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Abstract 

As the size of software systems increases, the algorithms and data structures of 
the computation no longer constitute the major design problems. When 
systems are constructed from many components, the organization of the 
overall system—the software architecture—presents a new set of design 
problems. This level of design has been addressed in a number of ways 
including informal diagrams and descriptive terms, module interconnection 
languages, templates and frameworks for systems that serve the needs of 
specific domains, and formal models of component integration mechanisms. 

In this paper we provide an introduction to the emerging field of software 
architecture. We begin by considering a number of common architectural 
styles upon which many systems are currently based and show how different 
styles can be combined in a single design. Then we present six case studies to 
illustrate how architectural representations can improve our understanding of 
complex software systems. Finally, we survey some of the outstanding 
problems in the field, and consider a few of the promising research directions. 
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1. Introduction 

As the size and complexity of software systems increases, the design problem 
goes beyond the algorithms and data structures of the computation: designing 
and specifying the overall system structure emerges as a new kind of problem. 
Structural issues include gross organization and global control structure; 
protocols for communication, synchronization, and data access; assignment of 
functionality to design elements; physical distribution; composition of design 
elements; scaling and performance; and selection among design alternatives. 

This is the software architecture level of design. There is a considerable 
body of work on this topic, including module interconnection languages, 
templates and frameworks for systems that serve the needs of specific domains, 
and formal models of component integration mechanisms. In addition, an 
implicit body of work exists in the form of descriptive terms used informally to 
describe systems. And while there is not currently a well-defined terminology 
or notation to characterize architectural structures, good software engineers 
make common use of architectural principles when designing complex 
software. Many of the principles represent rules of thumb or idiomatic 
patterns that have emerged informally over time. Others are more carefully 
documented as industry and scientific standards. 

It is increasingly clear that effective software engineering requires facility in 
architectural software design. First, it is important to be able to recognize 
common paradigms so that high-level relationships among systems can be 
understood and so that new systems can be built as variations on old systems. 
Second, getting the right architecture is often crucial to the success of a software 
system design; the wrong one can lead to disastrous results. Third, detailed 
understanding of software architectures allows the engineer to make 
principled choices among design alternatives. Fourth, an architectural system 
representation is often essential to the analysis and description of the high-
level properties of a complex system. 

In this paper we provide an introduction to the field of software 
architecture. The purpose is to illustrate the current state of the discipline and 
examine the ways in which architectural design can impact software design. 
The material presented here is selected from a semester course, Architectures 
for Software Systems, taught at CMU by the authors [1]. Naturally, a short 
paper such as this can only briefly highlight the main features of the terrain. 
This selection emphasizes informal descriptions omitting much of the course’s 
material on specification, evaluation, and selection among design alternatives. 
We hope, nonetheless, that this will serve to illuminate the nature and 
significance of this emerging field. 

In the following section we outline a number of common architectural 
styles upon which many systems are currently based, and show how 
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heterogeneous styles can be combined in a single design. Next we use six case 
studies to illustrate how architectural representations of a software system can 
improve our understanding of complex systems. Finally, we survey some of 
the outstanding problems in the field, and consider a few of the promising 
research directions. 

The text that makes up the bulk of this article has been drawn from 
numerous other publications by the authors. The taxonomy of architectural 
styles and the case studies have incorporated parts of several published papers 
[1, 2, 3, 4]. To a lesser extent material has been drawn from other articles by the 
authors [5, 6, 7]. 

2. From Programming Languages to Software Architecture 

One characterization of progress in programming languages and tools has been 
regular increases in abstraction level—or the conceptual size of software 
designers building blocks. To place the field of Software Architecture into 
perspective let us begin by looking at the historical development of abstraction 
techniques in computer science. 

2.1. High-level Programming Languages 

When digital computers emerged in the 1950s, software was written in 
machine language; programmers placed instructions and data individually and 
explicitly in the computer's memory. Insertion of a new instruction in a 
program might require hand-checking of the entire program to update 
references to data and instructions that moved as a result of the insertion. 
Eventually it was recognized that the memory layout and update of references 
could be automated, and also that symbolic names could be used for operation 
codes, and memory addresses. Symbolic assemblers were the result. They were 
soon followed by macro processors, which allowed a single symbol to stand for 
a commonly-used sequence of instructions. The substitution of simple 
symbols for machine operation codes, machine addresses yet to be defined, and 
sequences of instructions was perhaps the earliest form of abstraction in 
software. 

In the latter part of the 1950s, it became clear that certain patterns of 
execution were commonly useful—indeed, they were so well understood that 
it was possible to create them automatically from a notation more like 
mathematics than machine language. The first of these patterns were for 
evaluation of arithmetic expressions, for procedure invocation, and for loops 
and conditional statements. These insights were captured in a series of early 
high-level languages, of which Fortran was the main survivor. 

Higher-level languages allowed more sophisticated programs to be 
developed, and patterns in the use of data emerged. Whereas in Fortran data 
types served primarily as cues for selecting the proper machine instructions, 

Garlan & Shaw: An Introduction to Software Architecture 3 



data types in Algol and it successors serve to state the programmer’s intentions 
about how data should be used. The compilers for these languages could build 
on experience with Fortran and tackle more sophisticated compilation 
problems. Among other things, they checked adherence to these intentions, 
thereby providing incentives for the programmers to use the type mechanism. 

Progress in language design continued with the introduction of modules to 
provide protection for related procedures and data structures, with the 
separation of a module’s specification from its implementation, and with the 
introduction of abstract data types. 

2.2. Abstract Data Types 

In the late 1960s, good programmers shared an intuition about software 
development: If you get the data structures right, the effort will make 
development of the rest of the program much easier. The abstract data type 
work of the 1970s can be viewed as a development effort that converted this 
intuition into a real theory. The conversion from an intuition to a theory 
involved understanding 

• the software structure (which included a representation packaged with 
its primitive operators), 

• specifications (mathematically expressed as abstract models or algebraic 
axioms), 

• language issues (modules, scope, user-defined types), 

• integrity of the result (invariants of data structures and protection from 
other manipulation), 

• rules for combining types (declarations), 

• information hiding (protection of properties not explicitly included in 
specifications). 

The effect of this work was to raise the design level of certain elements of 
software systems, namely abstract data types, above the level of programming 
language statements or individual algorithms. This form of abstraction led to 
an understanding of a good organization for an entire module that serves one 
particular purpose. This involved combining representations, algorithms, 
specifications, and functional interfaces in uniform ways. Certain support was 
required from the programming language, of course, but the abstract data type 
paradigm allowed some parts of systems to be developed from a vocabulary of 
data types rather than from a vocabulary of programming-language constructs. 

2.3. Software Architecture 

Just as good programmers recognized useful data structures in the late 1960s, 
good software system designers now recognize useful system organizations. 
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One of these is based on the theory of abstract data types. But this is not the 
only way to organize a software system. 

Many other organizations have developed informally over time, and are 
now part of the vocabulary of software system designers. For example, typical 
descriptions of software architectures include synopses such as (italics ours): 

•“Camelot is based on the client-server model and uses remote procedure 
calls both locally and remotely to provide communication among 
applications and servers.”[8] 

•“Abstraction layering and system decomposition provide the appearance 
of system uniformity to clients, yet allow Helix to accommodate a 
diversity of autonomous devices. The architecture encourages a client-
server model  for the structuring of applications.”[9] 

•“We have chosen a distributed, object-oriented approach to managing 
information.” [10] 

•“The easiest way to make the canonical sequential compiler into a
concurrent compiler is to pipeline  the execution of the compiler phases 
over a number of processors. . . . A more effective way [is to] split the 
source code into many segments, which are concurrently processed 
through the various phases of compilation [by multiple compiler 
processes] before a final, merging pass recombines the object code into a 
single program.”[11] 

Other software architectures are carefully documented and often widely 
disseminated. Examples include the International Standard Organization's 
Open Systems Interconnection Reference Model (a layered network 
architecture) [12], the NIST/ECMA Reference Model (a generic software 
engineering environment architecture based on layered communication 
substrates) [13, 14], and the X Window System (a distributed windowed user 
interface architecture based on event triggering and callbacks) [15]. 

We are still far from having a well-accepted taxonomy of such architectural 
paradigms, let alone a fully-developed theory of software architecture. But we 
can now clearly identify a number of architectural patterns, or styles, that 
currently form the basic repertoire of a software architect. 

3. Common Architectural Styles 

We now examine some of these representative, broadly-used architectural 
styles. Our purpose is to illustrate the rich space of architectural choices, and 
indicate what are some of the tradeoffs in choosing one style over another. 

To make sense of the differences between styles, it helps to have a common 
framework from which to view them. The framework we will adopt is to treat 
an architecture of a specific system as a collection of computational 
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components—or simply components-—together with a description of the 
interactions between these components—the connectors. Graphically speaking, 
this leads to a view of an abstract architectural description as a graph in which 
the nodes represent the components and the arcs represent the connectors. As 
we will see, connectors can represent interactions as varied as procedure call, 
event broadcast, database queries, and pipes. 

An architectural style, then, defines a family of such systems in terms of a 
pattern of structural organization. More specifically, an architectural style 
determines the vocabulary of components and connectors that can be used in 
instances of that style, together with a set of constraints  on how they can be 
combined. These can include topological constraints on architectural 
descriptions (e.g., no cycles). Other constraints—say, having to do with 
execution semantics—might also be part of the style definition. 

Given this framework, we can understand what a style is by answering the 
following questions: What is the structural pattern—the components, 
connectors, and constraints? What is the underlying computational model? 
What are the essential invariants of the style? What are some common 
examples of its use? What are the advantages and disadvantages of using that 
style? What are some of the common specializations? 

3.1. Pipes and Filters 

In a pipe and filter style each component has a set of inputs and a set of 
outputs. A component reads streams of data on its inputs and produces 
streams of data on its outputs, delivering a complete instance of the result in a 
standard order. This is usually accomplished by applying a local 
transformation to the input streams and computing incrementally so output 
begins before input is consumed. Hence components are termed “filters”. The 
connectors of this style serve as conduits for the streams, transmitting outputs 
of one filter to inputs of another. Hence the connectors are termed “pipes”. 

Among the important invariants of the style, filters must be independent 
entities: in particular, they should not share state with other filters. Another 
important invariant is that filters do not know the identity of their upstream 
and downstream filters. Their specifications might restrict what appears on the 
input pipes or make guarantees about what appears on the output pipes, but 
they may not identify the components at the ends of those pipes. Furthermore, 
the correctness of the output of a pipe and filter network should not depend on 
the order in which the filters perform their incremental processing—although 
fair scheduling can be assumed. (See [5] for an in-depth discussion of this style 
and its formal properties.) Figure 1 illustrates this style. 

Common specializations of this style include pipelines, which restrict the 
topologies to linear sequences of filters; bounded pipes, which restrict the 
amount of data that can reside on a pipe; and typed pipes, which require that 
the data passed between two filters have a well-defined type. 
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Data flowASCII stream 

Computation filter 

Figure 1: Pipes and Filters 

A degenerate case of a pipeline architecture occurs when each filter 
processes all of its input data as a single entity.1 In this case the architecture 
becomes a “batch sequential” system. In these systems pipes no longer serve 
the function of providing a stream of data, and therefore are largely vestigial. 
Hence such systems are best treated as instances of a separate architectural style. 

The best known examples of pipe and filter architectures are programs 
written in the Unix shell [16]. Unix supports this style by providing a notation 
for connecting components (represented as Unix processes) and by providing 
run time mechanisms for implementing pipes. As another well-known 
example, traditionally compilers have been viewed as a pipeline systems 
(though the phases are often not incremental). The stages in the pipeline 
include lexical analysis, parsing, semantic analysis, code generation. (We 
return to this example in the case studies.) Other examples of pipes and filters 
occur in signal processing domains [17], functional programming [18], and 
distributed systems [19]. 

Pipe and filter systems have a number of nice properties. First, they allow 
the designer to understand the overall input/output behavior of a system as a 
simple composition of the behaviors of the individual filters. Second, they 
support reuse: any two filters can be hooked together, provided they agree on 
the data that is being transmitted between them. Third, systems can be easily 
maintained and enhanced: new filters can be added to existing systems and old 
filters can be replaced by improved ones. Fourth, they permit certain kinds of 
specialized analysis, such as throughput and deadlock analysis. Finally, they 
naturally support concurrent execution. Each filter can be implemented as a 
separate task and potentially executed in parallel with other filters. 

But these systems also have their disadvantages.2  First, pipe and filter 
systems often lead to a batch organization of processing. Although filters can 

1In general, we find that the boundaries of styles can overlap. This should not deter us from 
identifying the main features of a style with its central examples of use.
2This is true in spite of the fact that pipes and filters, like every style, has a set of devout 
religious followers—people who believe that all problems worth solving can best be solved using 
that particular style. 
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process data incrementally, since filters are inherently independent, the 
designer is forced to think of each filter as providing a complete 
transformation of input data to output data. In particular, because of their 
transformational character, pipe and filter systems are typically not good at 
handling interactive applications. This problem is most severe when 
incremental display updates are required, because the output pattern for 
incremental updates is radically different from the pattern for filter output. 
Second, they may be hampered by having to maintain correspondences 
between two separate, but related streams. Third, depending on the 
implementation, they may force a lowest com­

mon denominator on data transmission, resulting in added work for each 
filter to parse and unparse its data. This, in turn, can lead both to loss of 
performance and to increased complexity in writing the filters themselves. 

3.2. Data Abstraction and Object-Oriented Organization 

In this style data representations and their associated primitive operations are 
encapsulated in an abstract data type or object. The components of this style are 
the objects—or, if you will, instances of the abstract data types. Objects are 
examples of a sort of component we call a manager because it is responsible for 
preserving the integrity of a resource (here the representation). Objects interact 
through function and procedure invocations. Two important aspects of this 
style are (a) that an object is responsible for preserving the integrity of its 
representation (usually by maintaining some invariant over it), and (b) that 
the representation is hidden from other objects. Figure 2 illustrates this style.3 

obj 

obj 

obj 

obj 

obj 

obj 

objobj 

op 
op 

op 
op 

op 

op 
op 

op 
op 

op 

op 

op 
op

op 

op 

op 

obj is a manager 

op is an invocation 

ADTManager 

Proc call 

Figure 2: Abstract Data Types and Objects 

3We haven't mentioned inheritance in this description. While inheritance is an important 
organizing principle for defining the types of objects in a system, it does not have a direct 
architectural function. In particular, in our view, an inheritance relationship is not a connector, 
since it does not define the interaction between components in a system. Also, in an architectural 
setting inheritance of properities is not restricted to object types—but may include connectors and 
even architectural styles. 
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The use of abstract data types, and increasingly the use of object-oriented 
systems, is, of course, widespread. There are many variations. For example, 
some systems allow “objects” to be concurrent tasks; others allow objects to 
have multiple interfaces [20, 21]. 

Object-oriented systems have many nice properties, most of which are well 
known. Because an object hides its representation from its clients, it is possible 
to change the implementation without affecting those clients. Additionally, 
the bundling of a set of accessing routines with the data they manipulate 
allows designers to decompose problems into collections of interacting agents. 

But object-oriented systems also have some disadvantages. The most 
significant is that in order for one object to interact with another (via 
procedure call) it must know the identity of that other object. This is in 
contrast, for example, to pipe and filter systems, where filters do need not 
know what other filters are in the system in order to interact with them. The 
significance of this is that whenever the identity of an object changes it is 
necessary to modify all other objects that explicitly invoke it. In a module-
oriented language this manifests itself as the need to change the “import” list 
of every module that uses the changed module. Further there can be side-
effect problems: if A uses object B and C also uses B, then C's effects on B look 
like unexpected side effects to A, and vice versa. 

3.3. Event-based, Implicit Invocation 

Traditionally, in a system in which the component interfaces provide a 
collection of procedures and functions, components interact with each other by 
explicitly invoking those routines. However, recently there has been 
considerable interest in an alternative integration technique, variously referred 
to as implicit invocation, reactive integration, and selective broadcast. This 
style has historical roots in systems based on actors [22], constraint satisfaction, 
daemons, and packet-switched networks. 

The idea behind implicit invocation is that instead of invoking a 
procedure directly, a component can announce (or broadcast) one or more 
events. Other components in the system can register an interest in an event by 
associating a procedure with the event. When the event is announced the 
system itself invokes all of the procedures that have been registered for the 
event. Thus an event announcement ``implicitly'' causes the invocation of 
procedures in other modules. 

For example, in the Field system [23], tools such as editors and variable 
monitors register for a debugger’s breakpoint events. When a debugger stops at 
a breakpoint, it announces an event that allows the system to automatically 
invoke methods in those registered tools. These methods might scroll an 
editor to the appropriate source line or redisplay the value of monitored 
variables. In this scheme, the debugger simply announces an event, but does 
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not know what other tools (if any) are concerned with that event, or what they 
will do when that event is announced. 

Architecturally speaking, the components in an implicit invocation style 
are modules whose interfaces provide both a collection of procedures (as with 
abstract data types) and a set of events. Procedures may be called in the usual 
way. But in addition, a component can register some of its procedures with 
events of the system. This will cause these procedures to be invoked when 
those events are announced at run time. Thus the connectors in an implicit 
invocation system include traditional procedure call as well as bindings 
between event announcements and procedure calls. 

The main invariant of this style is that announcers of events do not know 
which components will be affected by those events. Thus components cannot 
make assumptions about order of processing, or even about what processing, 
will occur as a result of their events. For this reason, most implicit invocation 
systems also include explicit invocation (i.e., normal procedure call) as a 
complementary form of interaction. 

Examples of systems with implicit invocation mechanisms abound [7]. 
They are used in programming environments to integrate tools [23, 24], in 
database management systems to ensure consistency constraints [22, 25], in user 
interfaces to separate presentation of data from applications that manage the 
data [26, 27], and by syntax-directed editors to support incremental semantic 
checking [28, 29]. 

One important benefit of implicit invocation is that it provides strong 
support for reuse. Any component can be introduced into a system simply by 
registering it for the events of that system. A second benefit is that implicit 
invocation eases system evolution [30]. Components may be replaced by other 
components without affecting the interfaces of other components in the 
system. 

In contrast, in a system based on explicit invocation, whenever the identity 
of a that provides some system function is changed, all other modules that 
import that module must also be changed. 

The primary disadvantage of implicit invocation is that components 
relinquish control over the computation performed by the system. When a 
component announces an event, it has no idea what other components will 
respond to it. Worse, even if it does know what other components are 
interested in the events it announces, it cannot rely on the order in which they 
are invoked. Nor can it know when they are finished. Another problem 
concerns exchange of data. Sometimes data can be passed with the event. But 
in other situations event systems must rely on a shared repository for 
interaction. In these cases global performance and resource management can 
become a serious issue. Finally, reasoning about correctness can be 
problematic, since the meaning of a procedure that announces events will 
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depend on the context of bindings in which it is invoked. This is in contrast to 
traditional reasoning about procedure calls, which need only consider a 
procedure’s pre- and post-conditions when reasoning about an invocation of it. 

3.4. Layered Systems 

A layered system is organized hierarchically, each layer providing service to 
the layer above it and serving as a client to the layer below. In some layered 
systems inner layers are hidden from all except the adjacent outer layer, except 
for certain functions carefully selected for export. Thus in these systems the 
components implement a virtual machine at some layer in the hierarchy. (In 
other layered systems the layers may be only partially opaque.) The connectors 
are defined by the protocols that determine how the layers will interact. 
Topological constraints include limiting interactions to adjacent layers. Figure 
3 illustrates this style. 

Core 
Level 

Basic Utility 

Useful Systems 

UsersComposites of 
various elements 

Usually 
procecure calls 

Figure 3: Layered Systems 

The most widely known examples of this kind of architectural style are 
layered communication protocols [31]. In this application area each layer 
provides a substrate for communication at some level of abstraction. Lower 
levels define lower levels of interaction, the lowest typically being defined by 
hardware connections. Other appli-cation areas for this style include database 
systems and operating systems [9, 32, 33 ]. 

Layered systems have several desirable properties. First, they support 
design based on increasing levels of abstraction. This allows implementors to 
partition a complex problem into a sequence of incremental steps. Second, 
they support enhancement. Like pipelines, because each layer interacts with at 
most the layers below and above, changes to the function of one layer affect at 
most two other layers. Third, they support reuse. Like abstract data types, 
different implementations of the same layer can be used interchangeably, 
provided they support the same interfaces to their adjacent layers. This leads 
to the possibility of defining standard layer interfaces to which different 
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implementors can build. (A good example is the OSI ISO model and some of 
the X Window System protocols.) 

But layered systems also have disadvantages. Not all systems are easily 
structured in a layered fashion. (We will see an example of this later in the 
case studies.) And even if a system can logically be structured as layers, 
considerations of performance may require closer coupling between logically 
high-level functions and their lower-level implementations. Additionally, it 
can be quite difficult to find the right levels of abstraction. This is particularly 
true for standardized layered models. One notes that the communications 
community has had some difficulty mapping existing protocols into the ISO 
framework: many of those protocols bridge several layers. 

In one sense this is similar to the benefits of implementation hiding found 
in abstract data types. However, here there are multiple levels of abstraction 
and implementation. They are also similar to pipelines, in that components 
communicate at most with one other component on either side. But instead of 
simple pipe read/write protocol of pipes, layered systems can provide much 
richer forms of interaction. This makes it difficult to define system-
independent layers (as with filters)—since a layer must support the specific 
protocols at its upper and lower boundaries. But it also allows much closer 
interaction between layers, and permits two-way transmission of information. 

3.5. Repositories 

In a repository style there are two quite distinct kinds of components: a central 
data structure represents the current state, and a collection of independent 
components operate on the central data store. Interactions between the 
repository and its external components can vary significantly between systems. 

The choice of control discipline leads to major subcategories. If the types of 
transactions in an input stream of transactions trigger selection of processes to 
execute, the repository can be a traditional database. If the current state of the 
central data structure is the main trigger of selecting processes to execute, the 
repository can be a blackboard. 

Figure 4 illustrates a simple view of a blackboard architecture. (We will 
examine more detailed models in the case studies.) The blackboard model is 
usually presented with three major parts: 

The knowledge sources:  separate, independent parcels of application-
dependent knowledge. Interaction among knowledge sources takes 
place solely through the blackboard. 

The blackboard data structure:  problem-solving state data, organized into an 
application-dependent hierarchy. Knowledge sources make changes to 
the blackboard that lead incrementally to a solution to the problem. 
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Control:  driven entirely by state of blackboard. Knowledge sources respond 
opportunistically when changes in the blackboard make them applicable. 

Blackboard 
(shared 

data) 

ks1 ks2 

ks3 

ks4 

ks5ks6 

ks7 

ks8 

Computation 

Memory 

Direct access 

Figure 4: The Blackboard 

In the diagram there is no explicit representation of the control 
component. Invocation of a knowledge source is triggered by the state of the 
blackboard. The actual locus of control, and hence its implementation, can be 
in the knowledge sources, the blackboard, a separate module, or some 
combination of these. 

Blackboard systems have traditionally been used for applications requiring 
complex interpretations of signal processing, such as speech and pattern 
recognition. Several of these are surveyed by Nii [34]. They have also appeared 
in other kinds of systems that involve shared access to data with loosely 
coupled agents [35]. 

There are, of course, many other examples of repository systems. Batch-
sequential systems with global databases are a special case. Programming 
environments are often organized as a collection of tools together with a 
shared repository of programs and program fragments [36]. Even applications 
that have been traditionally viewed as pipeline architectures, may be more 
accurately interpreted as repository systems. For example, as we will see later, 
while a compiler architecture has traditionally been presented as a pipeline, the 
“phases” of most modern compilers operate on a base of shared information 
(symbol tables, abstract syntax tree, etc.). 

3.6. Table Driven Interpreters 

In an interpreter organization a virtual machine is produced in software. An 
interpreter includes the pseudo-program being interpreted and the 
interpretation engine itself. The pseudo-program includes the program itself 
and the interpreter’s analog of its execution state (activation record). The 
interpretation engine includes both the definition of the interpreter and the 
current state of its execution. Thus an interpreter generally has four 
components: an interpretation engine to do the work, a memory that contains 
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the pseudo-code to be interpreted, a representation of the control state of the 
interpretation engine, and a representation of the current state of the program 
being simulated. (See Figure 5.) 
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Figure 5: Interpreter 

Interpreters are commonly used to build virtual machines that close the 
gap between the computing engine expected by the semantics of the program 
and the computing engine available in hardware. We occasionally speak of a 
programming language as providing, say, a “virtual Pascal machine.” 

We will return to interpreters in more detail in the case studies. 

3.7. Other Familiar Architectures 

There are numerous other architectural styles and patterns. Some are 
widespread and others are specific to particular domains. While a complete 
treatment of these is beyond the scope of this paper, we briefly note a few of the 
important categories. 

• Distributed processes:  Distributed systems have developed a number of 
common organizations for multi-process systems [37]. Some can be 
characterized primarily by their topological features, such as ring and 
star organizations. Others are better characterized in terms of the kinds 
of inter-process protocols that are used for communication (e.g., 
heartbeat algorithms). 

One common form of distributed system architecture is a “client-server” 
organization [38]. In these systems a server represents a process that provides 
services to other processes (the clients). Usually the server does not know in 
advance the identities or number of clients that will access it at run time. On 
the other hand, clients know the identity of a server (or can find it out through 
some other server) and access it by remote procedure call. 

• Main program/subroutine organizations:  The primary organization of 
many systems mirrors the programming language in which the system 
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is written. For languages without support for modularization this often 
results in a system organized around a main program and a set of 
subroutines. The main program acts as the driver for the subroutines, 
typically providing a control loop for sequencing through the 
subroutines in some order. 

• Domain-specific software architectures:  Recently there has been 
considerable interest in developing “reference” architectures for specific 
domains [39]. These architectures provide an organizational structure 
tailored to a family of applications, such as avionics, command and 
control, or vehicle management systems. By specializing the 
architecture to the domain, it is possible to increase the descriptive 
power of structures. Indeed, in many cases the architecture is sufficiently 
constrained that an executable system can be generated automatically or 
semi-automatically from the architectural description itself. 

• State transition systems: A common organization for many reactive 
systems is the state transition system [40]. These systems are defined in 
terms a set of states and a set of named transitions that move a system 
from one state to another. 

• Process control systems:  Systems intended to provide dynamic control 
of a physical environment are often organized as process control systems 
[41]. These systems are roughly characterized as a feedback loop in which 
inputs from sensors are used by the process control system to determine 
a set of outputs that will produce a new state of the environment. 

3.8. Heterogeneous Architectures 

Thus far we have been speaking primarily of “pure” architectural styles. 
While it is important to understand the individual nature of each of these 
styles, most systems typically involve some combination of several styles. 

There are different ways in which architectural styles can be combined. 
One way is through hierarchy. A component of a system organized in one 
architectural style may have an internal structure that is developed a 
completely different style. For example, in a Unix pipeline the individual 
components may be represented internally using virtually any style— 
including, of course, another pipe and filter, system. 

What is perhaps more surprising is that connectors, too, can often be 
hierarchically decomposed. For example, a pipe connector may be 
implemented internally as a FIFO queue accessed by insert and remove 
operations. 

A second way for styles to be combined is to permit a single component to 
use a mixture of architectural connectors. For example, a component might 
access a repository through part of its interface, but interact through pipes with 
other components in a system, and accept control information through 
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another part of its interface. (In fact, Unix pipe and filter systems do this, the 
file system playing the role of the repository and initialization switches playing 
the role of control.) 

Another example is an “active database”. This is a repository which 
activates external components through implicit invocation. In this 
organization external components register interest in portions of the database. 
The database automatically invokes the appropriate tools based on this 
association. (Blackboards are often constructed this way; knowledge sources are 
associated with specific kinds of data, and are activated whenever that kind of 
data is modified.) 

A third way for styles to be combined is to completely elaborate one level of 
architectural description in a completely different architectural style. We will 
see examples of this in the case studies. 

4. Case Studies 

We now present six examples to illustrate how architectural principles can be 
used to increase our understanding of software systems. The first example 
shows how different architectural solutions to the same problem provide 
different benefits. The second case study summarizes experience in developing 
a a domain-specific architectural style for a family of industrial products. The 
third case study examines the familiar compiler architecture in a fresh light. 
The remaining three case studies present examples of the use of heterogeneous 
architectures. 

4.1. Case Study 1: Key Word in Context 

In his paper of 1972, Parnas proposed the following problem [42]: 

The KWIC [Key Word in Context] index system accepts an ordered set of 
lines, each line is an ordered set of words, and each word is an ordered 
set of characters. Any line may be ``circularly shifted'' by repeatedly 
removing the first word and appending it at the end of the line. The 
KWIC index system outputs a listing of all circular shifts of all lines in 
alphabetical order. 

Parnas used the problem to contrast different criteria for decomposing a 
system into modules. He describes two solutions, one based on functional 
decomposition with shared access to data representations, and a second based 
on a decomposition that hides design decisions. Since its introduction, the 
problem has become well-known and is widely used as a teaching device in 
software engineering. Garlan, Kaiser, and Notkin also use the problem to 
illustrate modularization schemes based on implicit invocation [7]. 

While KWIC can be implemented as a relatively small system it is not 
simply of pedagogical interest. Practical instances of it are widely used by 
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computer scientists. For example, the “permuted” [sic] index for the Unix Man 
pages is essentially such a system. 

From the point of view of software architecture, the problem derives its 
appeal from the fact that it can be used to illustrate the effect of changes on 
software design. Parnas shows that different problem decompositions vary 
greatly in their ability to withstand design changes. Among the changes he 
considers are: 

• Changes in processing algorithm: For example, line shifting can be
performed on each line as it is read from the input device, on all the 
lines after they are read, or on demand when the alphabetization 
requires a new set of shifted lines. 

• Changes in data representation: For example, lines can be stored in 
various ways. Similarly, circular shifts can be stored explicitly or 
implicitly (as pairs of index and offset). 

Garlan, Kaiser, and Notkin, extend Parnas’ analysis by considering: 

• Enhancement to system function: For example, modify the system so 
that shifted lines to eliminate circular shifts that start with certain noise 
words (such as “a”, “an”, “and”, etc.). Change the system to be 
interactive, and allow the user to delete lines from the original (or, 
alternatively, from circularly shifted) lists. 

• Performance: Both space and time. 

• Reuse: To what extent can the components serve as reusable entities. 

We now outline four architectural designs for the KWIC system. All four 
are grounded in published solutions (including implementations). The first 
two are those considered in Parnas’ original article. The third solution is based 
on the use of an implicit invocation style and represents a variant on the 
solution examined by Garlan, Kaiser, and Notkin. The fourth is a pipeline 
solution inspired by the Unix index utility. 

After presenting each solution and briefly summarizing its strengths and 
weakness, we contrast the different architectural decompositions in a table 
organized along the five design dimensions itemized above. 

Solution 1: Main Program/Subroutine with Shared Data 

The first solution decomposes the problem according to the four basic 
functions performed: input, shift, alphabetize, and output. These 
computational components are coordinated as subroutines by a main program 
that sequences through them in turn. Data is communicated between the 
components through shared storage (“core storage”). Communication between 
the computational components and the shared data is an unconstrained read-
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write protocol. This is made possible by the fact that the coordinating program 
guarantees sequential access to the data. (See Figure 6.) 

Master Control 
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Figure 6: KWIC – Shared Data Solution 

Using this solution data can be represented efficiently, since computations 
can share the same storage. The solution also has a certain intuitive appeal, 
since distinct computational aspects are isolated in different modules. 

However, as Parnas argues, it has a number of serious drawbacks in terms 
of its ability to handle changes. In particular, a change in data storage format 
will affect almost all of the modules. Similarly changes in the overall 
processing algorithm and enhancements to system function are not easily 
accomodated. Finally, this decom-position is not particularly supportive of 
reuse. 

Solution 2: Abstract Data Types 

The second solution decomposes the system into a similar set of five modules. 
However, in this case data is no longer directly shared by the computational 
components. Instead, each module provides an interface that permits other 
components to access data only by invoking procedures in that interface. (See 
Figure 7, which illustrates how each of the components now has a set of 
procedures that determine the form of access by other components in the 
system.) 

This solution provides the same logical decomposition into processing 
modules as the first. However, it has a number of advantages over the first 
solution when design changes are considered. In particular, both algorithms 
and data representations can be changed in individual modules without 
affecting others. Moreover, reuse is better supported than in the first solution 
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because modules make fewer assumptions about the others with which they 
interact. 
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Figure 7: KWIC – Abstract Data Type Solution 

On the other hand, as discussed by Garlan, Kaiser, and Notkin, the solution 
is not particularly well-suited to enhancements. The main problem is that to 
add new functions to the system, the implementor must either modify the 
existing modules—compromising their simplicity and integrity—or add new 
modules that lead to performance penalties. (See [7] for a detailed discussion.) 

Solution 3: Implicit Invocation 

The third solution uses a form of component integration based on shared data 
similar to the first solution. However, there are two important differences. 
First, the interface to the data is more abstract. Rather than exposing the 
storage formats to the computing modules, data is accessed abstractly (for 
example, as a list or a set). Second, computations are invoked implicitly as data 
is modified. Thus interaction is based on an active data model. For example, 
the act of adding a new line to the line storage causes an event to be sent to the 
shift module. This allows it to produce circular shifts (in a separate abstract 
shared data store). This in turn causes the alphabetizer to be implicitly 
invoked so that it can alphabetize the lines. 

This solution easily supports functional enhancements to the system: 
additional modules can be attached to the system by registering them to be 
invoked on data-changing events. Because data is accessed abstractly, it also 
insulates computations from changes in data representation. Reuse is also 
supported, since the implicitly invoked modules only rely on the existence of 
certain externally triggered events. 
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Figure 8: KWIC – Implicit Invocation Solution 

However, the solution suffers from the fact that it can be difficult to control 
the order of processing of the implicitly invoked modules. Further, because 
invocations are data driven, the most natural implementations of this kind of 
decomposition tend to use more space than the previously considered 
decompositions. 

Solution 4: Pipes and Filters 

The fourth solution uses a pipeline solution. In this case there are four filters: 
input, shift, alphabetize, and output. Each filter processes the data and sends it 
to the next filter. Control is distributed: each filter can run whenever it has 
data on which to compute. Data sharing between filters is strictly limited to 
that transmitted on pipes. (See Figure 9.) 

This solution has several nice properties. First, it maintains the intuitive 
flow of processing. Second, it supports reuse, since each filter can function in 
isolation (provided upstream filters produce data in the form it expects). New 
functions are easily added to the system by inserting filters at the appropriate 
point in the processing sequence. Third, it supports ease of modification, since 
filters are logically independent of other filters. 
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Figure 9: KWIC – Pipe and Filter Solution 
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On the other hand it has a number of drawbacks. First, it is virtually 
impossible to modify the design to support an interactive system. For example, 
in order to delete a line, there would have to be some persistent shared storage, 
violating a basic tenet of this approach. Second, the solution is inefficient in 
terms of its use of space, since each filter must copy all of the data to its output 
ports. 

Comparisons 

The solutions can be compared by tabulating their ability to address the design 
considerations itemized earlier. A detailed comparison would have to involve 
consideration of a number of factors concerning the intended use of the 
system: for example, is it batch or interactive, update-intensive or query-
intensive, etc. 

Figure 10 provides an approximation to such an analysis, based on the 
discussion of architectural styles introduced earlier. As Parnas pointed out, the 
shared data solution is particularly weak in its support for changes in the 
overall processing algorithm, data representations, and reuse. On the other 
hand it can achieve relatively good performance, by virtue of direct sharing of 
data. Further, it is relatively easy to add a new processing component (also 
accessing the shared data). The abstract data type solution allows changes to 
data representation and supports reuse, without necessarily compromising 
performance. However, the interactions between components in that solution 
are wired into the modules themselves, so changing the overall processing 
algorithm or adding new functions may involve a large number of changes to 
the existing system. 

Shared 
Memory ADT Events Dataflow 

Change in Algorithm _ _ + + 

Change in Data Repn _ + _ _ 

Change in Function + _ + + 

Performance + + _ _ 

Reuse _ + _ + 

Figure 10: KWIC – Comparison of Solutions 

The implicit invocation solution is particularly good for adding new 
functionality. However, it suffers from some of the problems of the shared 
data approach: poor support for change in data representation and reuse. 
Moreover, it may introduce extra execution overhead. The pipe and filter 
solution allows new filters to be placed in the stream of text processing. 
Therefore it supports changes in processing algorithm, changes in function, 
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and reuse. On the other hand, decisions about data representation will be 
wired into the assumptions about the kind of data that is transmitted along the 
pipes. Further, depending on the exchange format, there may be additional 
overhead involved in parsing and unparsing the data onto pipes. 

4.2. Case Study 2: Instrumentation Software 

Our second case study describes the industrial development of a software 
architecture at Tektronix, Inc. This work was carried out as a collaborative 
effort between several Tektronix product divisions and the Computer 
Research Laboratory over a three year period [6]. 

The purpose of the project was to develop a reusable system architecture 
for oscilloscopes. An oscilloscope is an instrumentation system that samples 
electrical signals and displays pictures (called traces) of them on a screen. 
Additionally, oscilloscopes perform measurements on the signals, and also 
display these on the screen. While oscilloscopes were once simple analogue 
devices involving little software, modern oscilloscopes rely primarily on 
digital technology and have quite complex software. It is not uncommon for a 
modern oscilloscope to perform dozens of measurements, supply megabytes of 
internal storage, interface to a network of workstations and other instruments, 
and provide sophisticated user interface including a touch panel screen with 
menus, built-in help facilities, and color displays. 

Like many companies that have had to rely increasingly on software to 
support their products, Tektronix was faced with number of problems. First, 
there was little reuse across different oscilloscope products. Instead, different 
oscilloscopes were built by different product divisions, each with their own 
development conventions, software organization, programming language, and 
development tools. Moreover, even within a single product division, each 
new oscilloscope typically required a redesign from scratch to accommodate 
changes in hardware capability and new requirements on the user interface. 
This problem was compounded by the fact that both hardware and interface 
requirements were changing increasingly rapidly. Furthermore, there was a 
perceived need to address “specialized markets”. To do this it would have to 
be possible to tailor a general-purpose instrument, to a specific set of uses. 

Second, there were increasing performance problems because the software 
was not rapidly configurable within the instrument. This problem arises 
because an oscilloscope can be configured in many different modes, depending 
on the user’s task. In old oscilloscopes reconfiguration was handled simply by 
loading different software to handle the new mode. But as the total size of 
software was increasing, this was leading to delays between a user's request for 
a new mode and a reconfigured instrument. 

The goal of the project was to develop an architectural framework for 
oscilloscopes that would address these problems. The result of that work was a 
domain-specific software architecture that formed the basis of the next 
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generation of Tektronix oscilloscopes. Since then the framework has been 
extended and adapted to accommodate a broader class of system, while at the 
same time being better adapted to the specific needs of instrumentation 
software. 

In the remainder of this section, we outline the stages in this architectural 
development. 

An object-oriented model 

The first attempt at developing a reusable architecture focused on producing an 
object-oriented model of the software domain. This led to a clarification of the 
data types used in oscilloscopes: waveforms, signals, measurements, trigger 
modes, etc. (See Figure 11.) 
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Figure 11: Oscilloscopes – An Object-oriented Model 

While this was a useful exercise, it fell far short of producing the hoped-for 
results. Although many types of data were identified, there was no overall 
model that explained how the types fit together. This led to confusion about 
the partitioning of functionality. For example, should measurements be 
associated with the types of data being measured, or represented externally? 
Which objects should the user interface talk to? 

A layered model 

The second phase attempted to correct these problems by providing a layered 
model of an oscilloscope. (See Figure 11.) In this model the core layer 
represented the signal manipulation functions that filter signals as they enter 
the oscilloscope. These functions are typically implemented in hardware. The 
next layer represented waveform acquisition. Within this layer signals are 
digitized and stored internally for later processing. The third layer consisted of 
waveform manipulation, including measurement, waveform addition, 
Fourier transformation, etc. The fourth layer consisted of display functions. 
This layer was responsible for mapping digitized waveforms and 
measurements to visual representations. The outermost layer was the user 
interface. This layer was responsible for interacting with the user and for 
deciding which data should be shown on the screen. (See Figure 12.) 
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Figure 12: Oscilloscopes – A Layered Model 

This layered model was intuitively appealing since it partitioned the 
functions of an oscilloscope into well-defined groupings. Unfortunately it was 
the wrong model for the application domain. The main problem was that the 
boundaries of abstraction enforced by the layers conflicted with the needs for 
interaction between the various functions. For example, the model suggests 
that all user interactions with an oscilloscope should be in terms of the visual 
representations. But in practice real oscilloscope users need to directly affect 
the functions in all layers, such as setting attenuation in the signal 
manipulation layer, choosing acquisition mode and parameters in the 
acquisition layer, or creating derived waveforms in the waveform 
manipulation layer. 

A Pipe and Filter Model 

The third attempt yielded a model in which oscilloscope functions were 
viewed as incremental transformers of data. Signal transformers serve to 
condition external signals. Acquisition transformers derive digitized 
waveforms from these signals. Display transformers convert these waveforms 
into visual data. (See Figure 13.) 
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Figure 13: Oscilloscopes – A Pipe and Filter Model 

This architectural model was a significant improvement over the layered 
model in that it did not isolate the functions in separate partitions. For 
example, nothing in this model would prevent signal data directly feeding into 
display filters. Further, the model corresponded well to the engineers' view of 
signal processing as a dataflow problem. The main problem with the model 
was that it was not clear how the user should interact with it. If the user were 
simply at one end of the system, then this would represent an even worse 
decomposition than the layered system. 

Garlan & Shaw: An Introduction to Software Architecture 24 



A Modified Pipe and Filter Model 

The fourth solution accounted for user inputs by associating with each filter a 
control interface that allows an external entity to set parameters of operation 
for the filter. For example, the acquisition filter might have parameters that 
determine sample rate and waveform duration. These inputs serve as 
configuration parameters for the oscilloscope. Formally, the filters can be 
modelled as “higher-order” functions, for which the configuration parameters 
determine what data transformation the filter will perform. (See [17] for this 
interpretation of the architecture.) Figure 14 illustrates this architecture. 
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Figure 14: Oscilloscopes – A Modified Pipe and Filter Model 

The introduction of a control interface solves a large part of the user 
interface problem. First, it provides a collection of settings that determine 
what aspects of the oscilloscope can be modified dynamically by the user. It 
also explains how changes to oscilloscope function can be accomplished by 
incremental adjustments to the software. Second it decouples the signal 
processing functions of the oscilloscope from the actual user interface: the 
signal processing software makes no assumptions about how the user actually 
communicates changes to its control parameters. Conversely, the actual user 
interface can treat the signal processing functions solely in terms of the control 
parameters. This allowed the designers to change the implementation of the 
signal processing software and hardware without impacting an interface, 
provided the control interface remained unchanged. 

Further Specialization 

The adapted pipe and filter model was a great improvement. But it, too, had 
some problems. The most significant problem was that the pipe and filter 
computational model led to poor performance. In particular, waveforms can 
occupy a large amount of internal storage: it is simply not practical for each 
filter to copy waveforms every time they process them. Further, different 
filters may run at radically different speeds: it is unacceptable to slow one filter 
down because another filter is still processing its data. 

To handle these problems the model was further specialized. Instead of 
having a single kind of pipe, several “colors” of pipes were introduced. Some 
of these allowed data to be processed without copying. Others permitted data to 
be ignored by slow filters if they were in the middle of processing other data. 
These additional pipes increased the stylistic vocabulary and allowed the 
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pipe/filter computations to be tailored more directly to the performance needs 
of the product. 

Summary 

This case study illustrates the issues involved in developing an architectural 
style for a real application domain. It underscores the fact that different 
architectural styles have different effects on the ability to solve a set of 
problems. Moreover, it illustrates that architectural designs for industrial 
software must typically be adapted from pure forms to specialized styles that 
meet the needs of the specific domain. In this case, the final result depended 
greatly on the properties of pipe and filter architectures, but found ways to 
adapt that generic style so that it could also satisfy the performance needs of the 
product family. 

4.3. Case 3: A Fresh View of Compilers 

The architecture of a system can change in response to improvements in 
technology. This can be seen in the way we think about compilers. 

In the 1970s, compilation was regarded as a sequential process, and the 
organization of a compiler was typically drawn as in Figure 15. Text enters at 
the left end and is transformed in a variety of ways—to lexical token stream, 
parse tree, intermediate code—before emerging as machine code on the right. 
We often refer to this compilation model as a pipeline, even though it was (at 
least originally) closer to a batch sequential architecture in which each 
transformation (“pass”) was completed before the next one started. 

Lex Syn Sem Opt Code 
Text  Code 

Figure 15: Traditional Compiler Model 

In fact, even the batch sequential version of this model was not completely 
accurate. Most compilers created a separate symbol table during lexical analysis 
and used or updated it during subsequent passes. It was not part of the data 
that flowed from one pass to another but rather existed outside all the passes. 
So the system structure was more properly drawn as in Figure 16. 
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Figure 16: Traditional Compiler Model with Shared Symbol Table 

As time passed, compiler technology grew more sophisticated. The 
algorithms and representations of compilation grew more complex, and 
increasing attention turned to the intermediate representation of the program 
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during compilation. Improved theoretical understanding, such as attribute 
grammers, accelerated this trend. The consequence was that by the mid-1980s 
the intermediate representation (for example, an attributed parse tree), was the 
center of attention. It was created early during compilation and manipulated 
during the remainder; the data structure might change in detail, but it 
remained substantially one growing structure throughout. However, we 
continued (sometimes to the present) to model the compiler with sequential 
data flow as in Figure 17. 
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Figure 17: Modern Canonical Compiler 

In fact, a more appropriate view of this structure would re-direct attention 
from the sequence of passes to the central shared representation. When you 
declare that the tree is the locus of compilation information and the passes 
define operations on the tree, it becomes natural to re-draw the architecture as 
in Figure 18. Now the connections between passes denote control flow, which 
is a more accurate depiction; the rather stronger connections between the 
passes and the tree/symbol table structure denote data access and 
manipulation. In this fashion, the architecture has become a repository, and 
that is indeed a more appropriate way to think about a compiler of this class. 

Happily, this new view also accommodates various tools that operate on 
the internal representation rather than the textual form of a program; these 
include syntax-directed editors and various analysis tools. 
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Figure 18: Canonical Compiler, Revisited 
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Note that this repository resembles a blackboard in some respects and 
differs in others. Like a blackboard, the information of the computation is 
located centrally and operated on by independent computations which interact 
only through the shared data. However, whereas the execution order of the 
operations in a blackboard is determined by the types of the incoming database 
modifications, the execution order of the compiler is predetermined. 

4.4. Case 4: A Layered Design with Different Styles for the Layers 

The PROVOX® system by Fisher Controls offers distributed process control for 
chemical production processes [43]. Process control capabilities range from 
simple control loops that control pressure, flow, or levels to complex strategies 
involving interrelated control loops. Provisions are made for integration with 
plant management and information systems in support of computer integrated 
manufacturing. The system architecture integrates process control with plant 
management and information systems in a 5-level layered hierarchy. Figure 
19 shows this hierarchy: the right side is the software view, and the left side is 
the hardware view. 

PROVOXplus Controllers 

PROVUE Consoles 

ENVOX Configuration 

PROVOXplus

Application Software 

CorpComputers 

Interface to
Host Computers 

Process Measurement

and Control 

Process

Supervision 

Process

Management 

Corp

Mgmt. 

Plant

Management 

Level 5 

Level 4 

Level 3 

Level 2 

Level 1 

Software 

Figure 19: PROVOX – Hierarchical Top Level 

Each level corresponds to a different process management function with its 
own decision-support requirements. 

• Level 1: Process measurement and control: direct adjustment of final 
control elements. 

• Level 2: Process supervision: operations console for monitoring and 
controlling Level 1. 
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• Level 3: Process management: computer-based plant automation, 
including management reports, optimization strategies, and guidance to 
operations console. 

• Levels 4 and 5: Plant and corporate management: higher-level 
functions such as cost accounting, inventory control, and order 
processing/scheduling. 

Different kinds of computation and response times are required at different 
levels of this hierarchy. Accordingly, different computational models are used. 
Levels 1 to 3 are object-oriented; Levels 4 and 5 are largely based on 
conventional data-processing repository models. For present purposes it 
suffices to examine the object-oriented model of Level 2 and the repositories of 
Levels 4 and 5. 
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Figure 20: PROVOX – Object-oriented Elaboration 

For the control and monitoring functions of Level 2, PROVOX uses a set of 
points, or loci of process control. Figure 20 shows the canonical form of a point 
definition; seven specialized forms support the most common kinds of 
control. Points are, in essence, object-oriented design elements that 
encapsulate information about control points of the process. The points are 
individually configured to achieve the desired control strategy. Data associated 
with a point includes: Operating parameters, including current process value, 
setpoint (target value), valve output, and mode (automatic or manual). 
Tuning parameters, such as gain, reset, derivative, and alarm trip-points. 
Configuration parameters, including tag (name) and I/O channels. 

In addition, the point's data can include a template for a control strategy. 
Like any good object, a point also includes procedural definitions such as 
control algorithms, communication connections, reporting services, and trace 
facilities. A collection of points implements the desired process control 
strategy through the communication services and through the actual dynamics 
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of the process (e.g., if one point increases flow into a tank, the current value of 
a point that senses tank level will reflect this change). Although the 
communication through process state deviates from the usual procedural or 
message-based control of objects, points are conceptually very like objects in 
their encapsulation of essential state and action information. 

Reports from points appear as input transactions to data collection and 
analysis processes at higher design levels. The organization of the points into 
control processes can be defined by the designer to match the process control 
strategy. These can be further aggregated into Plant Process Areas (points 
related to a set of equipment such as a cooling tower) and thence into Plant 
Management Areas (segments of a plant that would be controlled by single 
operators). 

PROVOX makes provisions for integration with plant management and 
business systems at Levels 4 and 5. Selection of those systems is often 
independent of process control design; PROVOX does not itself provide MIS 
systems directly but does provide for integrating a conventional host computer 
with conventional database management. The data collection facilities of 
Level 3, the reporting facilities of Level 2, and the network that supports 
distributed implementation suffice to provide process information as 
transactions to these databases. Such databases are commonly designed as 
repositories, with transaction processing functions supporting a central data 
store---quite a different style from the object-oriented design of Level 2. 

The use of hierarchical layers at the top level of a system is fairly common. 
This permits strong separation of different classes of function and clean 
interfaces between the layers. However, within each layer the interactions 
among components are often too intricate to permit strict layering. 

4.5. Case 5: An Interpreter Using Different Idioms for the Components 

Rule-based systems provide a means of codifying the problem-solving know­
how of human experts. These experts tend to capture problem-solving 
techniques as sets of situation-action rules whose execution or activation is 
sequenced in response to the conditions of the computation rather than by a 
predetermined scheme. Since these rules are not directly executable by 
available computers, systems for interpreting such rules must be provided. 
Hayes-Roth surveyed the architecture and operation of rule-based systems [44]. 

The basic features of a rule-based system, shown in Hayes-Roth’s rendering 
as Figure 21, are essentially the features of a table-driven interpreter, as 
outlined earlier. 

• The pseudo-code to be executed, in this case the knowledge base 

• The interpretation engine, in this case the rule interpreter, the heart of 
the inference engine 
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• The control state of the interpretation engine, in this case the rule and 
data element selector 

• The current state of the program running on the virtual machine, in 
this case the working memory. 

Rule 
Base 

Fact 
Memory 

Knowledge Base 

Working 
Memory 

Inputs 

Outputs 

Selected data 

Selected ruleRule 
Interpreter 

Rule and 
Data Element 

Selection 

Memory 

Computation 
state mach 

Figure 21: Basic Rule-Based System 

Rule-based systems make heavy use of pattern matching and context 
(currently relevant rules). Adding special mechanisms for these facilities to 
the design leads to the more complicated view shown in Figure 22. In adding 
this complexity, the original simple interpreter vanishes in a sea of new 
interactions and data flows. Although the interfaces among the original 
modules remain, they are not distinguished from the newly-added interfaces. 

However, the interpreter model can be rediscovered by identifying the 
components of Figure 22 with their design antecedents in Figure 21. This is 
done in Figure 23. Viewed in this way, the elaboration of the design becomes 
much easier to explain and understand. For example, we see that: 

• The knowledge base remains a relatively simple memory structure,
merely gaining substructure to distinguish active from inactive 
contents. 

• The rule interpreter is expanded with the interpreter idiom (that is, the
interpretation engine of the rule-based system is itself implemented as a 
table-driven interpreter), with control procedures playing the role of the 
pseudo-code to be executed and the execution stack the role of the 
current program state. 

• “Rule and data element selection” is implemented primarily as a
pipeline that progressively transforms active rules and facts to 
prioritized activations; in this pipeline the third filter (“nominators”) 
also uses a fixed database of metarules. 

• Working memory is not further elaborated.
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Figure 23: Sophisticated Rule-Based System 

The interfaces among the rediscovered components are unchanged from 
the simple model except for the two bold lines over which the interpreter 
controls activations. 

This example illustrates two points. First, in a sophisticated rule-based 
system the elements of the simple rule-based system are elaborated in response 
to execution characteristics of the particular class of languages being 
interpreted. If the design is presented in this way, the original concept is 
retained to guide understanding and later maintenance. Second, as the design 
is elaborated, different components of the simple model can be elaborated with 
different idioms. 
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Figure 23: Simplified Sophisticated Rule-Based System 

Note that the rule-based model is itself a design structure: it calls for a set of 
rules whose control relations are determined during execution by the state of 
the computation. A rule-based system provides a virtual machine—a rule 
executor—to support this model. 

4.6. Case 6: A Blackboard Globally Recast as Interpreter 

The blackboard model of problem solving is a highly structured special case of 
opportunistic problem solving. In this model, the solution space is organized 
into several application-dependent hierarchies and the domain knowledge is 
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Level n

partitioned into independent modules of knowledge that operate on 
knowledge within and between levels [34]. Figure 4 showed the basic 
architecture of a blackboard system and outlined its three major parts: 
knowledge sources, the blackboard data structure, and control. 
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Response Frame 

( Control flow-----Data flow) 

Figure 24: Hearsay-II 

The first major blackboard system was the HEARSAY-II speech recognition 
system. Nii's schematic of the HEARSAY-II architecture appears as Figure 24. 
The blackboard structure is a six- to eight-level hierarchy in which each level 
abstracts information on its adjacent lower level and blackboard elements rep­
resent hypotheses about the interpretation of an utterance. Knowledge sources 
correspond to such tasks as segmenting the raw signal, identifying phonemes, 
generating word candidates, hypothesizing syntactic segments, and proposing 
semantic interpretations. Each knowledge source is organized as a condition 
part that specifies when it is applicable and an action part that processes 
relevant blackboard elements and generates new ones. The control component 
is realized as a blackboard monitor and a scheduler; the scheduler monitors the 
blackboard and calculates priorities for applying the knowledge sources to 
various elements on the blackboard. 

HEARSAY-II was implemented between 1971 and 1976 on DEC PDP-10s; 
these machines were not directly capable of condition-triggered control, so it 
should not be surprising to find that an implementation provides the 
mechanisms of a virtual machine that realizes the implicit invocation 
semantics required by the blackboard model. 
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Figure 25: Blackboard View of Hearsay-II 

Figure 24 not only elaborates the individual components of Figure 4; it also 
adds components for the previously-implicit control component. In the 
process, the figure becomes rather complex. This complexity arises because it is 
now illustrating two concepts: the blackboard model and realization of that 
model by a virtual machine. The blackboard model can be recovered as in 
Figure 25 by suppressing the control mechanism and regrouping the 
conditions and actions into knowledge sources. 

The virtual machine can be seen to be realized by an interpreter using the 
assignment of function in Figure 26. Here the blackboard cleanly corresponds 
to the current state of the recognition task. The collection of knowledge 
sources roughly supplies the pseudocode of the interpreter; however, the 
actions also contribute to the interpretation engine. The interpretation engine 
includes several components that appear explicitly in Figure 24: the blackboard 
monitor, the focus of control database, and the scheduler, but also the actions 
of the knowledge sources. The scheduling queue corresponds roughly to the 
control state. To the extent that execution of conditions determines priorities, 
the conditions contribute to rule selection as well as forming pseudocode. 

Here we see a system initially designed with one model (blackboard, a 
special form of repository), then realized through a different model 
(interpreter). The realization is not a component-by-component expansion as 
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Level n

in the previous two examples; the view as an interpreter is a different 
aggregation of components from the view as blackboard. 
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Figure 26: Interpreter View of Hearsay-II 

5. Past, Present, and Future 

We have outlined a number of architectural styles and shown how they can be 
applied and adapted to specific software systems. We hope that this has 
convinced the reader that analysis and design of systems in terms of software 
architecture is both viable and worth doing. Further we hope to have made it 
clear that an understanding of the emerging vocabulary of architectural styles 
is a significant—if not necessary—intellectual tool for the software engineer. 

There is, of course, much more to software architecture than we have had 
space to cover. In particular, we have said very little about existing results in 
the areas of analysis, formal specification, domain-specific architectures, 
module interconnection languages, and special-architecture tools. 

This is not to say that more work isn't needed. Indeed, we can expect to see 
significant advances in a number of areas including: 

• Better taxonomies of architectures and architectural styles.
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• Formal models for characterizing and analyzing architectures.

• Better understanding of the primitive semantic entities from which
these styles are composed. 

• Notations for describing architectural designs.

• Tools and environments for developing architectural designs.

• Techniques for extracting architectural information from existing code.

• Better understanding of the role of architectures in the life-cycle process.

These are all areas of active research both in industry and academia. Given 
the increasing interest in this emerging field, we can expect that our 
understanding of the principles and practice of software architecture will 
improve considerably over time. However, as we have illustrated, even with 
the basic concepts that we now have in hand, design at the level of software 
architecture can provide direct and substantial benefit to the practice of 
software engineering. 
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