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Lecture 2 The Two Body Problem Continued 
The Eccentricity Vector or The Laplace Vector 

µ 
µe = v × h − r 

r 

Explicit Form of the Velocity Vector #3.1 

Using the expansion of the triple vector product a × (b × c) = (a c)b − (a b)c we have · · 
µ

h × µe = h × (v × h) − 
r 

h × r = h2v − (h · v)h − µh × i r = h2v − µh ih × i r 

since h and v are perpendicular. Therefore: 

µ
v = ih × (e + i r)= 

h 
h × µe ⇒ 

or 
hv 

= ih × (e i e + i r) =  e ih × i e + ih × i r = e i p + iθ µ 

Then since 
i p = sin f i r + cos f iθ 

we have 
hv 

= e sin f i r + (1 +  e cos f) iθ µ 

which is the basic relation for representing the velocity vector in the Hodograph Plane. 

See Page 1 of Lecture 4 

Conservation of Energy 

hv hv p p 2 1 
µ 

· 
µ 

= 
µ 

v · v = 2(1 + e cos f) +  e 2 − 1 = 2  × 
r 
− (1 − e 2) =  p

r 
− 

a 

which can be written in either of two separate forms each having its own name:


1 2 µ µ 
v

2
− 

r 
= − 

2a 

1 
= c32

Energy Integral


(2 1) 
v 2 = µ

r 
− 

a 
Vis-Viva Integral


The constant c3 is used by Forest Ray Moulton, a Professor at the University of 
Chicago in his 1902 book “An Introduction to Celestial Mechanics” — the first book on 
the subject written by an American. 
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∣
− e 

∣
|a| p Semiminor Axis:
 b2 = a 2(1  2) =

(x + ea)2 y2 

+ = 1  
a2 a2(1 − e2)

Conic Sections 
Ellipse or Hyperbola in rectangular coordinates (e = 1) 

y 2 = r 2 − x 2 = (p − ex)2 − x 2 = (1 − e 2)[a 2 − (x + ea)2] 

Hyperbola 

∣ ∣

Ellipse 

Parabola in rectangular coordinates (e = 1) 

y 2 = r 2 − x 2 = (p − x)2 − x 2 = ⇒ y 2 = 2p( 1 p 2 − x) 

Parabola 
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Fig. 3.1 from An Introduction to the Mathematics and Methods of Astrodynamics.  Courtesy of AIAA. Used with permission.
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Fig. 3.2 from An Introduction to the Mathematics and Methods of Astrodynamics.  Courtesy of AIAA. Used with permission.
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Fig. 3.3 from An Introduction to the Mathematics and Methods of Astrodynamics.  Courtesy of AIAA. Used with permission.
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Alternate Forms of the Equation of Orbit	 #4.1 
Origin at focus r + ex = p 

Origin at center r + ex = a 

With x now measured from the center which is at a distance ae from the focus, then 

r + ex = p 

r + e(x − ae) =  p = a(1 − e 2) 
r + ex = a 

Origin at pericenter r + ex = q 
With x now measured from pericenter which is at a distance of a from the center and a 
distance of q = a(1 − e) from the focus, then 

r + ex = p 

r + e(x + q) =  p = q(1 + e) 
r + ex = q 

These are useful to derive other properties of conic sections: 
•	 Focus-Directrix Property: r = ( p − ex : ) Page 144


p

PF  = r = e = e × PN 

e 
− x 

or PF 
= e 

PN 

• Focal-Radii Property: r = a − ex : Page 145 

PF 2 = (x − ea)2 + y 2 

PF ∗2 = (x + ea)2 + y 2 

so that PF ∗2 = PF 2 + 4aex


= r 2 + 4aex


= (a − ex)2 + 4aex = (a + ex)2


a + ex ellipse a >  0 
PF ∗ = −(a + ex) hyperbola a <  0, x <  0 

Thus, 
PF ∗ + PF = 2a ellipse 
PF ∗ − PF = −2a hyperbola 

• Euler’s Universal Form: From r = q − ex : Page 143 

y 2 = r 2 − (q + x)2 = (q − ex)2 − (q + x)2 

Then y 2 = −(1 + e)[2qx + (1  − e)x 2] 
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Basic Two-Body Relations 

d2r µ	 dv µ
Vector Equations of Motion + r = 0 or	 r 

dt2 r3	 dt 
= −

r3 

dv
Angular Momentum Vector r × 

dt 
= 0 = ⇒ r × v = constant ≡ h 

dv	 1
Eccentricity Vector 

dt 
× h = ⇒ 

µ 
v × h − i r = constant ≡ e 

h2/µ p
Equation of Orbit µe r = r = = · ⇒ 

1 +  e cos f 1 +  e cos f 

1
Velocity Vector	 h × µe = ⇒ v = 

p 
h × (e + i r) 

pOrbital Parameter 

h2 

Dynamics Definition: 
µ 

Geometric Definition: p = a(1 − e 2)p ≡ 

aTotal Energy or Semimajor Axis or Mean Distance 

Dynamics Definition:	
2
1 
v 2 − 

µ

r 
= constant ≡ −

2
µ

a 

(x + ea)2 y2 

Geometric Definition: + = 1  
a2 a2(1 − e2) 

d2r (dθ )2 µ d ( 
2 dθ ) 

Eqs. of Motion in Polar Coord. 
dt2 

− r 
dt 

+ 
r

= 0  
dt 

r 
dt 

= 0
2 

Kepler’s Laws 

dA 1 2 dθ	 h
Second Law	 = r = constant = 

dt 2 dt 2 

p
First Law	 r = 

1 +  e cos f 
or r = p − ex 

πab h a3	 µ
Third Law	 = = = constant = 

P 2 
⇒ 

P 2	 4π2 
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