2}}{a^{2}}+\frac{y^{2}}{a^{2}\left(1-e^{2}\right)}=1$
Eqs. of Motion in Polar Coord. $\quad \frac{d^{2} r}{d t^{2}}-r\left(\frac{d \theta}{d t}\right)^{2}+\frac{\mu}{r^{2}}=0 \quad \frac{d}{d t}\left(r^{2} \frac{d \theta}{d t}\right)=0$

Kepler's Laws

Second Law

$$
\frac{d A}{d t}=\frac{1}{2} r^{2} \frac{d \theta}{d t}=\text { constant }=\frac{h}{2}
$$

First Law

$$
r=\frac{p}{1+e \cos f} \quad \text { or } \quad r=p-e x
$$

Third Law

$$
\frac{\pi a b}{P}=\frac{h}{2} \quad \Longrightarrow \quad \frac{a^{3}}{P^{2}}=\text { constant }=\frac{\mu}{4 \pi^{2}}
$$

