David L.

Parnas

Departwent of Computer Science
University of Ncrth Carolina at Chapel Hill

ABSTRACT

Designing software to be exteasible and
easily contracted is discussed as a
special case of design for «change. A
nunber of vays that extension and
contraction problems nmanifest themselves
in current software are explained. Four
steps in the design of software that is
more flexible are then discussed. The
post critical stegy 1is the design of a
softvare structure called the Wuses®"
re lation. Some criteria tor design
decisions are given and iliustrated using
a small exanmple. It 1is shown that +the
identification of a@minimal subsets and
pinimal extensions can lead to software
that can be tailored to the needs of a
broad variety of users.

I. INTRODUCTION.

because the
about software

This paper is being written
following complaints
systems are so comBon:

(A) "We were behind scheduie and wanted
to deliver an early release with only
<proper subset of intended capabilities>,
but found that that subset would not work
until everything worked.™

(B) "de wanted to add <simple
capability>, but to do so would have meant
rewriting all or most of the current
code. "

(C) PWe wanted to simplify and speed up
the system by removing the <unneeded
capability>, but to take advantaye of this
simplification e would have had to
rewrite major sections of the code.®

{D) "our SYSGEN was intendea to allow us
to tailor a system to our customers' needs
but it was not flexible enougn t suit
us. ™

After studying a number of such systems, I
have identified sone simple concepts that

can help programmers to design software so
that subsets and extension are more easily
obtained. These concepts are simple if
you think about software in the way
suggested by this paper. Programmers do
not commonly do so.

II. SOFTWARE AS A FAHMILY GF PROGRANS.

fhen we were first taught how to program,
we were given a specific problem and told
to write omne program to do that job.
Later vwe compared our proyram to others,
coansidering such issues as space and time

utilization, but still assuming that wve
were producing a single product. Even the
most recent literature on programming

methodology is written on that basis.
Dijkstra's "Discipline of Proyramaing® [1]
uses predicate transformers to specify the
task to be performed by the program to be
written. The use of the definite article
implies that there is a unique problem to
be solved and but one program to write.

Today, the software designer should be
aware that he is not designing a single
program but a family of proyramse. As

discussed im an earlier paper (2], we
consider a set of programs to be a progranm
family if they have so much in common that
it pays tc study their common aspects
before looking at the aspects that
differentiate them. This rather praymatic
definition does not tell us what pays, but
it does explain the motivation for
designing program tamilies. We want to
exploit the comrmonalities, share code, and
reduce maintepance costs.

Some of the ways that the nmeavers of a
proyranm family may differ are listed
below:

(1) They may run on different hardware
configurations.

(2) They may perform the same functions
but differ in the format or the input and
output data.

264

(3) They may differ im certain data
structures or algorithms because of
differences in the available resources.

(4) They may dif fer in some data
structures or algorithms because of
differences in the size of the input data

sets or the relative frequency of certain
€vVents.

(5) Some users may reyuire only a subset
of the services or features that other
users need. These "less demanding® users
may demand that they not be forced to pay
for the resources consumed by tae unneeded
teatures.

Engineers are taught that they must try to
anticipate the changes that may be made,
and are shown how to achieve designs that
can easily be altered when these
anticipated changes occur. For exanple,
an electrical engineer will be advised
that the whole world has not standardized
on 60-cycle, 110-volt current. Television
designers are fully awvare of the ditfering
transmission conventions that exist in the
world. 1It is standard practice to desiqgn
products that are easily changed in those
aspects. Unfortunately, there is no magic
techni que for handling unanticipated
change s. The makers of conventional
watches have no difficulty altering a
vatch that shows the day so that it
displays "MER™ imstead of M“YHKED," but I
would expect a long delay for redesign
were the world to switch to a ten day
veek.

Software engineers have not been trained
in this wa Yo The usual programming
courses neither mention the need to
anticipate changes nor do they offer
techniques for designing proyrams in which
changes are easy. Because programs are
abstract mathematical objects, t he
software engineers’ techniyues for
responding to anticipated changes are more
subtle and mnore difficult to grasp than
the technigues used by designers of
physical objects. Further, we have been
led astray by the other desiguners of
abstract objects - mathematicians who
state and prove theorens. When a
mathenatician becomes aware of the need
for a set of closely related theorems, he
responds by proving a more yeneral
theore m. For mathematiciaas, a more
general rTesult is always superior to a
mnore specialized product. The engineering
analoyy to the mathematician's approach
would be to design television sets
containing variable transformers and
tupers that are capable of detecting
several types of signals. Except for U.S.

armed forces stationed overseas, there is
little market for such a product. Few of
us consider relocations so likely that we

are wiiling to pay to have the yenerality

265

present in the product. My guess is that
the market for calendar watches for a
variable length week is even smaller than
the market for the television sets just

described.

of the
rather

In [2] I have treated the subject
design of program fanilies
geperally and im terms of text in a
programming language. In this paper I
focus on the fifth situation described
above; families of programs in which some
nmembers are subsets of other family
pembers or several family members share a
common subsets I discuss an earlier stage
of design, the stage when one identifies
the major components of the system and
defines relations between those
components. We focus on this early stage
because the problems described in the
introduction result from failure to
carefully consider early desiyn decisions.

IIXI. HOW DOES THE LACK OF SUBSEIS AND
EXTENSIONS HMANIFEST ITSELF?
Although we often speak of prograas that

are "not subsetable® or "not extensible,"
ve nust recoynize that phrase as
inaccurate. It is always possible to
remove code from a prograe aund have a
runable result. Any software system can
be extended (TS50 proves that) . The
problenm is that these subsets and
extensions are not the fprograms that ve
would have designed if we had set out to
design just that product. Purther, the
amount of work mneeded to obtain the
product seems all out of proportion to the
nature of the change. The probleas
encountered in trying to extend or shrink
systeas fall into four classes.

A. Excessive information distribution.

A system may be hard to extead or contract
if too many programs were written assuming
that a given feature is present or anot
present. This can be illustrated by an
operating systea in which an early desiga
decision was that the system would support
three conversational languages. There
were many sections of the system where
knowledge of this decision was used. For
example, error message tables had room for
three entries. An extension to allow four
languages would have reguired that a great

deal of code be rewritten. More
surprisingly, it would have been difficult
to reduce the systen to one that
efficiently supported only two of the
languagyes. One could remove the third
language, but to regain the table space,
one would have had to rewrite the same
sections ot code that would be rewritten

to add a language.

B- A chain of

components.

data transtorming

Many programs are structured as a chain of

components, each receiving data from the
previous component, processing it (and
changing the format), Lbefore seanding the

data to the next program in the chain. If
one component in this chain is not needed,
that code is often hard to remove because
the output of 1its predecessor 1is not
compatible with the input reyuirements of
its SUCCESSOT. A program that does
nothing but change the format must be
substituted. One illustration wowd be a
payroll program that assuned unsorted
input. Cne of the components of the
system accepts the unsorted ianput and
produces output that 1is sorted by some
key. If the firm adopts an office
procedure that results in sorted input,
this phase of the processing is
unnece Ssary. To eliminate that jprogram,
one may have to add a proygram that
transfers data from a file ia the input
format to a file in the format agpropriate
tor the next phase. It may be almost as
efficient to allow the original SORT
component to sort the sorted input.

Ca Conmponents that perform more than
function.

one

Another common error is combine
simple functions into one
because the functions seem too simple to
separate. For example, one wmight be
tenmpted to combine synchroanizatiou Wwith
message sending and acknowledygment in
building an operating systeam. Tane two
functions seem closely related; one aight
expect that for the sake of reliability
one should insist on a Phandshake? with
each exchange of sychronization siganals.
If one later encounters am application in
which synchronization is needed very
frequently, obne ray find that there is no
simple way to strip the nmessaye sending
out of the syochronization routines.
Another example is the imclusion of run-
time type-checkiny in the basic subroutine
call @pmechanisu. In applications where
compile-time checking or verification
eliminates the need for the run-time type-
check, ancther subroutine call mechanism
will be opeeded. The irony of these
situations is that the ®more powerful"
mechanism could have been built separately
fron, but using, simpler mechabisms.
Separation would result in a system in
which the subset function was available
for use where it sufficed.

to two

component

D. Loops in the Yuses" relation.

the
comrponent

individual

In many software
decisions about
programs to use

design
what
left

projects,
other

are to

266

systens [Tog rammers. If a proyrammer
knows of a program in another module, and
feels that it would be useful in his
program, he includes a call on that
program in his text. Programmers are
encouraged to use the +work of other
programmers as Ruch as possible because,
when each progranmer writes his own
routines to perforam common functions, we

end up with a system that is
than it need be.

much larger

Unfortunately, there are two sides to the
question of projram usage. Unless some
restraint is exercised, one @aay end up
with a system in which nothiny works until
everything works. For example, while it
may sSeel wise to have an operatiny systenm
scheduler use the file systea to store its
data (rather than use dits own disk
routines) , the result will be that the
file system @must be present and working
before any task scheduling is possible.
There are users for whom an operating
system subset without a file system would
be useful. Even if one has no such users,
the subset would be useful during
development and testing.

IVv. STEPS TOWARDS A BETTER STKUCTURE.
This section discusses four parts of a
methodoiogy that I believe will help the
software engineer to build systems that do
not evidence the problems discussed above.
A. Regquirements definition:
the subsets first.

identifying

One of the clearest morals 1u the earlier
discussion about "design for change" as it
is taught in other areas of engineeriny is
that one must anticipate chanyes before
one beyins the design. At a recent
conference 3], many of the papers
exhorted the audience to spend nore time
ideatifying the actual requirements before
starting op a design. I don't want to
repeat such exhortations, but 1 do want to
point out that the identification of the
possible subsets is part of identifying
the requirements. Treatiny the easy
availability of «certain subsets 4as an
operational requirement is especially
important to government officials who
purchase software. Many ofticials despair
of placing strict controls oun the
production methods ased by their
contractors because they are torbidden by
law to tell the comtractor aow to perform
his Jjobe. They may tell him what they
require, but not how to build it.
Fortunately, the availability of subsets
may be construed as an operational
property of the software.

On the other hand, the
the required subsets

of
simple

identitication
is not a

matter of asking potential users what they
could do without. First, users tend to
overstate their reguiremeants. Second, the
answer will @not characterize the set of
subsets that might be wanted in the
future. In wy experience, identification
of the potentially desirable subsets is a
demanding intellectual exercise in which
one first searches for the minimal subset
that awmight conceivably perform a useful
service and then searches ftor a set of
mipimal increments to the system. Each
increment is small - sometimes s0 swmall
that it seems trivial. The eamphasis on
mipnpimality stems from our desire to avoid
components that perform more than one
function as discussed in section IIl.C.
ldentifying the minimai subset is
difficult because the minimal system is
not wusually a program one that an yone
would ask for. If vwe are going to build
the software family, the mipimal subset is
useful, but it 1is not usually worth
building by itselft. similarly, the
maximum flexibility is obtained by looking
for the smallest possible increments in
capability; often these are smaller
increments than user would think of.
Whether or not he would thiank of them
before systea development, he is likely to
want that flexibility later.

a

The search for a wminimal subset and
minimal extensions can best be shown by an

example. One example of a minimal subset
is given in [4]}. Another example will be
given later in this paper.

B. Information
module definition.

hiding: interface and

In an earlier section we touched upon
difference between the mathematician‘'s
concept of gemerality and an engineer's
approach to design flexibility. Where the
mathematician wants his product, a theorem
or method of proof, to be as general as
possible, i.e applicable, without change,
in as many situations as possible, an

the

engineer often must tailor his product to
the situation actually at hand. Lack of
generality is necessary to make the
program as efficient or inexpensive as
possible. If he amust develop a family of
products, he tries to isolate the

changeable parts in modules and to develop
an interface bhetween the module and the
rest of the product that remains valid for
all versions. The crucial steps are:

a. Identification of the items that
are likely to ckhkange. These iteas
are termed Ysecrets.“

b. Location of the specialized
components in separate amodules.

c. Designing intermodule interfaces

that are insensitive to the

267

anticipated the changes. The
changeable aspects are termed the
fsecrets” of the modules.

It is exactly this that the concept of
information hiding [5], encapsulation, or
abstraction [6] is intended to do for
software. Because software is an abstract
or mathematical product, the modules may
not have any easily recogmized physical
identity. They are not necessarily
separately compilable or coincident with
memory overlay units. The interface must
be general but the contents should not be.
Specialization is necessary for economy
and efficiency.

The concept of information niding is very
general and is applicable in wmany of
softWware change situations - not just the
issue of subsets and extensions that we
address in this paper. The ideas have
also been extensively discussed in the
literature [5,6,7,8,9]- The special
implications for our [problem are simply
that, as far as possible, even the
presence or absence of a component should
be hidden from other components. If one
progranm uses another directly, the
presence of the second programs camnot be
fully hidden from its user. However,
there is never any reasoh for a component

to "know" how many other programs use it.
All data structures that reveal the
presence or nuaber of certain components

should be included in separate information
hiding modules with abstract interfaces
[10). Space and other considerations make
it impossible to discuss this concept
further in this paper; it will be
illustrated in the exanple. Readers for
whom this concept is vew are advised to
read scme of the articles mentioned above.
C. The virtual machine concept.

To avoid the jproblems that Ve have
described as "a chain of data transforming
components,® it 1is necessary to stop
thinking of systems in terms of components

that correspond to steps in the
processing. This way of thinking dies
harde It is almost certain that your

first introduction +to proyrasming was in
teras of a series of statements intended
to be executed in the order that they were
explained to you. We are goal oriented;
ve know what we start with and what we
want to produce. It is natural to think
in terss of steps progressing towards that
goal. It 1is the fact that ve are
designing a family of systeas that makes
this "natural® approach the wrong one.

The viewpoint that seems most
to designing software
termed the virtual
Rather than write

appropriate

families is often
machine approach.
programs that perfornm

. the transformation from input data to
output data, we design softwvare machine
extensions that will be useful in writing
many such proyjramse Where our hardware
machine [frovides us with a set of
instructions that operate on a small set
of data types, the extended or virtual
machine will have additional data types as
vell as "software imstructions® that
operate on those data types. These added
features will be tailored to the class of
programs that we are building. While the
VM instructions are designed to be
generally useful, they can be left out of
a final product if the user's programs
don't use thea. The programmer writing
programs for the wvirtual wmachine should
not need to distinguish between
instructions that are implemented in
software and those that are hardware
implemented. To achieve a true virtual
machine, the hardvare resources that are
used in implementing the extended
instruction set must be unavailable to the
user of the virtual machine. He has
traded these rescurces for the new data
elements and instructions. Any atteapt to
use those resources again will iavalidate
the coucept of virtual machine and lead to
complications. Failure to provide for
isolation of resources is one ot the
reasons for the failure oif some attenpts
to use macros to grovide a virtual
machine. The macro user must be careful
not to the resources used in the
BaCr OS. :

use

There is no reason to accouplish the
transformation from the hardware machine
toa virtual machine with all of the
desired features in a single 1leap.
Instead we will use the machine at hand to
implement a fewv new instructioas. At each
step we take advantage of the nevly
introduced features. Such a step-by-step
approach turns a large problem into a set
of small ones and, as we will see later,
eases the problem of finding the
appropriate subsets. Each €lement in this

series of virtuval machines is a useful
subset of the systen.

D= Designing the "uses" structure.

The concept of an abstract machine is an

intuitive way of thinpking about design. A
precise descrigtion of the concept conmes
through a discussion of the relation
"uses” [11,12].

l. The relation "uses.”

We consider a system to be divided imto a
set of programs that can be invoked either
by the norsal flow of control wmechanisms,
by an interrupt, or by exception
handling mechani sme Each ot these
Frog rams is assumed to have a

an

268

specification that defines exactly the
effect that an invocatiom of the program
should have.

We say of two prograns A and B that A uses
B if correct execution of B may be
necessary for A to complete the task
described in its specification. That is,
A uses B if there exist situations in
which the correct functioning oif A depends
upon the availability of a correct
implementation of B. Note that to decide
wvhether A uses B or not, one must exanine
both the iaplerentation and the
specification of A.

and "invokes"
uses differs

The "uses®™ relation
often coincide, but
ipvokes in two ways:

——

very
fros

(1) Certain invocations may not be
instances of Yuses.® If A's
specification requires only that A
ipvoke B when certain conditions
occur, then A has fulfilled its
specification when it has generated
a correct call to B. A is correct
even if B is incorrect or absent.
A proof of correctness of A aneed
only make assumptions about the way
to invoke B.

{2) A program A may use B even though
it never invokes it. The best
illustration of this is interrupt
handling. Most proyrams in a
computer system are only correct on
the assuaption that the intercrupt
handling routine will correctly
handle the interrupts (leave the
processor in an acceptable state).
Such programs use the interrupt
handling routines even though they
never call then. ®Uses™ can be
more precisely formulated as
"requires_the_presence ot a_correct
yersion of."

Systems that have achieved a certain
"eleyance" (e.g., T.H.E. {5], Venus [6]))
have done so by having parts of the systen
"use® other parts in such a way that the
"user™ prograns were simplified. For
exanple, the transput streas mechanism in
T.H.E« uses the segmenting mechanism to
great advantage. 1n contrast, many large
and complex operating systems acalieve
their size and complexity by having
“ipdependent™ parts. For example, there
are many systems in which “spooling,®
virtual memory management, and the file
systea all perfora their own backup store
operatioans. Code to pertorm these
functions is present in each of the
components. Whenever such components must
share a single device, complex interfaces
exist.

The disadvantage of unrestrained "usage"
of each others facilities is that the
system parts become highly interdependent.
Often there are no subsets of the systen
that can be used before the whole systen
is comple te. In practice, some
duplication of effort seems preferable to
a system in which nothing runs unless
everything runs.

2. The uses hierarchy.

By restricting the relation "uses" so that
its graph is loop free we can retain the
primary advantages of having system parts

"yse” each other while eliminating the
problems. 1In that case it is possiblie to
assign the programs to the levels of a

hierarchy by the following rules:

1. Level 0 is the set of all proyrams
that use no other program.
2. Level i is the set of all programs

that use at least one progras on
level i-1 and no progyram at a Level
higher tham i-1.

If such a hierarchical ordering exists,
then each level offers a testable and
usable subset of the system. In fact, one
can get additional subsets by including
only parts of a level. This property is
very valuable for the comstruction of any
sof twa re systen and is vital for
developing a broad family of systeas.

The design of the "uses™ hierarchy should
be one of the major milestones in a design
effort, The division of the system into
inde pendently callable subprograms uhas to
go on in parallel with the decisions about
uses, because they influence each other.

3. The criteria to be used
one progyram to use another.

in allowing

We propose to allow A "uses" B when all of
the following conditions hold:

(a) A is essentially simpler because
it uses B.
(b) B is not substantially more
complex because it is wot alloved
to use A.

There is a useful subset
containing B and not meeding A.

{c)

1)

There is no conceivably useful
subset containing A but not B.

During the process of designing the "yses"®
relation, we often find ourselves in a
situation where tvo Frograms could
obviously benefit from using each other
and the conditioans above cannot be
satisfied. 1In such situations, we resolve

269

the apparent conflicts by a technique that
ve call “sandwiching.® One of the
programs is *"sliced® intc two parts in a
way that allows the programs to "use" each
other and still satisfy the above
conditions. If we find ourselves in a
position where A would benefit from using
B, but B can alsc benefit from using A, wve
may split B into two programs: Bl and BZ2.
We then allow A to use B2 and Bl to use A.
The result would appear to be a saadwich
with B as the bread and A as the filling.
Often, we then go om to split A. He start
with a tewvw levels and end up with many.

The most frequent instances of splitting
and sandwiching came because initially we
were assuming that a "level” would be a

Yaodule® in the sense of IV. B. We will
discuss this in the final part of this
paper.

4, Use of the word “convenience.”

It will trouble some readers that it is
usual to wuse the word "convenience" to
describe a reason for introducing a

certain facility at a given level of the
hierarchy. A more substantial basis would
seem more scientific.

As discussed in {11]) amd [13), wve must
assume that the hardwvare itself is capable
of performing all necessary functions. As
one goes higher in the levels, one can
lose capabilities {as resouces are
consumed) - not gain them. On the other
hand, at the higher levels the new
functions can be implemented with simpler
programs because of the additional
programs that can be used. ¥e speak of
“convenience®" to make it <clear that one
could iaplement any functions on a lowver
level, but the availability ot the
additional programs at the higher level is
useful. For each function wvwe give the
lovest 1level at which the teatures that
are useful for iszplementing that function

(with the stated restrictions), are
available. In each case, vwe see no
functions available at +the next higher
level that would be useful for
implementing the functions as described.
if we implemented the program one level
lower we would have to duplicate programs

that become available at that level.

V. EXANPLE: AN ADDRESS PROCESSING
SUBSYSTEM

As an exanmple of designing for
extensibility and subsets, we coasider a
set of programs to read in, store, and
wWrite out lists of addresses. This
example has also been used, to illustrate
a different point, in [10] and has been
used in several classroom ex;eriments to

demonstrate module interchangeability.

A.

B.
D

Qur_Basic Assumptions Are:

1. The information items discussed in
Figure__1 will be the items to be
proce ssed by all application
prograes.

2. The input formats of the addresses
are subject to change.

3. The output formats of the addresses
are subject to change.

4. Some systems will use a siayle
fixed format for input aud output.
Other systems will need the ability
to choouse from several ot input or
output formats at run-time. Some
systems will be reguired in which
the user can specifty the format
using an address format definition
language.

5. The representation of addresses in
main storage will vary from system
to systen.

6. 1In most systems, only a subset of
the total set of addresses stored
in the system mneed be in main
storage at any one time. The
number of addresses needed may vary
from system to system and, in some
systens the number of addresses to
be kept 1n main memory may vary at
run-time.

The following items of information will

be found in the addresses to be processed

and constitute the only items of relevance

to the application programs:

* Last name

®Given names (first name and possible
middle names)

e Organization (Command or Activity)

eInternal identifier (Branch or Code)

¢ Street address or P.0. box

eCity or mail unit identifier

*State

¢Zip code

«Title

eBranch of service if military

*GS grade if civil service

Each of the above will be strings of

characters in the standard ANSI alphabet,

and each of the above may be empty or blank.

FIGURE |
We _Propose _the Following _ Design
cisions:

1. The input and output programs will

table will
used for

be table driven; the
specify the format to be

270

3.

4a

input and output. The contents and
organization of these format tables
will be the 'secrets' of the input
and output modules.

The representation of addresses in

core will be the ‘t!secret? of an
Address Storage Module (ASM). The
implementation chosen for this
module will be such that t he

operations of changiny a portion of
an address will be relatively
inexpensive, compareda to making the
address table larger or smaller.

When the number of aduresses to be

stored exceeds the capacity of an
ASH, prograws will use an Address
File Module (AFM). An AFM can be
made upward compatible with an ASN;
programs that were written to use
ASM's could operate using an AFM in
the same way. The AFM provides
additional commands to allow mnore
efficient usage by programs that do
not assume the random access
properties of an ASH. Taese
programs are described below.

Our isplementaton of an AFM would
use an ASM as a submodule as well
as another submodule that vwe will
call Block File Module (BFM). The
BFM stores blocks of data that are
sufficiently large to represent an
address, but the BFM is not
specialized to the handling of
addresses. An ASM that is wused
within an AFM may be said to have
tvo interfaces. In the *®pormal
interface® that an ASM presents to
an outside user, an address is a
set of fields and the access
functions hide or abstract from the
representation. Figure 2 is a list
of the access programs that
comprise this interface. In the
second interface, the ASH deals
with blocks of contiguous storage
and abstracts from the coantents.
There are conmands for the ASNM to
input and output ‘addresses' but
the operands are storage blocks
wvhose interpretation as addresses
is kpown only within the ASM. The
AFM pakes assumptions about the
association between blocks and
addresses but not about the way
that an address's components are
represented as blocks. The BFA is
completely independent of the fact
that the blocks contain address
iaformation. The BFM mighkt, in
fact, be a wmanufacturer supplied
access method.

ACCFSS FIINCTIONS FOR ''NORMAL INTERFACE"

MODULE: ASM
NAMF OF
ACCESS PROGPAM* INPUT PARAMETFRS __OUTPUT

*ADOTIT: asm X integer X string - asm .
ADDGN: asm X integer X string - asm ¢
ADDLN: asm X integer X string - asm M
ADDSERV: asm X integer X string - asm .
ADDBORC: asm X integer X string - asm .
ADDCORA: asm X integer X string - asm *
ADDSORP: asm X integer X string - asm ¢
ADDCITY: asm X integer X string - asm *
ADDSTATE: asm X integer X string d asm *
ADDZIP: asm X integer X string - asm *
ADDGSL: asm X integer X string - asm N
SETNUM: asm X integer - asm ©

FETTIT: asm X integer - string

FETGN: asm X integer - string

FETGN: asm X integer o string

FETLN: asm X integer - string

FETSERV. asm X integer - string

FETBORC: asm X integer -~ string

FETCORA: asm X integer - string

FETSORP: asm X integer - string

FETCITY: asm X integer - string

FETSTATE: asm X integer b string

FET2IP: asm X integer - string

FETGSL: asm X integer g string

FETNUM: asm - integer

FIGURE 2 ~ SYNTAX. OF ASM FUNCTIONS

*These are abreviations: ADPDTIT = ADD TITLF; ADDGN = ADD GIVEN NAME, etc.

27N

Ce

1.

2.

Component Projrapse

Module:

INAD:

INFSL:

ANFCR:

INTABEXT:

INTABCHG:

INFDEL:

INADSEL:

INADFO:

Module:

QUTAD:

QUTFSL:

Address Input

Reads in an address that is
assumed to be in a format
specified by a format table
and calls ASM or AFH
functions to store it.

Selects a format from an
existing set format
tables. The selected
format is the one that will
be used by INAD. There is
alvays a format selected.

of

format to the
used by INFSL. The
specified in a
'format languaye.?
Selection 1is not changed
{i-e., INAD still uses the
same format table).

Adds a new
tables
format is

Adds a blank
set of input

table to the
format tables.

table in the
tables using a
in a format
Selection is not

Revrites a
input format
description
language.
changed.

Deletes a table from the
set of format tables. The
selected format camnot be
deleted.

Reads in an address using
one of a set of formats.
Choice is specified by an
integer parameter.

Reads in an address in a
format specified as one of
its parameters (a string in
the format ‘definition
language). The format is
selected and added to the
tables and Subsequent
addresses could be read in
using INAD.

Address OQutput

in a
by a

an address
specitied
format table. The
information to be printed
is assumed to be in an ASH
and identified by its
position in an ASM.

Priunts
format

Selects a format table from
an existing set of output
format tables. The
selected FOBMAT is the one
that will be used by OUTAD.

272

QUTTABEXT:

OUTTABCHG:

OUTFCR:

OQUTFDEL:

QUTADSEL:

OUTADFO:

3. Module:

ADD

Adds a "blank" table to the
set of output format
tables.

Rewri tes the contents of a

format table using
information in a format
language.

Adds a new {ormat to the

set of formats that can be
selected by OUTFSL in a
format description
language.

Deletes a table from the
set of FOBHMAT tables that
can be selected by OUTFSL.

Prints out an address using
one of a set of formats.

Prints out an address in a
format specified in a
format definition language
string, which is one of the

actual paramneters. The
format is added to the
tables and selected.
Address Storage {ASH)
FET (Compoment Name):
This is a set of functions
used to read ianformationm
from an address store.
Beturns a string as a
value. See Figure 2.
{Component Nanme):
This is a set of fuactions
used to write information
in an address store. Each
takes a string and an
integer as parameters. The
integer specifies an
address within tae ASH.

OBLOCK :

1BLOCK:

ASMEXT:

See Figure 2.

Takes an inteyer parameter,
returns a storagye block as
a value.

Accepts a storage block and
integer as parameters. lIts
effect is to change the
contents of an address
store - which is retlected
by a change in the values
of the FET groyramse

Exteunds an aadress store by

appending a mnew address
with empty components at
the end of the address
Store.

ASMSHR: "Shrinks"” the address
store.

ASMCR: Creates a new address
store. Tae parameter
specifies the nuaber of
components. All components
are initially empty.

ASMDEL: Deletes an existing address
store.

4. Module: Block File Module

BLFET: Accepts an integer as a
parameter and returns a
“block."

BLSTO: Accepts a block and an
integer and stores the
blocke.

BFEXT: Extends BFH by adding
additional oplocks to its
capacity.

BFSHR: Reduces the size of the BFHM
by removing some blocks.

BFMCR: <Creates a files of blocks.

BFMDEL: Deletes an existing file of
blocks.

5. Hodule: Address File Module

This modules includes iumplementations of
all of the ASM fumctions except OBLOCK and
IBLOCK. Toc avoid confusion in the diagranm
showing the uses hierarchy we have changed
the names to:
AFMADD(Component Name) defined as in
Figure 2
AFNFET (Component Name) defined as in
Figure 1
AFMEXT defined as in BFN above
AMFSHR defined as in BFN above
AFMCR defined as in BFM above
AFMDEL defined as in BFd above

b. Uses_Relatign

Figure 3 shows the uses relation between
the component programs. It is important
to note that we are now discussing the
implenmentation of those programs, not just
their specification. The uses relation is
characterized by the fact that there are a
large nusmber of velatively sinple, single
purpgse programs o the lowest levei. The
upper level prograns are ibplemented by
means of these 1lower 1level programs so
that they too are quite simple. This uses
relation diagram characterizes the set of
possible subsets.

273

DEL) CAENCR]

[Brsur] [BFMDEL] [BFMCR

[CAEFEXT)

o (BFEXT)

BLFET [BLSTO)

[ASMSHR] [ASMCR }

[1BLOCK)fASMEXT]

I

[AFFET<CN> | {APADD<CN>

[FET<CN>} [ADD<CN>][0BLOCK]

[OUTADFO]
MOUIFCR]
I s I

PSEL]
Lo

e e e

FIGURE 3

E. Discussion

To pick a subset, one identifies the set
of upper 1level programs that the user
needs and includes only those proyrams
that those programs use (directly or
indirectly). For example, a user who uses
addresses in a single format doves uot need

the compopent jrograms that interpret
tormat description languayes. Systems
that work with a small set of addresses

can be built without any BFM components.
A progyram that vworks as a guery system and
never prints out a complete address would
not need any Address Qutput comgonents.

The system is also easily extended. For
example, one could add a capability to
read im addresses with seir-defining
files. 1f the first recora on a file was
a description of the format in something
equivaient to the format description
language, one could write a program that
would be able to read in that record, use
i NTABCHG to build a new format table, and
then read in the addresses. Pirograms that
do things with addresses (such as print
out "personalized" form letters) can also
be added using these proyrans and
selecting only those «capabilities that
they actually need.

One other cbservation that can be made is
that the upper level programs can be used
to "generate® lower level versions. For
example, the format description langyuages
can. be used to generate the tables used
for the (fixed format versions. There is
no need tor a separate SYSGEN program.

We will elaborate on this observation in
the conclusiou.

X. SUME REMARKS ON OPLRATING
SYSTEMS: WHY GENERALS ARE SUPERIGR TO
COLONELS

An earlier report [11] discusses the
design of a "uses"™ hierarchy for operating
systems. Although there have been sone
refinements to the propusals of that
report, its basic contents are consistent
with the present proposals. This section

compares the approach outiined in this
paper and the "kermnel" apprvach or
“nuc le us® apiproach to oS design

{18,19,20]. It is tempting to say that
the suygestions im this paper do anot
conflict with the *kernel" approache.
These proposals cam be viewed as a
refinement of the nucleus approach. The
first few levels of our system could be
labeled *"kernel," and one couid conclude
that we are just discussing a tine
structure within the kernel.

To yield to that temptation wouid be to
ignore an essential difference between the

approaches sugyested in this paper and the
kernel approach. The system kernels kunown
to me are such that scme desirable subsets
cannot be obtained without major surgery.
It was assumed that the nucleus must be in
every systenr family member. In the RC4000

systenm the inability to separate
synchronization £from messaye passing has
led some users to bypass the kernel to

perform teletype hbandling tuuctions. In
Hydra as originally proposed [19], "type
checking® was so intrinsic to the call
mechanism that it appeared imgossible to
disable it when it was not needed or
affordable.*

Drawing a line between *“kernel® and the
rest of the systen, and putting
Yessential" services of “critical
¢(rograms™ in the nucleus yields a system
in which kernel features cannot be removed
and certain extensions are impracticale.
Looking for a minimal subset and a set of
minimal independent incremental function
leads to a system in which one can trim
away ubnneeded features. L kaow of no
teature that is always needed. When we
say that two functions are aiaost

used together, we should remember that
"almost" is a euphemism for “anot."

XI. SUMMATION

This paper describes an approach to
software 1intended to result in systems
that can be tailored to fit the needs of a
broad variety of users. The points most
worthy of emphasis are:

J. Lhe Reguirements Include
Extensions.

Subsets__and

It is essential to recognize the
identification of useable subsets as part
of the preliminaries to sortware design.
Plexibility cannot be an aifterthought.
Subsetability is needed, not just to meet

a variety of customers' wnueeds, but to
provide a fail-soft way of handling
schedule slippage.

2. Advantages_ _of _the_ _Virtual _Hachine
Approach.

Desiguning software as a set of virtual

machines has definite advantages over the
conventional (flow <chart) approach to
systen design. The virtual machine
Minstructions" provide facilities that are
useful tor purposes beyoud those
originally conceived. These instructions
can easily be onmitted from a system if

*Accurate reports on the current
and performance of that
available to me.

status
sSystem are not

274

they are not needed. Remove a major box

from a flow chart and there is often a
need to "fill the hole® with conversion
prograns.

3. ©On__the Differepce Between _Software

Geperality and Software Flexibility.

Software can be comnsidered *"general% if it
can be used, without change, in a variety
of situvations. Software cam be considered

flexible, 1if it 1is easily_changed to be
used in a variety of situatioas. It
appears unavoidable that there is a run-
time cost to be paid for generality.
Clever designers can achieve flexibility
vithout significaast rups-time cost, but
there 1is a design-time cost. One should
incur the design-time cost only if one
expects to recover it vwhen changes are
pade.

Some organizations may choose to pay the
run-time cost for generality. They build
general softvare rather than flexible
sof tware because of the maintenance
problenms associated with maintaining
several different versions. Factors

influencing this decision include (a)
availability

the
of extra ccmputer resources,

(b) the facilities for program change and
maintenance available at €ach
installation, and (c) the extent to which
design techniques ease the task of
applyingy the same change to many versioas
of a program.

No one can tell a designer how auch

flexibility and generality saould be built
into a product, but the decisiun should be
a conscious ope. Often, it just happens.

4, Oon_the distinction _between _modules,
subprograms,_and_levels.

Several systeans and atv least one
dissertation [14,15,16,17] have, in my
opinion, blurred the distinction between
modules, subprograas and levels.
Conventional programming techniques
consider a subroutine or other callable

program to be a module. If one wants the
modules to include all proyrams that must
be designed together and changed together,
then, as our example illustrates, one will
usvally include many small subprograms in
a single module. 1t doesn't matter what
word we use; the point is that the unit of

change is not a single callable
subprogram.
in several systems, modules and levels

have coincided { 14,15). This had led to
the phrase "level of abstraction.?® Each
of the modules in the example abstract
from some detail that is assumed likely to
change. However, there is no
correspondence between moduies and levels.
Further, I have not found a relation,

275

"aore abstract than," that would allow =e
to define an abstraction hierarchy {12]}.
Although I am myself guilty of using it,
in most cases the phrase %levels of
abstraction"™ is am abuse of language.

Janson has suggested that a design such as

this one (or the one discussed in [11])
contain "soft modules" that can represent
a breach of security principles.

Obviously an error in any program in one
of our nodules can violate the integrity
of that module. All module programs that
will be included in a given subset must be
considered in proving the correctness of
that wmodule. However, I see no way that
allowing the compomnent programs to be on
different levels of a ®uses" hierarchy
makes this process more difficult or makes
the system less secure. The boundaries of

our modules are quite firm and clearly
identified.

The essential difference between this
paper and other discussious of
hierarchically structured designs is the
euphasis on subsets and extensions. My
search for a criterium to be used in

designing the uses hierarchy has coavinced
me that if one does not care about the
existence of subsets, it doesn't really
matter what hierarchy one uses. Any
design can be bent until it works. It is
only in the ease of decomposition that
they differ.

5. ©On_Avoiding_ pDuplication.

Some earlier work [21] has suygested that
one needs to have duplicate or near
duplicate modules in a hierarchically
structured system. For example, they
suggest that one needs one implementation
of processes to ¢give a fixed number of
processes at a lov level and another to
provide for a varying number of processes
at a user's level. Similar ideas have
appeared elsewhere. #Nere such duplication

to be necessary, it wvould be a sound
argument against the use of "structured®
approaches. One can avoid such
duplication if ope allows the prograams

that vary the size of a data structure
be on a higher 1level than the other
programs that operate on that data
structure. For example, in an operating
system, the programs to create and delete
processes need not be on the same level as

to

the wmore frequently used scheduling
operations. In designing sottvware, I
regard the need to pecform simil ar

functions in two programs as amn iadication
of a fundapental error in my thinking.

6. Desiyning for_ Subsets _and_ _Extensions
can__Reduce_the_Need _for Support Scoftware.

We have already mentioned that this design
approach can eliminate the need for

separate SYSGEN programs. e can also
eliminate the need for special purpose
compilers. The price of the coanvenience
features offered by such languages is
often a compiler and run-time package
distinctly larger than the systeam being
built. In our approach, each level
provides a language extention available to
the programmers of the next level. We
never build a compiler; we just build our

system, but we get comvenience features
anywaye.

7. Extension at__Rup—Time _Vs. Exteusion
During SYSGEN.

At a later stage in the design we will

have to choose data structures and take
the difference between run-time extension
and SYSGEN extension into coasideration.
Certain data structures are Bore easily
accessed but harder to extend while the
program is running; others are easily
extended but at the expense of a higher
access cost. These differences do not
affect our early design decisions because
they are hidden in modules.

8. QOn_the Value of a #odel.

My work on this example and similar ones
has gone much faster because I have
learned to exploit a pattern that I first

noticed in the design discussed in [11].
Low level operations assume the existence
of a fixed data structure of some type.
The operations on the next level allow the
sWwapping of a data element with others
from a fixed set of similar elements. The
high level programs allow the creation and
deletion of such data elements. This
pattern agppears several times in both
designs. Although I have not designed
your system for you, I believe that you
can take advantage of a similar pattern.
If so, this paper has served its purpose.

ACKNON LEDGBENTS

—2

The ideas presented in this paper bhave

been developed over a lengthy period and
with the cooperation and help of many
collaborators. The earliest wvork was
supported by NV Philips Computer
industrie, Ageldoorn, The Netheriands, and
I anm grateful to numRerous Philips
employees for thought provoking conments
and guestions. William Price's
collaboration and NSF support were
invaluable at Carnegie—Mellow University.

The support of the German Federal Ministry
for Research and Techmnology (BMFT) and the
help of W. Bartussek, G. Handzel, and
H. Wuerges at the Technische Hochschule
Darmstadt led to substantial im,.rovenentse.
Kathryn Heninger, David Weiss, and John
Shore at the Naval Research Laboratory
helped me to understand the appiication of

276

the comncepts in areas other than operating
systems. Barbara Trombka and John Guttag
both helped in the design of pilots of the
address process system, Discussions with
P. J. Courtois bave helped me to better
understand the relation between software
structure and run-time characteristics of
computer systems. Pr. Edward Britton,
Mr. H. Rettemnaier, Mr. Laslo Belady,
Dr. Donald Stanat, G. Frank, and
Dr. William Wright made wmany helpful
suggestions about an earlier draft of this
paper. If you find portions of this paper
helpful, these people deserve your thanks.

REFERENCES
[1] Dijkstra, E.W. A__Discipline of
Progqramming. Prentice-Hall, 1976.

[2] Parnas,D.L. “On the Desiyn and
Development of Program Fawmilies.® JIEEE
Trapsactions__on__ Software _ Engineering,
March 1976.

[3] 2nd International Conference on
Software Emgineering, 13-15 October 1976;
Special issue of IEEE__Transactions__on
Software Engineering, December 13976.

[41 Parnas, D.L., Handzel, [and
He Huerges. "Desiyn and Specification of

the Minimal Subset of an Operating System
Family." Presented at 2nd lunternational
Conference on Software Engimeering, 13~ 15

October 1976; published in sgecial issue
of LIEEE __Transactions on softvare

Engineering, December 1976.

"On the Criteria to be
Systems into Hodules.¥

{f 5] Parnas, D.L.
Used in Decomposing

Comm._ ACM, December 1972.

{ 6] Linden, T.A. "“The Use of Abstract
Data Types to Simplify Program
Modifications." Proceedings of Conference
on Data: Abstraction, Definition and

structure, March 24-24, 1976;
ACM SIGPLAN Notices, Vol. 1i,

published in
1976 Special

Issue.

[7] Parnas,D.L. wa Technigue for
Sof tware Module Specification with
Examples." Comm. ACHM, May 13972.

{ 8) Parnas, D.La “Information
Distribution Aspects of Design
Methodology." Proc. IFIP_Congress, J1971.
{ 9] Parnas, D.L. "The Use of Precise
Specifications in the Developnent of
Software." Proc. IFIP__Conjyress, 1977,

North Holland Publishing Company.

{10] Parnas, D.L. "Use of Abstract
Interfaces in the Development oi Software
for Eambedded Computer Systems.® NRL
BReport 8047, VNaval Besearch Laboratory,
Washington, D.C., June 1977.

{11} pParnas, D.L. "Some Hypotheses About
the tUses* Hierarchy for Operating
Systems. " Technical Report, Techaische
Hochschule Darastadt, Darmstadt, Nest
Germany, March 197e6.

[12]} pParnas, D.L. "On a
*Buzzword®: Hierarchical Structure.”
Proc. IFIP_Congress, 1974, Norta Holland
Publishing Company, 1974.

{13] Parnas, C.L. and ba.L. Siewiorek.
"Use of the Concept of Tramnsparency in the
Design of Hierarchically Structured
Systems." Comm. ACM, _18_(7), July 1975.

[14) Dijkstra, E.¥H. "The Structure of
the "THEY“-Multiprogramming System." CACM,
11, 5 (day 1968), pp. 341-346.

[15] Lliskov, B. "The Design of the Venus
Operating Systen. CACHM, 15, 3 (March
1972), pp. 144-149.

[16] Janson, P.A. "Using Type Extension
to Orgyanize Virtual Memory Neéchanisms.®
MIT-LCS-TR-167, Lab. for Comptr. Sci.,
4.I.T., Cambridge, Mass., September 1976.

{17] Janson, P.A. "Using Type-Extension
to Organize Virtual Memory HMechanisms."
Research Report RZ 858 (#2u8909) 8,31/77,
IBM Zurich Research Laboratory,
Switzerland.

[18} Brinch-Hansem, P. "The Nucleus of
the Multiproyramming System.® CACM, 13, 4
(April 1970), pp. 238-241, 254¢.

{19] Wulf, ¥., Cohen, E., Jones, A.,
Lewin, R., Pierson, €., and F. Pollack.
“"HYDRA: The Kernel of a Hultiprocessor
Operating System.? CACHM, 17, 6 (June
1974), pp. 337-345.

[20] Popek, GeJe. and C.S. Kline. "The
Design of a Verified Protection System."
Proc. Intl. Workshop oi Prot. in
Oper. Syst., IRIA, pp. 1 183-1%6.

[{21]) Saxena, A.R. and T.H. Bredt. A
Structured Specification of a Hierarchical
Operating Systea." Proceedings__of_ _the

1975 _International Conference on_Reliable
Software.

277

