MIT OpenCourseWare
http://ocw.mit.edu

### 16.346 Astrodynamics

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

## Lecture 26

## Clohessy-Wiltshire Equations $\dagger$

We begin with the equations for the restricted three-body problem

$$
m\left[\frac{d^{2} \mathbf{r}}{d t^{2}}+2 \boldsymbol{\omega} \times \frac{d \mathbf{r}}{d t}+\boldsymbol{\omega} \times(\boldsymbol{\omega} \times \mathbf{r})\right]=-\frac{G m m_{1}}{\rho_{1}^{3}} \boldsymbol{\rho}_{1}-\frac{G m m_{2}}{\rho_{2}^{3}} \boldsymbol{\rho}_{2}
$$

where

$$
\begin{array}{ll}
\boldsymbol{\rho}_{1}=\mathbf{r}-\mathbf{r}_{1} \quad \boldsymbol{\rho}_{2}=\mathbf{r}-\mathbf{r}_{2} \quad \mathbf{r}=\mathbf{r}_{3}-\frac{m_{1} \mathbf{r}_{1}+m_{2} \mathbf{r}_{2}}{m_{1}+m_{2}} \\
\boldsymbol{\omega}=\omega \mathbf{i}_{\zeta} \quad \text { with } \quad \omega^{2}=\frac{G\left(m_{1}+m_{2}+m\right)}{r_{12}^{3}} \approx \frac{G\left(m_{1}+m_{2}\right)}{r_{12}^{3}}
\end{array}
$$

With $m_{1}$ and $m_{2}$ on $\xi$-axis, then $\mathbf{r}_{1}=r_{1} \mathbf{i}_{\xi}$ and $\mathbf{r}_{2}=r_{2} \mathbf{i}_{\xi}$
To adapt these equations to the problem of a chase spacecraft $m$ in pursuit of a target spacecraft $m_{1}$ both moving about a central body of mass $m_{2}$, let both $m$ and $m_{1}$ become infinitesimal. As a result $r_{2}$ will be zero so that $\mathbf{r}$ and $\rho_{2}$ are the same vector. The vector $\rho_{1} \equiv \rho$ is the position of the chase spacecraft relative to the target spacecraft. Further, the angular velocity is

$$
\omega^{2}=\frac{G m_{2}}{r_{1}^{3}} \quad \text { or } \quad \omega^{2} r_{1}^{3}=G m_{2}
$$

so that the equations of motion of the chase spacecraft can be written as

$$
\frac{d^{2} \rho}{d t^{2}}+2 \boldsymbol{\omega} \times \frac{d \rho}{d t}+\boldsymbol{\omega} \times\left[\boldsymbol{\omega} \times\left(\boldsymbol{\rho}+\mathbf{r}_{1}\right)\right]=-\frac{\omega^{2} r_{1}^{3}}{r^{3}} \mathbf{r}
$$

where $\rho$ and $\mathbf{r}_{1}=r_{1} \mathbf{i}_{\xi}$ are the position vectors of the chase and target spacecrafts, respectively.
Note: $\quad \mathbf{r}=\boldsymbol{\rho}+\mathrm{r}_{1}$
This differential equation is non-linear because of the factor $1 / r^{3}$. However, with the use of the Taylor Series expansion, we write

$$
\begin{aligned}
& \frac{r^{2}}{r_{1}^{2}}=\frac{\left(\boldsymbol{\rho}+\mathbf{r}_{1}\right) \cdot\left(\boldsymbol{\rho}+\mathbf{r}_{1}\right)}{r_{1}^{2}}=\frac{\rho^{2}+2 \boldsymbol{\rho} \cdot \mathbf{r}_{1}+r_{1}^{2}}{r_{1}^{2}}=1+2 x \mathbf{i}_{\xi} \cdot \mathbf{i}_{r_{1}}+x^{2} \\
& \frac{r_{1}}{r}=\left(1+2 \mathbf{i}_{\xi} \cdot \mathbf{i}_{r_{1}} x+x^{2}\right)^{-\frac{1}{2}}=1-\mathbf{i}_{\xi} \cdot \mathbf{i}_{r_{1}} x+\cdots
\end{aligned}
$$

where $\quad x=\frac{\rho}{r_{1}}$. Therefore,

$$
\frac{r_{1}^{3}}{r^{3}}=1-3 \mathbf{i}_{\xi} \cdot \mathbf{i}_{\rho} \frac{\rho}{r_{1}}+O\left(\frac{\rho^{2}}{r_{1}^{2}}\right)
$$

$\dagger$ W.H. Clohessy and R.S. Wiltshire, Journal of Aerospace Sciences, Vol. 27, No. 9, 1960, pp. 653-658.
and the equation will be linear if we ignore the higher order terms. Then

$$
\frac{d^{2} \boldsymbol{\rho}}{d t^{2}}+2 \boldsymbol{\omega} \times \frac{d \boldsymbol{\rho}}{d t}+\boldsymbol{\omega} \times\left[\boldsymbol{\omega} \times\left(\boldsymbol{\rho}+\mathbf{r}_{1}\right)\right]=-\omega^{2}\left[1-3\left(\mathbf{i}_{\xi} \cdot \boldsymbol{\rho}\right) \frac{1}{r_{1}}\right]\left(\boldsymbol{\rho}+\mathbf{r}_{1}\right)
$$

reduces to

$$
\frac{d^{2} \boldsymbol{\rho}}{d t^{2}}+2 \boldsymbol{\omega} \times \frac{d \boldsymbol{\rho}}{d t}+\boldsymbol{\omega} \times(\boldsymbol{\omega} \times \boldsymbol{\rho})=-\omega^{2} \boldsymbol{\rho}+3 \omega^{2}\left(\mathbf{i}_{\xi} \cdot \boldsymbol{\rho}\right) \mathbf{i}_{\xi}+O\left(\rho^{2}\right)
$$

since the term with the factor $\left(\mathbf{i}_{\xi} \cdot \boldsymbol{\rho}\right) \boldsymbol{\rho}$ is $O\left(\rho^{2}\right)$.
Finally,

$$
\boldsymbol{\rho}=\xi i_{\xi}+\eta \mathbf{i}_{\eta}+\zeta i_{\zeta}
$$

so that

$$
\boldsymbol{\omega} \times(\boldsymbol{\omega} \times \boldsymbol{\rho})=-\omega^{2}\left(\xi i_{\xi}+\eta \mathbf{i}_{\eta}\right) \quad \text { and } \quad \mathbf{i}_{\xi} \cdot \boldsymbol{\rho}=\xi
$$

Therefore, the differential equation for the motion of the chase spacecraft relative to the target spacecraft is

$$
\frac{d^{2} \rho}{d t^{2}}+2 \boldsymbol{\omega} \times \frac{d \boldsymbol{\rho}}{d t}=-\omega^{2} \zeta \mathbf{i}_{\zeta}+3 \omega^{2} \xi \mathbf{i}_{\xi}+O\left(\rho^{2}\right)
$$

or in scalar form

$$
\begin{aligned}
\frac{d^{2} \xi}{d t^{2}}-2 \omega \frac{d \eta}{d t}-3 \omega^{2} \xi & =0 \\
\frac{d^{2} \eta}{d t^{2}}+2 \omega \frac{d \xi}{d t} & =0 \\
\frac{d^{2} \zeta}{d t^{2}}+\omega^{2} \zeta & =0
\end{aligned}
$$

It is sometimes convenient to express the position vector

$$
\rho \equiv \mathbf{r}=x \mathbf{i}_{\theta}+y \mathbf{i}_{r}-z \mathbf{i}_{z} \quad \mathbf{i}_{r_{1}}=\mathbf{i}_{r} \quad \boldsymbol{\omega}=-\omega \mathbf{i}_{z}
$$

with $x$ in the direction of motion $\mathbf{i}_{\theta}, y$ in the radial direction $\mathbf{i}_{r}$ and $\mathbf{i}_{z}=\mathbf{i}_{\theta} \times \mathbf{i}_{r}$ normal to the orbital plane. Then the equations of motion are $\ddagger$ are

$$
\begin{aligned}
\frac{d^{2} x}{d t^{2}}+2 \omega \frac{d y}{d t} & =0 \\
\frac{d^{2} y}{d t^{2}}-2 \omega \frac{d x}{d t}-3 \omega^{2} y & =0 \\
\frac{d^{2} z}{d t^{2}}+\omega^{2} z & =0
\end{aligned}
$$

The Clohessy-Wiltshire equations are three simultaneous second-order, linear, constantcoefficient, coupled differential equations which are capable of exact solution.
$\ddagger$ S.W. Shepperd, Journal of Guidance, Control, and Dynamics, Vol. 14, No. 6, 1991, pp. 1318-1322.

## General Solution of the C-W Equations

Introduce the dimensionless time variable $\tau=\omega t$ so that the Clohessy-Wiltshire equations take the form

$$
\begin{gathered}
\frac{d^{2} x}{d \tau^{2}}+2 \frac{d y}{d \tau}=0 \\
\frac{d^{2} y}{d \tau^{2}}-2 \frac{d x}{d \tau}-3 y=0 \\
\frac{d^{2} z}{d \tau^{2}}+z=0
\end{gathered}
$$

The general solution of these equations, with initial conditions $x_{0}, y_{0}, z_{0}, \dot{x}_{0}, \dot{y}_{0}$ and $\dot{z}_{0}$ and using the notation $\frac{d x}{d \tau}=\dot{x}, \frac{d y}{d \tau}=\dot{y}$ and $\frac{d z}{d \tau}=\dot{z}$, is

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
y \\
\dot{x} \\
\dot{y}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 6 \sin \tau-6 \tau & 4 \sin \tau-3 \tau & 2 \cos \tau-2 \\
0 & 4-3 \cos \tau & 2-2 \cos \tau & \sin \tau \\
0 & 6 \cos \tau-6 & 4 \cos \tau-3 & -2 \sin \tau \\
0 & 3 \sin \tau & 2 \sin \tau & \cos \tau
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
y_{0} \\
\dot{x}_{0} \\
\dot{y}_{0}
\end{array}\right]} \\
& {\left[\begin{array}{c}
z \\
\dot{z}
\end{array}\right]=\left[\begin{array}{cc}
\cos \tau & \sin \tau \\
-\sin \tau & \cos \tau
\end{array}\right]\left[\begin{array}{l}
z_{0} \\
\dot{z}_{0}
\end{array}\right]}
\end{aligned}
$$

