
Making Embedded Software Reuse Practical and Safe

Nancy G. Leveson, Kathryn Anne Weiss
Aeronautics and Astronautics; Engineering Systems

Massachusetts Institute of Technology

ABSTRACT
Reuse of application software has been limited and some­
times has led to accidents. This paper suggests some re­
quirements for successful and safe application software reuse
and demonstrates them using a case study on a real space­
craft.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Real-Time and
Embedded Systems; D.2.1 [Software Engineering]: Re-
quirements/Specifications; D.2.2 [Software Engineering]:
Design Tools and Techniques—Software Libraries; D.2.13
[Software Engineering]: Reusable Software

General Terms
Documentation, Design

Keywords
Software reuse, Real-time and embedded software

1. UNDERSTANDING THE PROBLEM
Reuse is clearly a partial solution to the long and costly

development problems we are experiencing with complex
control systems.1 Development costs for such systems can
reach billions of dollars, and they can take a decade to com­
plete. In some cases, the technology has become obsolete
before the systems are finished (e.g., the FAA’s microwave
landing system). The reuse of application software, how­
ever, has not lived up to its promises and has, at times,
resulted in spectacular losses. In spacecraft, for example,
NASA, the European Space Agency, and the Air Force have
lost billions of dollars and important scientific missions due
to software reuse and poorly designed changes to operating
software [10].

For a very comprehensive survey of software reuse and an
extensive bibliography, see Kruger [7].

SIGSOFT’04/FSE-12, Oct.31–Nov. 6, 2004, Newport Beach, CA, USA.
Copyright 2004 ACM 1-58113-855-5/04/0010 ...$5.00.

Examining the Mars Climate Orbiter (MCO) loss is in­
structive. The loss of the MCO involved minor changes to
software that was being reused from the Mars Global Sur­
veyor (MGS) spacecraft [3]. According to the developers
(but surprisingly absent from the accident report), the orig­
inal software contained a conversion from imperial to metric
units, but that conversion was not documented and was in­
advertently omitted when a new thruster equation had to
be used because MCO had a different size Reaction Control
System (RCS) thruster. “. . . the 4.5 conversion factor, al­
though correctly included in the MGS equation by the pre­
vious development team, was not immediately identifiable
by inspection (being buried in the equation) or commented
in the code in an obvious way that the MCO team recog­
nized it” [3].
The problems are not simply related to safety. Goodman

describes the experiences United Space Alliance had in try­
ing to take GPS software that was created for aircraft and
reuse it for spacecraft. Although they assumed that the
off-the-shelf GPS units with proven design and performance
would reduce acquisition costs and require minimal adapta­
tion and minimal testing, the time, budget, and resources
needed to test and resolve software issues greatly exceeded
initial projections:

Software evolves and changes over time. Many
vendors have a library of software modules, many
of which are used in multiple applications. Soft­
ware errors that manifest in a particular applica­
tion may be deemed to have “no impact” to the
user and are not corrected. This causes software
errors to propagate through succeeding product
lines, with the potential for affecting future users
in different applications. Changes in operating
environment that come with a new application
may invalidate assumptions made during initial
requirements definition and result in software is­
sues during testing and operation [5, p.3].

Some successful reuse reports have been premature. The
modules may be reused in the next similar project, but
fewer can be used in later projects. In fact, in the well-
known NASA Goddard reuse experiment, while reuse was
high in the next project (about 70%), it quickly dwindled
over time to the point where the original extra cost of pro­
ducing reusable modules was never recovered [15]. While it
may appear that new versions of embedded systems do not
change dramatically, in fact there are enough changes in the
missions and design of the physical systems and devices the
software is controlling—after all, the reason a new system

1

is being built at all is to change or augment functionality—
that changes to the software will usually be required to reuse
it. This fact does not preclude application software reuse,
but it does suggest some requirements for reuse, including
the fact that it must be possible to make changes easily and
safely.
The question is how to get the benefits of reuse without

the drawbacks [19]. The answer may rest in the development
level at which reuse is applied. The most problematic reuse
has been attempted at the code level, but reuse may be more
effective and safe by going back to an earlier development
phase and beginning the reuse from that phase (i.e., reuse
the work performed up to that phase). Because coding is
such a small part of the software engineering process, partic­
ularly for real-time embedded control software, and coding
for these applications can even be partially automated from
requirements specifications, the cost of repeating the coding
step is insignificant compared to the potential cost of revali­
dating the reused code. In addition, safely changing code is
easier when the changes are made at an earlier development
phase.
The rest of this paper describes the requirements we be­

lieve must be satisfied for successful, large-scale reuse of em­
bedded control software and a case study using a real system
to evaluate the feasibility of satisfying these requirements.
Note that this paper focuses on application software reuse,
not system software although some of the requirements and
solutions may be similar.

2.	 REQUIREMENTS FOR EFFECTIVE
SOFTWARE REUSE

Knowledge capture in the specification of the software and
the controlled system is critical for successful reuse of appli­
cation software. That specification must contain the follow­
ing:

•	 Documentation of design rationale: A basic require­
ment for successful and safe reuse is having thoroughly
documented design rationale and design assumptions
for both the system and the software design. The
lack of such specifications has been cited in most of
the well-known spacecraft accidents in the recent past
where reuse of software components was an important
factor in the loss [10]. The accident report on the Ar­
iane 501 explosion, for example, mentions poor speci­
fication practices in several places and notes that the
structure of the documentation obscured the ability to
review the critical design decisions and their underly­
ing rationale [12]. The report recommends that justifi­
cation documents be given the same attention as code
and that techniques for keeping code and its justifica­
tions consistent be improved. One of the conclusions
of the GPS project mentioned above was that they
needed insight into the rationale and requirements that
governed the original design of the GPS units to suc­
cessfully reuse them in a different environment from
that for which they were designed [4]. Goodman notes
that the documentation they received was limited to
“how” and often did not include “why”:

Software requirements documents contain equa­
tions to be used, but rarely provide insight
into how the equations were derived, or how

values of constants were determined. This
information exists on paper at some point,
in the form of informal memos and company
internal letters. However, over time, this in­
formation is lost due to employee attrition,
clean-out of offices, retirements and corpo­
rate takeovers. Many mathematical results
used in navigation algorithms no longer exist
in the open literature. Corporate knowledge
loss makes it difficult for engineers to under­
stand, evaluate, and modify software years
or decades after it was written and certified
[4, p.9].

•	 Documentation of the assumptions about the opera­
tional environment that are implicit in the software:
These assumptions include interfaces with other com­
ponents and other structural features, but also include
assumptions about behavior. In the SOHO (SOlar He­
liospheric Observatory) mission interruption [13], crit­
ical assumptions about the operation of the gyros were
not recorded anywhere and were violated when the
ground control software modules were reused. The
GPS integration attempt described earlier found that
vendors tend to perform the minimum amount of lab
testing necessary to ensure that the unit meets con­
tract specifications. Without specification of the as­
sumptions of the environment in which the system was
developed, tested, and used, it is not possible to deter­
mine what additional testing and analysis needs to be
performed or what changes may be necessary to meet
the conditions in a different operational environment.
For example, many of the software issues that arose
with the GPS units involved design problems that are
not manifested in aviation applications where flight
times may last minutes or hours but may appear in
the much longer space flight applications. Goodman
notes that the documentation United Space Alliance
received about the GPS units did not include the as­
sumptions made in designing the GPS receiver for ter­
restrial applications that were invalid for the new space
applications [4].

•	 Traceability from high-level system requirements to sys­
tem design to software requirements to code and vice
versa: By traceability, we do not mean simply in­
cluding the standard traceability matrix showing the
mapping between high-level requirements and software
modules or CSCIs but instead traceability to system
design features and decisions. Such traceability al­
lows those planning reuse to make sure that the re­
quirements and assumptions about the operation of
the component fit the new use and to determine any
interactions with other components that need to be
considered. In the SOHO mission interruption, the
accident report cites one factor as a lack of system
knowledge by the person modifying the software pro­
cedure. Clearly the same was true for MCO. Not hav­
ing this system knowledge and traceability can lead to
fear of modifying reused software modules, which was
a factor in both the Ariane and Milstar launch acci­
dents [14]. Traceability potentially provides a way to
acquire the system knowledge necessary to successfully
reuse software.

•	 Documentation of hazard analysis and safety informa­
tion: A hazard analysis needs to be performed for each
safety-critical system. Without information about the
original hazard analysis and the specific safety con­
straints related to the reused software component, it
is very difficult to perform this analysis. This diffi­
culty, coupled with lack of documentation of reused
software module and common issues with proprietary
information, makes reuse very hazardous. While soft­
ware may be perfectly safe in one environment, it can
lead to accidents in another. The Ariane 501 loss is an
example, where a difference in the Ariane 5 trajectory
from the Ariane 4 trajectory triggered the unsafe soft­
ware behavior. The same software error that led to the
Therac-25 deaths had a benign manifestation in the
earlier Therac-20. The blackbox (externally visible)
behavior of a component can only be determined to be
safe by analyzing its effects on the system in which it
will be operating. Cost-effective reuse of safety-critical
software requires clear documentation of the assump­
tions and procedures underlying the original hazard
analysis.

Simply including this necessary information in the speci­
fications is, however, not enough. The information must be
specified in a way that is easy to find, use, and change. Most
projects have voluminous documentation, but it is often dif­
ficult to understand and is incomplete, inconsistent, and am­
biguous. In addition, validation and verification of the new
system and the reused components within it will require the
collaborative efforts of many types of domain experts. The
language used in the specifications must be easily readable
and reviewable with minimal training by non-software engi­
neers. Accomplishing this goal requires minimizing semantic
distance between the specification and the engineers’ men­
tal models, incorporating standard notations when possible,
minimizing obscure notations, and including animation and
visualization tools to assist in understanding the behavior
specified or modeled.
Some other characteristics and practices can, in our ex­

perience, assist with reuse, but are not necessarily required.
One is model-based development using blackbox models of
software behavior. Such model-based development is not
by itself enough to make reuse safe, but combined with the
required characteristics above, reuse can start with the mod­
els, necessary changes can be made, the changes validated,
and then code generated (either manually or automatically)
from the models. In fact, there is evidence that this pro­
cess works: TCAS has been maintained and gone through
multiple versions since our first model was created in the
early 1990s [11]. Each time a new version is needed, the de­
velopers go back to the RSML specification, make changes
to the model, and then validate the newly changed model.
When they are convinced that the changes are effective and
safe, new code is created by incorporating any changes that
have been made in the models. Because our specification in­
cludes complete traceability from the TCAS models to the
code, the process of making and verifying changes to the
code is greatly simplified.
Perhaps more controversial, we believe that object-oriented

system design may inhibit safe reuse of embedded applica­
tion software and has other important drawbacks. The au­
thors’ experience and that of others on complex projects
(e.g., Pathfinder [17] and Iridium [8]) is that functional de­

composition of embedded control software is safer and more
effective than object-oriented system design, particularly with
respect to establishing the very high level of confidence nec­
essary in control software and in its maintenance and reuse.
Problems in OOD arise particularly from the tight func­
tional coupling involved in spreading control functions among
the objects rather than providing the functionally cohesive
modules that result from functional decomposition of the
system requirements.
Verification of the safety of the original, reused, or changed

code is basically impossible for object-oriented system de­
sign. Those building such systems in the aviation realm have
suggested that object-oriented technology is inappropriate
for safety-critical applications [6]. Safety problems arise
from interactions among components involved in achieving
safety-critical functions. Safety analysis, therefore, focuses
on the safety-critical system functions, which in object-oriented
system design can potentially be spread throughout so many
objects (and involve multiple inheritance levels) that high
confidence in the system behaving safely is impossible to
provide. Note that only programming-in-the-large is being
considered here. Object-oriented design within the individ­
ual models is perfectly reasonable and usually safe.

3. A CASE STUDY
The approach to reuse employed in the case study starts

from a library of generic executable component specifica­
tions describing the component’s blackbox hardware and
software behavior. Only externally observable behavior is
specified, not the internal design. The developer then selects
appropriate components, assembles them into subsystems
and system specifications, and uses simulation (the specifi­
cations are executable) and analysis (the specifications are
formal) to validate the design and perform at least partial
system testing. For embedded software, testing and formal
analysis are not adequate to find all the errors so human
review by a varied group of domain experts is also required.
Human review can be enhanced by visualization tools. Later
verification and testing of the reused and perhaps changed
modules and system can be assisted by automatic generation
of test data from the component models, and the executable
specifications can act as a test oracle during the code testing
process.
Although several different toolsets can be used to imple­

ment such a approach, Weiss used a commercial require­
ments specification tool called SpecTRM [16] to perform a
case study of reuse on a family of autonomous spacecraft
(nanosatellites) called SPHERES [18]. SPHERES (Synchronous
Position Hold Engage Reorient Experimental Satellites) was
created by MIT’s Space Systems Laboratory to provide NASA
and the Air Force with a reusable, space-based testbed for
high-risk metrology, control, and autonomy technologies crit­
ical to the operation of distributed satellite and docking
missions, such as the Terrestrial Planet Finder and Orbital
Express. The SPHERES testbed was designed to operate
in the micro-gravity conditions on the International Space
Station although deployment has been delayed due to the
Columbia accident. In addition, it is planned for guest sci­
entists from around the world to have access to this testbed
to independently design and evaluate estimation, control,
and autonomy algorithms for autonomous coordination and
synchronization of multiple spacecraft in tightly controlled
spatial configurations. The very nature of the purpose of

Program
Guest Scientist type of reasoning about it. Refinement and decomposition

occurs within each level of the specification, rather than be­
tween levels.
This structure is designed to facilitate several activities

Structure Sphere
Controller Subsystem

Electrical necessary for successful reuse. First, hyperlinks are used to
map between levels and facilitate reasoning across hierarchi-

Propulsion Communication
PADS

Subsystem Subsystem

Firing Thrusters Beacons SPHERES
Laptop

Figure 1: The Functional Structure of SPHERES

SPHERES implies that reuse of software could save enor­
mous amounts of programming effort by the guest scientists.
Figure 1 shows the functional decomposition of SPHERES.

The Sphere controller provides the overall coordination of
the actions of the onboard components as well as deter­
mining the overall operating mode of the Sphere. Each
Sphere controller provides the interface for and control of
that Sphere’s propulsion, position and attitude determina­
tion, communication, guest scientist program, electrical, and
structural subsystems. Because the focus of the case study
was on subsystems that contain both hardware and software,
the structural and electrical subsystems were not modeled,
although they easily could have been included.
Each Sphere receives attitude and position information

from its PADS (Position and Attitude Determination Sub­
system). The Sphere controller uses this information to cal­
culate the position and orientation of each Sphere. The
guest scientist program running on board a Sphere per­
forms either state estimation, control calculations, or both
to determine which control actions need to be performed to
achieve a new position and/or attitude. Two guest scientist
programs were created for this study: a rate damper and a
rate matcher.
Sphere control is actuated through the propulsion subsys­

tem and the Spheres coordinate action through their com­
munication subsystems. Astronauts on the ISS load and
unload programs and information to and from the Spheres
through a laptop computer.

3.1	 Modeling and Analysis of the SPHERES
Components

The SpecTRM specification/modeling tool used in the
case study is based on intent specifications [9]. Briefly, an
intent specification differs from a standard specification pri­
marily in its structure: the intent specification is structured
as a hierarchy of “models” designed to describe the sys­
tem from different viewpoints, with complete traceability
between models (see Figure 2). Levels do not represent the
more familiar refinement abstraction, but a why or intent ab­
straction with higher levels providing the rationale (why) for
the lower levels. Rather than each level representing more
detailed information than the higher levels, each level of an
intent specification represents a different model of the same
system from a different perspective and supports a different

cal levels. They also implement the tracing of system-level
requirements and design constraints to related design de­
cisions, and vice versa, to explain why the design decisions
were made. Note that the structure of the specification does
not imply that the development must proceed from the top
levels down to the lower levels in that order, only that at
the end of the development process, all levels are complete.
An environment that involves extensive reuse, for example,
might follow a very different development process from one
that involves a lot of first-time development.
Information about design rationale, as argued above, is

critical to successful reuse. The necessary design rationale
information, including the underlying assumptions upon which
the design and validation is based, is integrated directly into
the intent specification and its structure, rather than relying
on it being captured and maintained in separate documents.
To avoid accidents and mission losses, reused components

must be analyzed to determine whether they violate the de­
sign rationale, assumptions, and safety constraints of the
system within which they are to be used. This process is
usually impractical, if not impossible, for reuse at the code
level but not for reuse at the blackbox model specification
level and above (Levels 1 to 3), where most of the original
safety analysis is done.
During operations, if changes are made to any physical

system component (or if software is to be reused in a differ­
ent system), potential violation of assumptions underlying
the original system design must trigger re-analysis of the
software. To accomplish this goal, not only must the engi­
neers know when assumptions change, but they must be able
to figure out which parts of the design rely on those assump­
tions in order to reduce the costs of revalidating correctness
and safety. Intent specifications are designed to make that
process feasible and practical.

Level 0
The top level (Level 0) of an intent specification provides
a project management view and insight into the relation­
ship between the plans and the project development status
through links to the other parts of the intent specification.
One problem in managing large projects is simply getting
visibility into the progress of the project, particularly when
a lot of software in involved. The project management level
might include project plans, such as risk management plans,
pert charts, system safety plans, etc., with embedded hyper­
links to the various parts of the intent specification where
the plans are implemented.

Level 1
Level 1 is the customer view of the project and includes the
high-level goals, contractual requirements (the shall state­
ments or functional requirements), design constraints, envi­
ronmental constraints and assumptions, operator and inter­
face requirements, system hazard analyses and hazard lists,
and system limitations. Links from these parts of the specifi­
cation down to other levels provides understanding of design
rationale and the ability to determine how the requirements,

Part-Whole

(Interface between System and Component Engineers)

(Management View)

(Customer View)

(System Engineering View)

(Component Designer View)

(Component Implementer View)

(Operations View)

SystemOperatorEnvironment
Verification

Validation

Level 0: Program
Management

Level 1: System
Purpose

Level 2: System
Design Principles

Level 4: Design
Representation

Representation
Level 5: Physical

Refinement

Level 6: System
Operations

Level 3: System
Architecture

Intent

Figure 2: The Structure of an Intent Specification

Responsibilities
Requirements

I/F requirements

System goals, high-level
requirements, design

constraints, limitations

External
interfaces

Task analyses

Controls, displays
Task allocation

functional decomposition
and allocation

Project management plans, status information, safety plan, etc.

Environment
models models

Operator Task

HCI models

Blackbox functional
models

Interface specifications

Constraints
Assumptions

Reviews

Validation plan
and results,

Analysis plans
and results,

control laws,
Logic principles,

System Hazard
Analysis

Hazard Analysis
Subsystem

HCI design Software and hardware
design specs

Rep.

GUI design,
physical controls

design

Software code, hardware
assembly instructions

Audit
procedures

Operator manuals
Maintenance

Training materials

Error reports, change
requests, etc.

Test plans
and results

Test plans
and results

Performance
monitoring
and audits

Rep.

Operations

Level 5
Physical

Level 4

Level 3

Level 1

Level 6

Level 0
Prog. Mgmt.

Hazard Analysis,
Preliminary

System
Purpose

Principles
System

Level 2

Design

System
Architecture

Environment Operator System and components V&V

Figure 3: Example Contents of an Intent Specification

environmental assumptions, and hazard analysis informa­
tion are implemented in the system design.
An example requirement for the propulsion subsystem (re­

ferred to below) is:

[FR.4] If force and torque vectors are received from
the Sphere Controller, the propulsion subsystem shall
determine on and off times for each thruster based on
the thruster’s location and the force and torque needed
[↓ DP.3.2].

Rationale: The guest scientists should have the
ability to stock compute firing times for the thrusters
based on desired force and torque vectors.

[FR.7] The Propulsion Subsystem shall include enough
thrusters to provide actuation throughout the six-degrees-
of-freedom [↓ DP.1.3.].

Rationale: The SPHERES system is designed to
operate in space and therefore must be able to
translate in three dimensions and rotate in three
dimensions.

A propulsion subsystem hazard is:

[H.1] A pressure rise in the propulsion subsystem above
4500 psi [← SC.3].

Rationale: Such a pressure rise may result in an
explosion that could either injure an astronaut or
damage the Sphere.

The safety constraint at Level 1 related to this hazard is:

[SC.3] A mechanical system must be included in each
Sphere that will mitigate a pressure rise in the propul­
sion subsystem [→ H.1, ↓ DP.2.4].

Level 2
Level 2 is the system engineering view and assists engineers
in recording and reasoning about the system in terms of the
physical principles and application design principles upon
which the system design is based. It describes how the Level
1 requirements are achieved in the overall system design,
including any “derived” requirements and design features
not related to the Level 1 requirements, and how the Level
1 design constraints are enforced. It is at this level that the
user of the intent specification can get an overview of the
system design and determine why the design decisions were
made, either by information included at this level or via the
hyperlinks to Level 1. Examples from Level 2:

[DP.1.3] The thrusters are arranged on the Sphere to
provide pure body-axis force or torque using only two
thrusters, assuming uniform mass and inertia proper­
ties. The twelve thrusters are arranged in six back-
to-back pairs, allowing for full six-degrees-of-freedom
actuation. Figure 2 shows the Sphere thruster config­
uration [↑ FR.7].

Rationale: It is expected that the majority of ma­
neuvers will involve primarily body-axis rotations,
and the flight thruster geometry is significantly
more propellant-efficient than other geometries for
these maneuvers.

[DP.2.4] There are two pressure release mechanisms,
or burst disks, in the propulsion subsystem. One is
attached to the tank coupling and one is on the reg­
ulator itself. These mechanisms burst if the pressure
builds to greater than 4500 psi [↑ H.1, SC.3].

Rationale: The burst disks will rupture before the
tank reaches a hazardous pressure of greater than
4500 psi, thereby releasing the pressure buildup.

[DP.2.5] The regulator is used to expand the liquid
CO2 into a gas and simultaneously decrease the thruster
feed pressure to between 0 and 35 psig.

Rationale: At 35 psig, the average thruster force
is approximately 0.1N, which is the desired oper­
ating thrust for each thruster.

[DP.3.2.1] The Pulse Modulation software calculates
the duration that thrusters should be opened based
on body-referenced force and torque vectors from the
Sphere controller using the following equations . . . [↑
FR.4, ↓ Thruster Pair 17 Calculation, . . .].

Level 3
Level 3 is the System Architecture Level. It includes infor­
mation about the allocation of the design decisions at Level
2 to individual system components (hardware, software, and
operators) and the component blackbox behavior that im­
plements those decisions. Level 3 in turn has links to the
implementation of the specified behavior (i.e., behavioral
requirements) in the design of the software, hardware, and
operator procedures. If it is necessary to make a change to
a component or to reuse it in a different system, it is pos­
sible to trace the function implemented by that component
upward in the intent specification to determine its design
assumptions, the requirements it is satisfying, related de­
sign principles, the design rationale, the safety-critical con­
straints enforced, and its role in the overall system design.
Level 3 essentially serves as an unambiguous interface be­

tween system engineers and component engineers. At Level
3, the system functions defined at Level 2 are allocated to
components and specified rigorously. Blackbox behavioral
component models are used to specify and reason about
the logical design of the system as a whole and the inter­
actions among individual system components without being
distracted by component design and implementation details.
We believe the models at this level are the most effective
place to start most reuse efforts. For the case study, we cre­
ated generic Level 3 models that can be instantiated for any
particular system in which the component is to be reused.
The design of the formal language at this level, called

SpecTRM-RL, is the result of lessons learned from the use
of RSML and later variants of RSML on real projects and
in laboratory experiments on specification language design,
particularly lessons about error-prone features. For exam­
ple, although internally broadcast events were included in
RSML, they caused so many errors and so much difficulty
in review of the models that they are not used in SpecTRM-
RL. The primary goals for the new language were readability
and reviewability (ability to find errors), completeness with
respect to safety, and assisting with system safety analysis
of the requirements.
SpecTRM-RL has a formal foundation (a simple state ma­

chine) so it can be executed and subjected to some types

olenoid Valve 1 State

= Unknown

Propulsion Subsystem in mode Startup
T

T*
*System Start

= Open

Propulsion Subsystem in mode Force Torque
Thruster Pair 17 Calculation () > 0 nanoseconds

 lastTime since Desired Thruster 1 State
entered Open < Thruster Pair 17 Calculation ()
Previous value of Desired Thruster 1 State
in state Closed
Desired Thruster 1 State has never entered Open

Propulsion Subsystem in mode Direct
System Start

Direct Control Thruster 1 is On
T
T

*

*

*

*

F T T
T T

T T

T

*

*

F
F F F

T

*

F

*

= Closed

System Start
Propulsion Subsystem in mode Direct

Propulsion Subsystem in mode Force Torque
Direct Control Thruster 1 is Off

Thruster Pair 17 Calculation () = 0 nanoseconds
Time since Desired Thruster 1 State

Previous value of Desired Thruster 1 State
in state Open

entered Open >= Thruster Pair 17 Calculation ()

T

*
*

*

F

T

T T
T

*

*

*

F F F
F F

T

T

*

*

Figure 4: The and/or tables used to specify the logic
under which the state variable Solenoid Valve 1 State
is assigned the values Unknown, Open, and Closed.
Tables evaluate to true (and the state transition is
taken) if any of the columns in the table evaluate
to true, i.e., each row of the column is true. Aster-
isks represent ”don’t care” conditions. For exam-
ple, the first column in the logic describing when
the Solenoid Valve 1 State will have the value Open
says that the state variable should have this value if
the propulsion subsystem is not in the startup state,
its current control mode is Direct Mode, and it has
received an input to turn the thruster On. When
the propulsion system is in Force Torque Mode, it
receives a force/torque vector from the Sphere Con-
troller that specifies the forces and torques needed
to accomplish a required maneuver. The Propulsion
Subsystem then calculates how long the thrusters
need to be on to achieve the actuation (the Thruster
Pair 17 Calculation, the details of which are not
shown). Solenoid Valve 1 stays open until the time
since the valve was opened is greater than or equal
to the calculated Open duration for the thruster.

of formal analysis, such as completeness and consistency
analysis, while being designed to be readable with minimal
training—the models can be read and reviewed by engineers
and operators after about 10-15 minutes instruction. Fig­
ure 4 shows an example of the specification of detailed logic
using and/or tables. These tables essentially incorporate
formal propositional logic in disjoint normal form in a way
that is easily reviewed (and written) by those not trained
in formal logic. The tables can be machine parsed and exe­
cuted.
We have also experimented with visualization to under­

stand whether usability of formal specification languages
might also be improved through the use of interactive visual­
izations automatically generated from the underlying formal
model [1, 2].

Levels 4, 5, and 6
The Design Representation and Physical Representation lev­
els provide the information necessary to reason about indi­
vidual component design and implementation issues. Some
parts of Level 4 may not be needed if at least portions of
the physical design can be generated automatically from the
models at Level 3. The final level, Operations, provides a
view of the operational system and is useful in mapping be­
tween the designed system and its underlying assumptions
about the operational environment envisioned during design
and the actual operational environment. Level 6 provides a
place to accumulate the operational information helpful in
reusing the component in a different system or in a new use
of the same system.
Levels 4, 5 were not created for the case study (although

the Spheres code obviously exists) because they were not
needed to evaluate the potential for reuse at the higher lev­
els. Spheres operation has been delayed due to the Columbia
accident (it was scheduled to go up to the ISS on the next
shuttle flight after Columbia) so operational information is
not available for Level 6.

3.2 Evaluation of Reuse in the Case Study
For the case study, Weiss produced a library of generic in­

tent specifications (Levels 1, 2, and 3) that could be reused
by the guest scientists to create new algorithmic test envi­
ronments and by the SPHERES team itself for future ver­
sions of the system. The effort took about six person-weeks,
including developing a simulation environment and an ani­
mation of the Spheres moving in space as the SpecTRM-RL
models are “executed” together in a simulation environment.
The first version of the system included only one Sphere

and a guest scientist program called a Rate Damper. Later,
to demonstrate reuse, a second Sphere was assembled from
the preexisting components and a second Rate Matcher guest
scientist program integrated into the two-Sphere configuration—
all in under an hour. The changes were then simulated
to evaluate their correctness. A new version of the ba­
sic SPHERES platform is planned, and we will evaluate
whether and how well the generic models and intent speci­
fications assist with reuse of the original code.

4. CONCLUSIONS
This paper described a set of requirements we believe are

necessary for reuse of embedded application software to be
both practical and safe. A description of a case study using
a commercial system engineering development environment

on a real spacecraft followed. We believe that similar types
of engineering environments, where reuse is attempted at
the software behavioral requirements level rather than the
code level, will allow engineering teams to tailor reused com­
ponents and designs to fit their needs rather than requiring
them to fit their needs to a particular piece of code. It also
makes the process of validating and verifying the correctness
and safety of reused software practical and, in turn, may al­
low more safety-critical software reuse. This hypothesis, of
course, needs to be more thoroughly validated in realistic
development environments.

5. ACKNOWLEDGEMENTS
This research was partially supported by NSF ITR Grant

CCR-0085829 and NASA Engineering for Complex Systems
Grant NAG2-1543.

6. REFERENCES
[1] Nicolas Dulac. Empirical Evaluation of Design

Principles for Increasing Reviewability of Formal
Requirements Specifications through
Visualization. Master’s Thesis, Aeronautics and
Astronautics, MIT, August 2003.

[2] Nicholas Dulac, Thomas Viguier, Nancy Leveson,
and Margaret-Anne Storey, On the use of
visualization in formal requirements specification.
International Conference on Requirements
Engineering, Essen, Germany, September 2002.

[3] E.E. Euler, S.D. Jolly, and H.H. Curtis. The
failures of the Mars Climate Orbiter and Mars
Polar Lander: A perspective from the people
involved. Proceedings of Guidance and Control
2001, American Astronautical Society, paper
AAS 01-074, 2001.

[4] John L. Goodman. Lessons learned from flights
of ‘off-the-shelf’ aviation navigation units on the
Space Shuttle. Joint Navigation Conference,
Orlando Florida, May 2002.

[5] John L. Goodman. A software perspective on
GNSS receiver integration and Operation.
Satellite Navigation Systems: Policy,
Commercial, and Technical Interaction,
International Space University, Strasbourg,
France, May 2003.

[6] Kelly J. Hayhurst and C. Michael Holloway.

Considering object-oriented technology in

aviation applications. Digital Avionics Systems

Conference, 2003.

[7] Charles Kruger. Software reuse. ACM Computing
Surveys, Vol. 24, No. 2, June 1992, pp. 131–183.

[8] Ray Leopold. Personal communication. May

2004.

[9] Nancy G. Leveson Intent specifications: An

approach to building human-centered

specifications. IEEE Transactions on Software

Engineering, Vol. SE-26, No. 1, January 2000.

[10] Nancy G. Leveson The role of software in
spacecraft accidents. AIAA Journal of Spacecraft
and Rockets, Vol 41, No. 4, July 2004.

[11] Nancy G. Leveson, Mats P.E. Heimdahl, Holly
Hildreth, and Jon Damon Reese. Requirements
specification for process-control systems. IEEE
Transactions on Software Engineering, SE-20,
No. 9, September, 1994.

[12] J.L. Lions (Chair). Ariane 501 Failure: Report
by the Inquiry Board. European Space Agency,
July 19, 1996.

[13] NASA/ESA Investigation Board. SOHO Mission
Interruption. NASA, August 31, 1998.

[14] J.G. Pavlovich (Chair). Formal Report of
Investigation of the 30 April Titan IV B/Centaur
TC-14/Milstar-3 (B-32) Space Launch Mishap.
U.S. Air Force, 1999.

[15] Linda Rosenberg. Personal communication.
August 2001.

[16] Safeware Engineering Corporation. SpecTRM
User Manual. 2003.

[17] Steven A. Stolper. Streamlined design approach
lands Mars Pathfinder. IEEE Software, Vol. 16,
No. 5, September/October 1999.

[18] Kathryn Anne Weiss. Component-Based Systems
Engineering for Autonomous Spacecraft.
Master’s Thesis, Aeronautics and Astronautics,
MIT, August 2003.

[19] Elaine Weyuker. Testing component-based
software: A cautionary tale. IEEE Software,
September/October 1998.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

