Comparing Development Costs of
C and Ada

March 30, 1995
Stephen F. Zeigler, Ph.D.

Rational Software Corporation

Contents:

Conditions of the Study

Data for Overall Development of the VADS Product Line
NOTES:

CLineEquals Adaline?

C Feature Equals Ada Feature?

Effects of Code Automation and Reuse

Build-Script Costsfor C

Was Ada Used For Easier Jobs?

Was Any Project Duplicated in Both C and Ada?
Programmer Training

What isthe learning curve for C and Ada?

Perhaps VADS Programming in C was Substandard?
What About Costs Other Than Adding Features?

What About the Cost of Customer Support?

Why Does Ada Work Better Than C?

Is This Experience Applicable Outside Of This Project?
Will C++ Change The Picture?

Will Ada94 Change The Picture?

|s the Programming Language All That Important?
CONCLUSION: Development Costs of C Exceed Those of Ada

Programming Languages often incite zeal otry because of theoretic advantages, whether
from market acceptance or from intrinsic features. Practical comparisons of languages are
more difficult. Some projects, notably prominently failing ones, cite choice of language
and tools as areason for their failure. Analysisis complex however: big projects aren't
donetwicein parallel just to see which language/tool choice is better, and even then there
would be questions about the relative talent, teamwork, and fortunes of the efforts. This
article discusses one case where most variables were controlled enough to make a
comparison between devel opment costs of C versus development costs of Ada

Two companies, Verdix and Rational, merged in 1994 to form Rational Software
Corporation. In the process of Due Diligence, records were examined to determine the
value of the two companies but also to judge the best technol ogies and methodol ogies to
continue into the future of the merged company. During that process, the extensive and

http://www.adaic.com/whyada/ada-vs-c/cada_art.html#xtocid153454#xtocid153454
http://www.adaic.com/whyada/ada-vs-c/cada_art.html#xtocid153455#xtocid153455
http://www.adaic.com/whyada/ada-vs-c/cada_art.html#xtocid153456#xtocid153456
http://www.adaic.com/whyada/ada-vs-c/cada_art.html#xtocid153457#xtocid153457
http://www.adaic.com/whyada/ada-vs-c/cada_art.html#xtocid153458#xtocid153458
http://www.adaic.com/whyada/ada-vs-c/cada_art.html#xtocid153459#xtocid153459
http://www.adaic.com/whyada/ada-vs-c/cada_art.html#xtocid1534510#xtocid1534510
http://www.adaic.com/whyada/ada-vs-c/cada_art.html#easier#easier
http://www.adaic.com/whyada/ada-vs-c/cada_art.html#duplicated#duplicated
http://www.adaic.com/whyada/ada-vs-c/cada_art.html#training#training
http://www.adaic.com/whyada/ada-vs-c/cada_art.html#learning-curve#learning-curve
http://www.adaic.com/whyada/ada-vs-c/cada_art.html#vads#vads
http://www.adaic.com/whyada/ada-vs-c/cada_art.html#other-costs#other-costs
http://www.adaic.com/whyada/ada-vs-c/cada_art.html#customer-support#customer-support
http://www.adaic.com/whyada/ada-vs-c/cada_art.html#better#better
http://www.adaic.com/whyada/ada-vs-c/cada_art.html#outside#outside
http://www.adaic.com/whyada/ada-vs-c/cada_art.html#picture#picture
http://www.adaic.com/whyada/ada-vs-c/cada_art.html#ada94#ada94
http://www.adaic.com/whyada/ada-vs-c/cada_art.html#important#important
http://www.adaic.com/whyada/ada-vs-c/cada_art.html#conclusion#conclusion

complete update records of the Verdix Aloha development showed that there might be
guantitative basis for comparing the success of two languages, C and Ada, under the
fairest known conditions. A cursory pre-merger evaluation resulted in the following
assertion:

"We have records of all changes ever made in the devel opment of Verdix products; those
records show us that for the lifecycle Ada seemsto be about 2x or better for cost
effectivenessthan C..."

We have now completed a much more extensive evaluation. Our data applies more to
development costs than to whole lifecycle costs. Even so, the above cost estimates are
substantiated in comparing C and Ada devel opment.

Conditions of the Study

Verdix existed eleven years from March 1983 till its merger in March 1994 as, primarily,
avendor of Ada-related development tools. It entered the Ada market convinced that Ada
would form the best language basis for developing reliable software, and that reliability
would become the most important concern of large software in the 1990s. The resulting
VADS productline of compilers, builders, runtimes, and debug tools became recognized
in the industry as one of the finest available. Verdix, and its merge partner Rational, now
sell awide range of development tool products for Ada, C, C++ and Ada95. The Rational
software development environment, called Apex, has been merged with the VADS
technology described here. The result, Apex2.0, is obsoleting a substantial portion of the
C-based codein VADS.

Thisarticle is based on internal VADS data, sanitized to protect individual developers.
This datawas and is used during development to understand code and its history, and for
accounting purposes with Rational's certified auditor, Ernst & Y oung, for the purpose of
software capitalization.

The VADS product base was begun in March of 1983. Records of every change were
kept from that time, but were not annotated with explanatory notes and categorizations
until early in 1986. This study and the relatively low problem rates of the VADS line are
in part due to these records. Prior to this 1993-4 study, these records were not examined
for comparing C and Ada, nor was there ever an intent to make such a comparison
beyond idle speculation.

VADS was begun in the C language. Ada was not used until 1986 since no good Ada
compilers were available. Astime went on, Ada was used increasingly with the general
rule similar to that of the DoD "Ada Mandate": use Adaif more than 30% of a project
will be new code. By mid-1991, the amount of Ada and the amount of C in VADS had
reached approximate parity.

VADS s built in acommon source baseline, meaning that all VADS products are
composed from the same source. VADS version 6.2 for the Sun SPARC is about the
same as VADS v6.2 for the DEC Alpha, except for architecture-and operating system-
specific optimizations.

The development team for VADS has preserved arelatively free-form style that
encourages engineers to cooperate and move among the different functional areas of the
line. Thus a person might add to an Ada-based tool when they first join, then learn how to
build and test an entire tool set, and then move towards an area of specific interest such as
"trace tools"; their work in trace tools might have them adding code to the Ada-based
runtime system and linker, to the C-based code generators, and to the Ada-based test
frameworks. Of the 62 contributors measured in this study, only one did no Ada updates
and only one did no C updates; in each case these employees had been with the team for
less than six months. Of the 62 contributors, only six are no longer working on the code
as of mid-1994. Hiring has been mostly steady with growth of about 5 people per year.

Of the team members, most have Master's Degrees from good Computer Science schools.
Most were considered excellent students. The more experienced contributors tend to
work on the C parts of VADS because the C parts were begun first and because of the
dictum that developers continue responsibility for any code they write.

The VADS tools, supporting both C and Ada, are used for their own development. The
host platform C compiler and linker was used for C builds, but the devel opers would not
normally be aware of this since these foreign tools were hidden within the common build
apparatus (vmake), the common source code control system (dsc) and the common
debugger (a.db). Contributors therefore see about the same debug/test/edit capability in
each C/Ada section, and indeed may often be debugging both C and Ada at the same time.
The same design methods were used regardless of language. The test apparatus also
applied equally to each of C and Ada.

In summary, the C and Ada areas are worked by about the same people (with aslight
advantage to C) and using the same tools under approximately the same conditions.

Data for Overall Development of the
VADS Product Line

(Upto Oct. 15, 1994)

C FILE ADA FILE SCRIPT_FILE OTHER FILE

TOTALS

all _lines: 1925523 1883751 117964 604078
4531316

SLCC: 1508695 1272771 117964 604078
3503508

files: 6057 9385 2815 3653
21910

updat es: 47775 34516 12963 12189
107443

new_f eat ur es: 26483 23031 5594 6145

61253

Fi xes: 13890 5841 4603 1058
25392

Fi xes/ feature: .52 .25 .82 .17
41

Fi xes/ KSLOC: 9.21 4.59 39. 02 1.75
7.25

devel cost: $15, 873, 508 $8, 446,812 $1, 814,610 $2, 254,982
$28, 389, 856

cost/ SLOC: $10. 52 $6. 62 $15. 38 $3.72
$8. 10

def ects: 1020 122 (A (B)
1242

def ect s/ KSLCC: . 676 . 096 (A

(B) . 355

Definitions:

C_FILE: Files of C-based source.
ADA_FILE: Files of Ada-based source.

SCRIPT_FILE: Files of scriptsfor Make, VMS-DCL, and internal tools such as "vmake"
used for virtual make. The Make files are used primarily for C since Adatools have
automated build manager tools, but since release tools and VM S require work for Ada as
well, these results are not just lumped in with C.

OTHER_FILE: Files used for documentation, or otherwise indeterminate purpose - all
classifications were done automatically.

al_lines: Results from the Unix "wc" command. These include comments and blank lines
for both C and Ada.

SLOC: Non-blank, non-comment lines of code. Thisis sometimes called SLOC, for
Source Lines Of Code. Comments and blank lines were not measured for scripts and
"other" files.

files: Unix files. C and Ada are distinguishable by their unique suffices. Script files are
someti mes indistinguishable and are therefore under-reported with the balance in
"OTHER_FILE".

updates: The source code control system tracks every change updated into each baseline
(in this case, the main development "dev" baseline.)This row lists all updates of any kind,
into the dev baseline.

new features: The subset of updates that added new features to the "dev" baseline.
Features are similar to "function points" asdefined in [].

Fixes: The subset of updates that fixed bugsin the "dev" baseline. More than 90% of
these Fixes were found during unit test, before beta product release, and are called
"internal fixes." Defects (customer-discovered bugs) are discussed later.

Fixes/feature: Thisrow givesthe ratio of the "new features' and "fixes" rows. It means
that overall, we could expect to find .52 Fixesin each feature added in C, but only .25in
each feature added in Ada. Features took about 80 lines of additional code, on average.

FixesyKSLOC: The measure of internal Fixes per 1000 SLOC over all time.

devel _cost: Thisis the approximate burdened costs for the people spending time on these
various projects. Thisfigure is approximated from the base salaries for the people
involved. Since the base salary figures do not take into account salary changes during the
development period, nor inflation, nor exact assignments, nor time spent on other (e.g.
sales and mentoring) activities, nor many other burden costs, we cal culate the burdened
devel _cost by multiplying base salary information by the company's maximum burden
factor of 2.0. It is meant only as a rough guideline giving an approximation of the bias of
different salaried people. Dollars are adjusted for inflation as about 1992 valued.

cost/SLOC: This gives the approximate burdened cost of each SLOC. Thisvalue is based
on the approximate devel _cost above.

defects: Thisrow is condensed from customer support records. There were 16,440
customer interactions (called "tickets") which produced about 5072 possible defects
(called "CR"s), which eventually produced 2004 deficiency reports (called "DR"s), which
eventually resulted in about 1242 actual bugs (called "defects".)

defectsKSLOC: The classic measure of visible defects (customer-reported bugs) per
1000 SLOC.

NOTES:

e 1) This summary does not include obsoleted directories, such as for end-of-
life'd products (e.g., the VADS for the Mil-STD 1750a 16 bit military computer)
or for replaced components (e.g., the original C-based optimizer and runtime.)

e 2) Thissummary does not include source from the infrastructure support
baselines (e.g., for our internal source code control and documentation) nor from
our very large test baselines (e.g., ACVC tests or regression test suites) nor from
our user documentation baselines. Also, it includes only the "dev" baseline, rather
than released version baselines; these baselines occasionally have separate work
done for them, but normally receive a subset of the fixes and a small subset of the
features added to the dev baseline.

e 3) Asexplained below, fixes for makefiles and others could not be
automatically distinguished. (A)+(B) together is 100.

This datais collected automatically by the source code control system in the same way
regardless of language. The source code system does not take effect until developers
make an update. That is, only updated code is tracked. It is expected that unit testsand a
base automated test suite would pass before updates. In practice, some devel opers update
readily and show more fixes, and some update infrequently with (normally) fewer fixes.
The decision to update is influenced by how many other people might need or benefit
from the results, how many others might be developing and therefore making updatesin
the samefiles, and a variety of other factors. Updates cannot be completely tested
because the complexity of the product and its many switches, variants, hosts, targets, add-
ons and usages make compl ete testing impossible

The process of updating requires several inputs from the developer, including a
categorization of the general reason for the update Developer update records are code-
reviewed by peers. Even so, the "fixed bug" categories may be underreported because
some devel opers do several work items at once and update several fixesin amongst other
feature addition-type changes; most of these updates seem to be recorded as "new
feature” probably because of the minor stigma of recording bugs; on the other hand, at
least one developer marks everything as abug fix unlessit is very clearly new

devel opment.

C LineEqualsAdalLinge?

On the surface, Ada appears more cost-effective than does C. Adalines cost about half as
much as C lines, produce about 70% fewer internal fixes, and produce almost 90% fewer

bugs for the final customer. But there are many variables that might explain these effects.
We start with the question of whether a C line and an Adaline are comparable.

A first observation is that Ada has rigid requirements for making entities such as
subprograms and variables visible globally. Thisleads to a separation of Ada code into
specifications or "specs' and bodies. Could it be that there really wasn't that much Ada as
far asfunctional lines, and that many are repeated specifications in the specs?

C_SPEC ADA_SPEC C_BODY
ADA_BODY
I i nes: 205087 781921 1720436
1101830
SLOC: 158911 453782 1349784
818989
files: 2252 5443 3805 3942
updat es: 6541 15886 41234 18630
new_f eat ures: 4844 11253 21639 11778

fixes: 890 1894 13000 3947

Percentage of Project Measures

-
o O O
L L |

@ C_SPEC
BADA_SPEC
OADA_BODY
@ C_BoDY

Lo R |
1 1 1

Percentage of Measure
—_ [[N) 3 h o

]
1

=
!

lires: SLOC: files: updates: features: fixes:

Measure

The above data supports the conclusion that Ada has more "specification” file lines than
C. Arethese "redundant” lines? ADA_SPEC files often provide the body, asin the case
of packages with inlined definitions or containing library subprograms, so over half of the
above ADA_SPEC lines are actually ADA_BODY lines. In addition, the types, variables,
and in fact all non-subprogram definitions are not redundant since their single definition
inthe ADA_SPEC servesall users.

C bodies also contained significant redundant code. C allows entities such as variables
and subprograms to be imported either by definitionina".h" C_SPECfile, or by an
explicit "extern" definition in the C_BODY . When new entities are added to C bodies,
some devel opers choose to avoid changing their C_SPEC .h file because compilers may
recompile many files. Thus C_BODY files collect some redundant lines for shared
variables and constants. Thisis not recommended coding practice and is no longer
allowed since smarter recompilation and faster machines rebuild quickly even with .hfile
changes. However, for the purposes of these statistics, we must consider that some

C BODY files have some inflation.

The relationship between comments, blank lines and SLOC reveas a consistent pattern:

C SPEC ADA_SPEC C BODY ADA BODY
coment s/ KSLOC 186 483 169 181
bl anks/ KSLCC: 143 261 137 179
500 -
%0 1 B comments/ K 5L D!
200 1 O bl ks/KSLOT:
350 -
300 -
250 -
200 -
150 1
100 -
m 4
0 - t t t

C_SFEC ADA_SFEC C_EDDY ADA_EDOY

We see that Ada specification files are consistently more commented and have more
white space. This effect is not by requirement. It appears to result from the use of Ada
specification files for "understanding” the programs; devel opers seem to add comments
to specification files because since the subprogram prototypes have to stand alone
without code, the readers can't fall back on reading code as they would with C. In
contrast, C header files are not normally used to navigate C programs, developers tend to
go right to the actual subprograms and read code.

Comparing aggregate bug fixes, we see:

C SPEC ADA SPEC C BODY
ADA BODY
fixes/feature: .18 .16 . 60 .33
fi xes/ KSLCC: 5. 60 4.17 9. 63 4,81

Comparing fixes by KSLOC and by
Feature

12
10

B fixesMWSLOC:

H fixes 20 feature

[R O I A]

0 0

= oB &4
i L 2 2
i’ @ @

Thistable indicates that even comparing C_BODY and ADA_BODY/, we see that fix
rates remain twice as low for Ada compared to C. As expected, the avoidance of C
specification changes reduced the number of C header file changes, while the presence of
real codein ADA_SPECsincrease the fix rate of Adawhile decreasing the apparent fix
rate of C.

C Feature EqualsAda Feature?

We can understand the effective SLOC in C and Ada a bit more by studying the cost, in
lines, SLOC and files, of implementing features. Once again the reluctant additions to
C_SPEC filesreduces the SLOC in C header files, while body files come out relatively
comparable. It is surprising, however, that Ada generally takes more lines to implement
features than does C.

C_SPEC ADA_SPEC C_BODY
ADA_BODY

| i nes/feature: 42 69 79 93

SLQOC/ f eat ur e: 32 40 62 69

files/feature: .46 .48 .17 .33

Comparing Metrics for Features

100
aa
G0
40
20

Blines
BE=LOC
O files*100)

Implementation Type

Thisraw dataindicates that Adais slightly more verbose either in SLOC or including all
lines. Although a strength of Adaisits high-level, powerful features such as tasking and
exceptions, VADS was designed before such features as tasks were available or effective.
VADS makes less use of these powerful features, and therefore derives less of the full
benefits possible with Ada.

C ADA

cost/feature: $299 $183

In this estimate we amend our cost estimates by measuring feature-to-feature. On a
feature basis, for every dollar we spent on Ada features we spent $1.63 on C.

The feature-by-feature costs seem more reliable, but may be complicated by automated
code generation and code reuse

Effects of Code Automation and Reuse

In both C and Ada we have tried to make use of reusable and automatically generated
code. Some of this code is kept in the same baseline sections as active code. By auto-
generated lines we mean lines counted in our line counts that are produced automatically
by other programs. By reused code we mean sources that were obtained from partners or
as public property but that are then taken over and used for our purposes, including
modifications and repairs. Note that about 70% of all code is used in more than one
product, as for example the core compiler pieces are all reused for every compiler
variant; we don't need to compensate for direct reuse because the source code control
system already accounts for this kind of reuse of identical internal code.

C FILE ADA FI LE

reused |ines: 134844 175856

aut o- gener at ed 276442 7802
lines:

These reused and autogenerated lines change the statistics for SLOC in different ways.
Reused lines are entered into the normal source/change tracking systems, showing up asa
single "feature” with alot of code associated with it; it may then have repairs and
enhancements as would any other active code. Auto-generated code does not show up as
afeature addition nor does it ever have any fixes or enhancements.

The presence of reused and auto-generated lines underscores the importance of
considering features rather than SLOC. It is difficult to adjust for these lines, since they
represent work yet do not participate equally with other lines. Since C has by far the
greater number of autogenerated lines, its figures will certainly show improved fixeg/line
ratios as well as higher apparent productivity.

Build-Script Costsfor C

The cost per line of scripts was the highest of any category even measured with
automated cost distribution. A more detailed analysis would likely reveal that script costs
were higher, since they have few tools to support their organization or debugging, and
since their effects are often widespread yet their accounting here reflects only the cost of
arepair, not the cost to developers who are impeded by the bugs. Scripts have the highest
bug rates of any category.

Our cost/feature figure above counts only the cost of developing the code itself, and does
not account for the cost of managing C's makefiles and build apparatus (among other
things). If we assume that at least half of the script costs are unique to C, then we can
calculate cost per equivalent feature as:

C FILE ADA _FI LE

cost/feature: $316 $183

We do not again include costs for C's makefilesin figures that follow. For more accurate
cost measures of our historic development, we could take the costs beyond the simple
code itself. Complex C programs like ours have become dependent on hand-crafted
makefiles; Ada, with compilation order, elaboration order, exceptions, generics and real -
time features, was considered too complex to link by hand, and so Adatools have auto-
build capabilities. With ANSI C and C++, "make" complexity is much higher for these
languages as well, so makefiles are of reduced importance in the future of C/C++.

WasAda Used For Easier Jobs?

VADS was not a perfect laboratory for comparing languages. each feature was
(normally) done in only one language. What if C was used for the hardest problems and
Adawas used for easier problems?

Unfortunately difficulty of project is not easily measured independent of language. Most
experts describe real-time code as the most expensive to build and integrate; Adawas
used for most of the real time needs of VADS. Experts also agree that sheer size of
modules will produce bugs with non-linear growth; C was used for the biggest, oldest
sections of VADS. Our experience indicates that dependence on external, changing
entities such as OSs, object formats, and optimization requests are one of the most
troublesome burdens for development; all of VADS has these sorts of dependencies,
though some more than others.

The C language was used for older parts of VADS, and those features directly associated
with the older parts of VADS, including the core VADS front end(>200k lines), the core
debugger(>130k lines), and the core code generator(>25k lines). C was used for machine-
dependent debugger areas (>15k lines each) and code generator areas(>20k lineseach in
addition to the cores. The debugger includes some difficult areas with real-time
programming needs. The C code also shows some big directories that have alot of
duplication and therefore are easier to produce, in the code generator and initialization
areas. We also see some directories strongly associated with external sources, for
example X, Matif, editors, and Curses.

Adawas generally used for most areas developed after the basic compiler units, and
without a strong C legacy from external code. The top 25 largest Ada directories show
emphasis on interfaces both to external libraries such as X and from internal data bases
such as DIANA. The most difficult code in general isthe real time support code, most of
which isin smaller units than these big directories but that shows up in the basic runtimes,
the Fault Tolerance extensions, the networking support, the target debug support, and the
file support systems. Some tool support is present in the form of the optimizer and the
cross linker.

The VADS product line involves more than two thousand directories. By measuring the
time spent by developers in these directories, we can calculate a rough measure of their
"expense”, and examine trends in these more expensive directoriesto seeif they are
consistent with the overall trends. The top ten most expensive C directories had these bug
fix rates:

Fi xes/ Feat ure Project Directory Sour ce Lines Devel opers
.98 vie_t ool s 7743 25
.93 and29k_cg 14248 14
.79 fe 209346 52
.61 d 132492 53
.44 cg 23975 42

. 63 optinB 13713 14

.58 68k _cg 18527 23

.56 uni x_d 20307 45
.54 mv_d 40469 9
.17 xwi n_d 23292 8

Of the top 25 most expensive directories, 80% were C directories. We have to look
farther to find ten expensive Ada directories:

Fi xes/ Feat ure Project Directory Sour ce Lines Devel opers
.71 lib tools 13689 43
. 66 posi x_ada 17759 6
. 64 sup 18083 43
.47 x| i nk 16052 15
. 38 optimd 42199 17
. 38 test_sup 9313 30
.21 new ts 20438 27
.18 i net 18087 4
.14 i 860_cg 12342 10
.12 new_Kkrn 25113 18

Where there are many contributors in every project, we can assume again that our
numbers will be statistically unbiased by individual styles. Thereis no correlation
between the number of contributors to a project and its bug fix rate, indicating that the
development environment supported parallel developments.

Average fixes/feature in C for .62
"hard" projects:

Average fixes/feature in Ada for .39
"hard" projects:

Regarding C and Ada, we see that for these hardest directories, the ratio of the
fixes/feature in the two languages is .62/.39 or 1.58. Thisratio is substantially less than
the overall 2.26 ratio we observed over the entire operation. We can conclude that in
more difficult programming, the use of Adawill not help as much.

WasAny Project Duplicated in Both C
and Ada?

It happens that no project was begun in both C and Ada independently. However, severa
projects were recoded in Ada after beginning in C. There were two motivations for going
to Ada at those early times: some were motivated simply because we wanted to be using
our own tools; others were moved to Ada because we need to get code onto a cross target
where no C compilers existed. One example is the optimizer:

Fi xes/ Feat ure Project Directory Sour ce Lines Devel opers
.63 optinB 13713 14
. 38 opti mi(Ada) 42199 17

The Ada-based optimizer project was basically a"start-from-scratch”, using an entirely
different optimizer data structure and algorithms, and with completely different personnel.
The "optim4" optimizer now does more optimizations with greater reliability than did the
C-based optimizer.

The optimizer project, being a self-contained user-visible tool of critical importance to at
least some users, provides another metric: field-reported bugs:

Pr oj ect Critical Seri ous M nor Year s
in
Service
opt i n4(Ada) 3 7 0 4 yr
optinB 13 16 2 4 yr.
Cphrimey Project Custoover Comvplairds
:i] B optire)
12 | B optiz¥)
10
HEE
ﬁ 4
4 4
2 4
0 - . | .
Cateal Senoas Mhrce

The optimizer shows consistency with a general theme, reported later: we saw more bugs
escape our testing and getting through to users from C-based code.

Another example coded from C to Adawas the library tools project for VMS. The tools
project provide Adalibrary tools (e.g., create, remove, clean) for VMS.

Fi xes/ Feat ure Project Directory Source Lines Devel opers
.98 vne_t ool s 7743 25
.22 vis_ada_t ool (Ada) 8900 12

In this project there was substantial value carried from the old design, so that the Ada
version was able to get a better start.

The runtime was also rewritten in Ada from C but no definitive data survives for the
original C effort since development on it occurred mainly prior to 1987 when the source
code control records became more accurate.

From this small number of projects we cannot conclude any strong statement. It does
provide consistent evidence that more fixes occur in C code and that customers see many
more bugs.

Programmer Training

Of Verdix hires, 75% had done substantial C programming before joining the VADS
project. Less than 25% had done substantial programming in Ada before their hiring. No
attempt was made to target Ada experts as hires, though because the business of selling
Ada brought the company contact with and recognition from the Ada industry, some
experienced hires were made from Ada backgrounds.

Training was very much "on the job" and "self imposed”. Most devel opers learned by
following the code styles that they saw aready established in the code they worked from.
While few formal code reviews ever occurred, VADS devel opers expected a constant
peer review as other developers wandered in and out of their code. Those with bugs could
expect more "help” than those executing flawlessly. Thus, the largest C project was never
more than four developers yet records show that nearly every person ever involved in
VADS has changed that front end project.

In the following graphs, we compare fix rates with respect to experience, salary and
rating. If Ada personnel are substantially different than C personnel we might see patterns
in these comparisons.

0.7 5 Bug Fix Rates vs Experience

[" I:
ale) " m Ada

Bugs Fixed/Feature
[}
: ! o
R
=0
H
[]

1] 1000 2000 3000 4000 5000
Number of Updates

The above graph plots two spots for each devel oper: each solid spot represents the
average number of fixes per feature for one of the 60 contributing devel opers when
coding in C, while each open spot represents the same average for Ada contributions.
There are one C and one Ada spot for each developer; The several spots at (0,0) represent
those few people who either never did Ada or who never did C.

We see that C and Adafix rates are not dissimilar among those with little experience as
measured by number of updates, but that as experience increases that Adafix rates
decline significantly. This training effect will be explored in the next section. We also see
that there are more experienced people are generally working with C, asis expected since
the product line started with C.

BugFix Ratesvs Salary Grade

0.7, i
.0 g o
E 051 . A = _ E i
2041 o - v - = v | = C
2 " B . - : - A
& 034 : 5 . B v | o Ada
g0z s . g B a :
o a E g O O
0.1 0 a O
o A
1] O 0 n n ! |
0 1 2 3 4 g B 7

Approvimate Salary Grade (1=1owest)

e Our data shows little correlation with (approximate) salary. Salary is based on
experience and contribution, but not directly on bug fixes. The historic
information from the source code control system is used only by the devel opers
themselves. That way there should be no motivation to slant update entries to
achieve anything other than accurate records.

In general, developers each do better in Adathan in C, regardless of their level of
experience and salary. Only three developers did significant updates for both C and Ada
and had lower fix rates for C, and that by only narrow margins. Again we see that more
junior people tend to be more in Ada. We also see asmall correlation with increasing
salary for Ada programming, in that bug rates decline slightly with salary. This effect is
seen more clearly in alater graph, where experience as measured in Ada feature updates
is compared with fix rates.

Salary does not necessarily reflect skill or general programming effectiveness. We can
compare employee rating with bug fix rates and get a measure of where the most skilled
people are working:

Bug Fix Rate vaErnployes Rating
07 T .
06 + o O
DE T = - - H a " -
w .] .
= " o"0.
= D‘q T - -
= C
[g - .E T
(3 u
503 4 @ P ow o Ada
I o O
. oo
" u ﬂ DD u
02 + o .8 “F o
= %
01 T : o o Ygoo
O ;I:IEI o
0 : : — o0
0 2 4 k 8 10

Approzimmate Employee Fating (10 = best)

e Our data shows no correlation between fix rates and performance Rating.

¢ Ratings are given from 1 to 10 with 10 being superb. The ratings do show that
few people on the team are considered mediocre. An approximate rating has been
used to protect individuals. This observation underscores that bug rates for
internal fixes are not used for ratings. It is expected that more gifted developers
would work on more difficult projects and so fix rates would depend more on
individual update habits than on true merit.

What isthelearning curvefor C and
Ada?

The following graph shows the average contributions of developersin each successive six
months after joining the VADS effort. In this graph, the X-axis values represent half-year
periods with the project. For example, we see that on the average for all contributors who
stayed with the project at |east four years, these contributors averaged about .48 fixes per
C feature and about .23 features per Ada feature in the period between their 3.5 year and
4th year with the project.

Avwerage Fizes/Feature Ovwer Career in Project

Y
N ﬁ_/\.
A

o
0.4 +
— U Ada

Fixes/Feature

0.3 7

0.2 4

01 +

0 +—+—+—+—+—+—+—+++—++t+—t+—t+++++++

05 15 25 35 45 55 BAH 75 85 95 105
HalfY ear Periods wath Projed :

This graph indicates that Ada fixes/feature stay relatively steady until about the 7th year
with the project when the number of fixes rises dramatically and erratically. C fix rates
start higher but decline through the mid-years, then rise and finally become erratic. The
risein fix rates for those in their seventh or more years with the project is explainable by
the gradual shift from devel oper to manager for those who had been longest with the
project; managers typically do much fewer features and spend time helping track down
bugs and fixes. The next graph confirms this observation

Lines Updated Ower Career

12000 ;
10000

[] n——N /_,z-’-d_.
8000 | TN N H\\;/H\\
5000 - -

4nnn-fﬁ; .
2000 - AN

3 4 b b 7 8 9
05 15 25 35 45 55 B5 75 85 g5l I
(Half) Y ears with Project :
e Developer contribution falls off dramatically in the later years after someone
has been with the program for along time. Does this represent burnout or failure
to keep up? No, it isthe effect of three things: first, these seasoned professionals
have been given more management/marketing roles and so have not been able to
contribute as much as devel opers; second, these people are spending more time
with mentoring others and helping in difficult subprojects; third, experienced
people are given the most difficult assignments. Thustheir relative numbers of
updates and resultant lines added drop, and their fix ratesrise. To repeat, the bug
statistics represent bugs fixed, not bugs cr eated.

Fix rates for Ada start low and stay low until we get out amongst the longtime employees.
Of particular interest is that there does not seem to be a"startup cost” with using Ada
compared to C. The longtime employees tend to spend moretimein C.

Linez Updated / Half Year

The above data does not necessarily tell us how well languages do for expert users,
however. The above charts can tell us whet our average fix rates us but it does not really
capture language-specific knowledge. It could be that people were make feature additions
or changes in areas where they knew little. We can look at language-specific experience
instead of gross project experience.

The following graph presents data on learning curves asfix rates for the two languages
based on cumulative number of features added for each language. For example, the
people who have, in their total contribution on the project, added between 0 and 500
featuresin C had an average fix rate of .28 fixes/feature.

Latizuagze Experience ws FinFe ature Rate

=

ir 04+

ik} -]

2 o o = —=—
2Tz o

20 —8— Ads
E 014

£

E] 1]

500
1000+
1500
2000
2h0a
3000
3500+
4000
4500
R000

Cummulative Features Added

The fixes per feature rates show a decline in Ada but actually risesin C. Note that values
after 2500 features are statistically unreliable as only afew (supercoder) individuals are
represented. Even so, we see adistinct rise in bugs for C and adeclinein Ada. In each
case, more experienced people are likely moving into more difficult contribution areas.

Overall, we can conclude that within the granularity of six months, Adais not more
difficult to learn than is C and that as one continuesto learn Adatheir code will improve
in quality. In contrast, C users do not substantially improve in fix rates after the first six
months Finally, we can observe that those people who code primarily in Ada can expect
fewer bugs and general improvement, while C users can expect harder going.

Perhaps VADS Programming in C was
Substandard?

The VADS bug rates, especially for released products, have been impressively low,
whether for C or Ada. Coding standards for C have been aimed at avoiding the known
problems with the C language. A partial listis:

e -dangling "else’'s

e -useof "="for"==", especiadly in conditiona statements

e -useof "/="for"!="

e - oOveruse of macros

e - useof "cute programming" that sacrifices comprehension for brevity
e - useof integer for pointer

Since C compilers have their share of hard-to-find bugs, and incompatibilities of
interpretation from on vendor's C compiler to another, we adopted the general rule that
we would avoid buggy areas of compilers aswell as of the language itself;

e -avoid using the C compiler's higher optimization levels

e -avoid using complex data structuring of nested unions and structures

The most important internal standards have to do with intentional checks and
debugability. VADS was built with internal assertions to check both its C and Ada code.
We called this "executable documentation™. Assertsin C are designed to make sure that
data structures are consistent with each algorithm's expectations both on entry to and exit
from major functional areas. Assertions might be simple ("pointer = null") or as complex
as running two different algorithms and comparing the results.

Some assertions are expensive enough that they cannot be left on at al times, but most
are left on even for the product releases in the field; on most compiles the VADS front
end expends more than 10% of its time on internal self checks. Asaresult, most VADS
problems are reported as "assertion errors’. While assertion errors occasionally represent
false positives, they greatly enhance and early fault detection and debugging.

To further enhance assertion check effectiveness, VADS has internal stress automation:
some conditions are very rare and difficult to produce in user code in the presence of
shifting optimizations or usage, so stress automation is constructed to force the conditions
to cover each case. An example isfor code generation when registers are all busy, a
difficult condition to produce on RISC machines with hundreds of registers. Stress
automation is more effective when working with our TestMate code coverage tools but
these were not available during the course of this data.

The VADS debugging tools, including the debugger, its new windowed version, the trace
tool, the profiling tool, and the code coverage and test frameworks tools are all designed
and used equally well with C or Ada. However, with very large programs no tool can be
efficient without customization. VADS devel opers were expected to generate debugging
routines to work in conjunction with the debugger to help isolate problems in complex
data structures.

There are more assertions in C code than in Ada code. Ada has stricter typing and
runtime checks, so fewer assertions were needed.

Overall, then, we exercised more careful control of C code than we did Ada code.

What About Costs Other Than Adding
Features?

The cost of adding features and debugging them is amajor part of the engineering costs
for products. The engineering costs also include building, testing and releasing products.
Their costs would correlate with bug rates since building and testing products has high
automation that is broken by bugs. Costs of build/test are generally calculated to be about
35% of the overall development expense of VADS, compared with about 50% spent on
new features and enhancements.

These costs are not measured directly in the above figures, as they were not captured in
the source control records.

What About the Cost of Customer
Support?

Customer Support for VADS represents another cost both inside devel opment as bugs are
reported and fixed, and outside devel opment as sal espeople, field support and customer
service representatives try to assist the customers. Many problems are not the "fault” of
the tools themselves, so only a part of the Customer Service cost can be attributed to the
tools. However, tool faults are a significant cost both in support and in sales.

Our Customer Support team'’s records on customer questions and complaints show the
following:

e 16440 customer interactions (called "tickets")

e 5072 possible defects (caled "CR"s)

e 2004 deficiency reports (called "DR"s)

e 1242 actual bugs;(the other DRs were duplicates, not bugs, or requests)

These complaints arose from all aspects of the product line, but many could be attributed
to specific parts of our implementation. The following graph summarizes the source of
bugs by the implementation language used:

Lifgime Fidd-Feported Bugs

OO T
500 +

400 +

[N

300 + Ol ada

200 +

Mumber of Feported Bugs (DE:

a0 T

Critical oEvere hinor
Bugs (by Inplementation Language)
This graph shows that customers were far more unhappy with features implemented in C

than they were in Ada. The following graph shows the history of Customer Support
complaints attributable to C-based and Ada-Based potions of released product.

Historical Field-Eeported Bugs

[ads Mincr
B ada Severs
B ida, critinal
B C, Mincr

DC,SEVHE

Field-Reported Bugs

W ¢, Critieal

1987 1988 1983 1990 1991 1992 1993 1994
19865 19875 19885 3395 p1R305 19915 19925 19935

This table shows a very encouraging overall trend to fewer customer complaints. We
hope that trend will continue. That trend shows more clearly in C-based code than Ada-
based. Unfortunately there may be some complicating circumstances. For one, in the last
year the merger of the two companies has significantly dislocated both our customer
support organization and likely our customers; Thus the 1993.5-1994 numbers for DRs
are not likely accurate. For another, since VADS is supported on many hosts and targets,
and since some features are available only on alimited basis, the usage of new features
and thus their reported bugs tends to lag product introduction. Finally, field reports are
dependent on circumstances such as poor corporate performance in 1987, and major new
releasesin 1991.

In comparing C-based DRs with Ada-based DRs, one could ask whether there was not
simply many more lines of C code in use by customers. Prior to 1991 there were about
200k fewer Ada SLOC in customer hands. By 1991, the two code bases had reached
parity at roughly 1,500,000 SLOC each.

This table also shows an significant majority of reported user problems as arising from C-
based code. Bugs are, unfortunately, not reported uniformly for all aspects of the product
except by afew very thorough customers or partners. Therefore one could ask whether C
was being used for areas that were more critical to customers and so bugs would more
likely cause complaint. We can judge criticality by comparing the ratio of critical
complaints against other complaints, on the grounds that userswill elevate the
importance of a problem based on its impact to them.

Onthisbasis, criticality for various components was judged:

Runtine System Ada 0.75
Optim zer C 0.72
Qptim zer Ada 0.42

Code GCener at or C 0.41

Cross Linker Ada 0.28

Front End C 0. 27
Li brary Services Ada 0. 18
General probl ens ? 0.08
Prel i nker C 0. 06
Aut obui | der C 0.03
Debugger C 0.00
Support Tool s Ada 0.00
User Docunentation ? 0. 00

On this metric, there islittle reason to believe that bugs would be more frequently
reported on C-based code. We can conclude that C is generating many more problems for
our users.

Why DoesAda Work Better Than C?

We have related a preliminary finding that Ada performed twice aswell as C. Subsequent
analysis showed that on afeature by feature basis that Adawas not quite that effective for
pure code primarily because redundant code in specifications tended to raise lines of code,
but that when effects of makefiles and of external costs were factored back in that Ada
costs would be on the order of twice as effective, or half the cost, of our carefully-crafted
C. Why?

We have done some analysis of our general development methodology and of our errors.
The simple answer is that Ada encourages its users to spend more time in writing to
describe their code. That extra effort communicates information to the tools and to all
future readers of that code. Future readers then derive benefits, including:

Better Locality of Error. The Ada user tends to be able to assume alot more about where
aproblemisarising. Often the bugs are indicated directly by the compiler. When code
compiles, it has a higher probability of successfully executing. If it fails, the developer
will have to look in fewer places to find the cause. We call this effect "error locality”: an
error islocal intimeif it is discovered very soon after it is created; an error islocal in
gpaceif it isidentified very close (at) the site where the error actually resides.

Better Tool Support. The extrainformation provided to Adatools by its users are both a
burden and ablessing. For the first several years, the extra information was a burden to
Adatool vendors because they had to do considerably more work to absorb and check the
extrainformation. Now that same information is a blessing that allows the tools to do
more for its users. The effect is most pronounced for tasking, where the Adatools can
create parallel, distributed multiprocessing versions of ordinary-looking programs

without the users having to do much more than they did for a single processor. Another
big win isin machine code, where users can get free access to the underlying hardware
but not have to give up the semantic checks and supports of the high level language.

Reduced Effective Complexity. Although Adais a more complex language than C, the
ultimate complexity is afunction of the job being done; accomplishing useful complexity
within the language may reduce the overall complexity of the developer's job.

Better Organization: A subtler effect of Adaisto encourage better program design. There
isatendency in C of "quick fix" programming. For example, C allows usersto create a
global variable without registering it ina".h" file. C allows users to avoid strong typing
easily. The effects are subtle but account for some of the more major "progressive design
deterioration” that forms the substrate of many extra hours spent not just in debugging
but in trying to comprehend old or foreign code.

|sThis Experience Applicable Outside Of
ThisProject?

The costs of C should be more pronounced in most other organizations. The VADS team
had several advantages that should have made language choice less important:

e Many teams cannot maintain low turnover. The VADS project consistently kept
95% of itsteam each year. Thereis no substitute for knowledge of source.

e Many teams cannot slowly integrate small numbers of above-average new hires. It
is said that good people attract better people, so by keeping standards high and by
hiring slowly and carefully, the team has maintained excellent capability. The cost
of slow growth is slow time to market, however, which many teams could not
tolerate.

e Many teams do not control as much of their tool chain as does Rational.
It isaburden to always be a beta-site for our own tools, but it is overall a benefit
to be able to customize our environment. Our schedules slip because of
dependence on external suppliers more often than because of our own issues.

e Many teams do not take our aggressive approachesin trying to avoid known C
problems and detect problems earlier with thorough testing. We also had
advantages of existing test suites and of many users.

The VADS project was complex and very long-term. Many projects do not last aslong. It
isnot clear that Ada's benefits would be as clear for smaller projects. The smallest
granularity we've discussed is six months and thousands of lines. For projects less than a
year in length, our results are probably that much less applicable.

Will C++ Change The Picture?

Some may ook at this study and conclude that C++ will tame C's problems.

Our early experience does not support that conclusion.

Bug ratesin C++ are running higher even than C, although we have no where near the
ideal comparison platform that we have had with VADS for C and Ada. We do not yet
have alarge mix of people programming in both C++ and Adafor similar difficulty
programs and with history as released products. Our theoretical views of our C++
problems indicate that C++ may allow "run-away inheritance”, where many very similar
classes are created from a substrate without care to design a smaller number of re-usable
classes without many variants; also, existing C++ programs have not yet made good use
of templates and so have become cluttered with "container classes’ and attendant
conversions; finally, so much of C++ goes unseen, hidden behind the notational
convenience of the language, that the code can become difficult to understand and
navigate. We have had long experience with Object Oriented Software, and believe that
OO0 approaches can yield great benefit if tools can fully support the OO process, and if
inheritance complexity can be minimized.

Will Ada94 Change The Picture?

Ada%4 isthe new version of Ada. It includes OO features similar to C++ except for its
multiple inheritance model and its continuance of the strict strong typing of Ada33. It
includes support for safety, security, real-time, systems, and other specialty areas.

Aswith Ada83, Ada94 has received agreat deal of design critique and analysis, and is
now the first standard OO language. As with Ada83, this fact of national and
international standardization with supporting test suitesis a great strength for the
language and its users.

It istoo early to tell how Ada94 for improve code reliability and costs. In theory, once
Ada94 tools are mature the language should maintain the strengths of Ada83 while
adding support for Object Oriented programming that can be made compatible with C++.

|sthe Programming LanguageAll That
| mportant?

The choice of programming language is only one of many factors in project successes
and failures. In our opinion, it is NOT the most important.

Among factors with greater influence on project outcomes, we would suggest looking at:
e Architecture and Design
o Configuration Management
o Testing (Effectiveness, Coverage, Rapidity)
e Support for Iterative/Spiral/Object-Oriented Devel opment

e Programmer Skill
e Management Skill

The language choice can do little to make up for weakness in these key areas. A mistake
in any of these can kill a project. The language choice may only change expenses by a
factor of two. Of course, amillion dollars here and a million dollars there and pretty soon
you're talking about real money.

CONCLUSION: Development Costsof C
Exceed Those of Ada

Our data indicates that Ada has saved us millions of development dollars. For every
development dollar, we could make a case for another three dollars for customer support,
sales, marketing and administration costs, spent not only for the extra devel opment but
also to calm customers who are affected by our product slips or malfunctions.

Since many programming teams will not be able to switch to Ada or Ada94, Rational
Software Corporation is using this data to better our own emerging C and C++ product
lines. Our C code is being converted to ANSI C, which can provide some of Ada's
benefits. We are trying to carry as much of Adasvalueinto ANSI C and C++ aswe can.
We are now using our own tools almost exclusively, whether for C, C++, Adaor Ada's
new version called Ada94. We look forward to updating our language comparisons with
C++ and Ada94 results.

