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ABSTRACT 
Reuse of application software has been limited and some­
times has led to accidents. This paper suggests some re­
quirements for successful and safe application software reuse 
and demonstrates them using a case study on a real space­
craft. 
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1. UNDERSTANDING THE PROBLEM 
Reuse is clearly a partial solution to the long and costly 

development problems we are experiencing with complex 
control systems.1 Development costs for such systems can 
reach billions of dollars, and they can take a decade to com­
plete. In some cases, the technology has become obsolete 
before the systems are finished (e.g., the FAA’s microwave 
landing system). The reuse of application software, how­
ever, has not lived up to its promises and has, at times, 
resulted in spectacular losses. In spacecraft, for example, 
NASA, the European Space Agency, and the Air Force have 
lost billions of dollars and important scientific missions due 
to software reuse and poorly designed changes to operating 
software [10]. 

For a very comprehensive survey of software reuse and an 
extensive bibliography, see Kruger [7]. 
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Examining the Mars Climate Orbiter (MCO) loss is in­
structive. The loss of the MCO involved minor changes to 
software that was being reused from the Mars Global Sur­
veyor (MGS) spacecraft [3]. According to the developers 
(but surprisingly absent from the accident report), the orig­
inal software contained a conversion from imperial to metric 
units, but that conversion was not documented and was in­
advertently omitted when a new thruster equation had to 
be used because MCO had a different size Reaction Control 
System (RCS) thruster. “. . . the 4.5 conversion factor, al­
though correctly included in the MGS equation by the pre­
vious development team, was not immediately identifiable 
by inspection (being buried in the equation) or commented 
in the code in an obvious way that the MCO team recog­
nized it” [3]. 
The problems are not simply related to safety. Goodman 

describes the experiences United Space Alliance had in try­
ing to take GPS software that was created for aircraft and 
reuse it for spacecraft. Although they assumed that the 
off-the-shelf GPS units with proven design and performance 
would reduce acquisition costs and require minimal adapta­
tion and minimal testing, the time, budget, and resources 
needed to test and resolve software issues greatly exceeded 
initial projections: 

Software evolves and changes over time. Many 
vendors have a library of software modules, many 
of which are used in multiple applications. Soft­
ware errors that manifest in a particular applica­
tion may be deemed to have “no impact” to the 
user and are not corrected. This causes software 
errors to propagate through succeeding product 
lines, with the potential for affecting future users 
in different applications. Changes in operating 
environment that come with a new application 
may invalidate assumptions made during initial 
requirements definition and result in software is­
sues during testing and operation [5, p.3]. 

Some successful reuse reports have been premature. The 
modules may be reused in the next similar project, but 
fewer can be used in later projects. In fact, in the well-
known NASA Goddard reuse experiment, while reuse was 
high in the next project (about 70%), it quickly dwindled 
over time to the point where the original extra cost of pro­
ducing reusable modules was never recovered [15]. While it 
may appear that new versions of embedded systems do not 
change dramatically, in fact there are enough changes in the 
missions and design of the physical systems and devices the 
software is controlling—after all, the reason a new system 
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is being built at all is to change or augment functionality— 
that changes to the software will usually be required to reuse 
it. This fact does not preclude application software reuse, 
but it does suggest some requirements for reuse, including 
the fact that it must be possible to make changes easily and 
safely. 
The question is how to get the benefits of reuse without 

the drawbacks [19]. The answer may rest in the development 
level at which reuse is applied. The most problematic reuse 
has been attempted at the code level, but reuse may be more 
effective and safe by going back to an earlier development 
phase and beginning the reuse from that phase (i.e., reuse 
the work performed up to that phase). Because coding is 
such a small part of the software engineering process, partic­
ularly for real-time embedded control software, and coding 
for these applications can even be partially automated from 
requirements specifications, the cost of repeating the coding 
step is insignificant compared to the potential cost of revali­
dating the reused code. In addition, safely changing code is 
easier when the changes are made at an earlier development 
phase. 
The rest of this paper describes the requirements we be­

lieve must be satisfied for successful, large-scale reuse of em­
bedded control software and a case study using a real system 
to evaluate the feasibility of satisfying these requirements. 
Note that this paper focuses on application software reuse, 
not system software although some of the requirements and 
solutions may be similar. 

2.	 REQUIREMENTS FOR EFFECTIVE 
SOFTWARE REUSE 

Knowledge capture in the specification of the software and 
the controlled system is critical for successful reuse of appli­
cation software. That specification must contain the follow­
ing: 

•	 Documentation of design rationale: A basic require­
ment for successful and safe reuse is having thoroughly 
documented design rationale and design assumptions 
for both the system and the software design. The 
lack of such specifications has been cited in most of 
the well-known spacecraft accidents in the recent past 
where reuse of software components was an important 
factor in the loss [10]. The accident report on the Ar­
iane 501 explosion, for example, mentions poor speci­
fication practices in several places and notes that the 
structure of the documentation obscured the ability to 
review the critical design decisions and their underly­
ing rationale [12]. The report recommends that justifi­
cation documents be given the same attention as code 
and that techniques for keeping code and its justifica­
tions consistent be improved. One of the conclusions 
of the GPS project mentioned above was that they 
needed insight into the rationale and requirements that 
governed the original design of the GPS units to suc­
cessfully reuse them in a different environment from 
that for which they were designed [4]. Goodman notes 
that the documentation they received was limited to 
“how” and often did not include “why”: 

Software requirements documents contain equa­
tions to be used, but rarely provide insight 
into how the equations were derived, or how 

values of constants were determined. This 
information exists on paper at some point, 
in the form of informal memos and company 
internal letters. However, over time, this in­
formation is lost due to employee attrition, 
clean-out of offices, retirements and corpo­
rate takeovers. Many mathematical results 
used in navigation algorithms no longer exist 
in the open literature. Corporate knowledge 
loss makes it difficult for engineers to under­
stand, evaluate, and modify software years 
or decades after it was written and certified 
[4, p.9]. 

•	 Documentation of the assumptions about the opera­
tional environment that are implicit in the software: 
These assumptions include interfaces with other com­
ponents and other structural features, but also include 
assumptions about behavior. In the SOHO (SOlar He­
liospheric Observatory) mission interruption [13], crit­
ical assumptions about the operation of the gyros were 
not recorded anywhere and were violated when the 
ground control software modules were reused. The 
GPS integration attempt described earlier found that 
vendors tend to perform the minimum amount of lab 
testing necessary to ensure that the unit meets con­
tract specifications. Without specification of the as­
sumptions of the environment in which the system was 
developed, tested, and used, it is not possible to deter­
mine what additional testing and analysis needs to be 
performed or what changes may be necessary to meet 
the conditions in a different operational environment. 
For example, many of the software issues that arose 
with the GPS units involved design problems that are 
not manifested in aviation applications where flight 
times may last minutes or hours but may appear in 
the much longer space flight applications. Goodman 
notes that the documentation United Space Alliance 
received about the GPS units did not include the as­
sumptions made in designing the GPS receiver for ter­
restrial applications that were invalid for the new space 
applications [4]. 

•	 Traceability from high-level system requirements to sys­
tem design to software requirements to code and vice 
versa: By traceability, we do not mean simply in­
cluding the standard traceability matrix showing the 
mapping between high-level requirements and software 
modules or CSCIs but instead traceability to system 
design features and decisions. Such traceability al­
lows those planning reuse to make sure that the re­
quirements and assumptions about the operation of 
the component fit the new use and to determine any 
interactions with other components that need to be 
considered. In the SOHO mission interruption, the 
accident report cites one factor as a lack of system 
knowledge by the person modifying the software pro­
cedure. Clearly the same was true for MCO. Not hav­
ing this system knowledge and traceability can lead to 
fear of modifying reused software modules, which was 
a factor in both the Ariane and Milstar launch acci­
dents [14]. Traceability potentially provides a way to 
acquire the system knowledge necessary to successfully 
reuse software. 



•	 Documentation of hazard analysis and safety informa­
tion: A hazard analysis needs to be performed for each 
safety-critical system. Without information about the 
original hazard analysis and the specific safety con­
straints related to the reused software component, it 
is very difficult to perform this analysis. This diffi­
culty, coupled with lack of documentation of reused 
software module and common issues with proprietary 
information, makes reuse very hazardous. While soft­
ware may be perfectly safe in one environment, it can 
lead to accidents in another. The Ariane 501 loss is an 
example, where a difference in the Ariane 5 trajectory 
from the Ariane 4 trajectory triggered the unsafe soft­
ware behavior. The same software error that led to the 
Therac-25 deaths had a benign manifestation in the 
earlier Therac-20. The blackbox (externally visible) 
behavior of a component can only be determined to be 
safe by analyzing its effects on the system in which it 
will be operating. Cost-effective reuse of safety-critical 
software requires clear documentation of the assump­
tions and procedures underlying the original hazard 
analysis. 

Simply including this necessary information in the speci­
fications is, however, not enough. The information must be 
specified in a way that is easy to find, use, and change. Most 
projects have voluminous documentation, but it is often dif­
ficult to understand and is incomplete, inconsistent, and am­
biguous. In addition, validation and verification of the new 
system and the reused components within it will require the 
collaborative efforts of many types of domain experts. The 
language used in the specifications must be easily readable 
and reviewable with minimal training by non-software engi­
neers. Accomplishing this goal requires minimizing semantic 
distance between the specification and the engineers’ men­
tal models, incorporating standard notations when possible, 
minimizing obscure notations, and including animation and 
visualization tools to assist in understanding the behavior 
specified or modeled. 
Some other characteristics and practices can, in our ex­

perience, assist with reuse, but are not necessarily required. 
One is model-based development using blackbox models of 
software behavior. Such model-based development is not 
by itself enough to make reuse safe, but combined with the 
required characteristics above, reuse can start with the mod­
els, necessary changes can be made, the changes validated, 
and then code generated (either manually or automatically) 
from the models. In fact, there is evidence that this pro­
cess works: TCAS has been maintained and gone through 
multiple versions since our first model was created in the 
early 1990s [11]. Each time a new version is needed, the de­
velopers go back to the RSML specification, make changes 
to the model, and then validate the newly changed model. 
When they are convinced that the changes are effective and 
safe, new code is created by incorporating any changes that 
have been made in the models. Because our specification in­
cludes complete traceability from the TCAS models to the 
code, the process of making and verifying changes to the 
code is greatly simplified. 
Perhaps more controversial, we believe that object-oriented 

system design may inhibit safe reuse of embedded applica­
tion software and has other important drawbacks. The au­
thors’ experience and that of others on complex projects 
(e.g., Pathfinder [17] and Iridium [8]) is that functional de­

composition of embedded control software is safer and more 
effective than object-oriented system design, particularly with 
respect to establishing the very high level of confidence nec­
essary in control software and in its maintenance and reuse. 
Problems in OOD arise particularly from the tight func­
tional coupling involved in spreading control functions among 
the objects rather than providing the functionally cohesive 
modules that result from functional decomposition of the 
system requirements. 
Verification of the safety of the original, reused, or changed 

code is basically impossible for object-oriented system de­
sign. Those building such systems in the aviation realm have 
suggested that object-oriented technology is inappropriate 
for safety-critical applications [6]. Safety problems arise 
from interactions among components involved in achieving 
safety-critical functions. Safety analysis, therefore, focuses 
on the safety-critical system functions, which in object-oriented 
system design can potentially be spread throughout so many 
objects (and involve multiple inheritance levels) that high 
confidence in the system behaving safely is impossible to 
provide. Note that only programming-in-the-large is being 
considered here. Object-oriented design within the individ­
ual models is perfectly reasonable and usually safe. 

3. A CASE STUDY 
The approach to reuse employed in the case study starts 

from a library of generic executable component specifica­
tions describing the component’s blackbox hardware and 
software behavior. Only externally observable behavior is 
specified, not the internal design. The developer then selects 
appropriate components, assembles them into subsystems 
and system specifications, and uses simulation (the specifi­
cations are executable) and analysis (the specifications are 
formal) to validate the design and perform at least partial 
system testing. For embedded software, testing and formal 
analysis are not adequate to find all the errors so human 
review by a varied group of domain experts is also required. 
Human review can be enhanced by visualization tools. Later 
verification and testing of the reused and perhaps changed 
modules and system can be assisted by automatic generation 
of test data from the component models, and the executable 
specifications can act as a test oracle during the code testing 
process. 
Although several different toolsets can be used to imple­

ment such a approach, Weiss used a commercial require­
ments specification tool called SpecTRM [16] to perform a 
case study of reuse on a family of autonomous spacecraft 
(nanosatellites) called SPHERES [18]. SPHERES (Synchronous 
Position Hold Engage Reorient Experimental Satellites) was 
created by MIT’s Space Systems Laboratory to provide NASA 
and the Air Force with a reusable, space-based testbed for 
high-risk metrology, control, and autonomy technologies crit­
ical to the operation of distributed satellite and docking 
missions, such as the Terrestrial Planet Finder and Orbital 
Express. The SPHERES testbed was designed to operate 
in the micro-gravity conditions on the International Space 
Station although deployment has been delayed due to the 
Columbia accident. In addition, it is planned for guest sci­
entists from around the world to have access to this testbed 
to independently design and evaluate estimation, control, 
and autonomy algorithms for autonomous coordination and 
synchronization of multiple spacecraft in tightly controlled 
spatial configurations. The very nature of the purpose of 
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Figure 1: The Functional Structure of SPHERES 

SPHERES implies that reuse of software could save enor­
mous amounts of programming effort by the guest scientists. 
Figure 1 shows the functional decomposition of SPHERES. 

The Sphere controller provides the overall coordination of 
the actions of the onboard components as well as deter­
mining the overall operating mode of the Sphere. Each 
Sphere controller provides the interface for and control of 
that Sphere’s propulsion, position and attitude determina­
tion, communication, guest scientist program, electrical, and 
structural subsystems. Because the focus of the case study 
was on subsystems that contain both hardware and software, 
the structural and electrical subsystems were not modeled, 
although they easily could have been included. 
Each Sphere receives attitude and position information 

from its PADS (Position and Attitude Determination Sub­
system). The Sphere controller uses this information to cal­
culate the position and orientation of each Sphere. The 
guest scientist program running on board a Sphere per­
forms either state estimation, control calculations, or both 
to determine which control actions need to be performed to 
achieve a new position and/or attitude. Two guest scientist 
programs were created for this study: a rate damper and a 
rate matcher. 
Sphere control is actuated through the propulsion subsys­

tem and the Spheres coordinate action through their com­
munication subsystems. Astronauts on the ISS load and 
unload programs and information to and from the Spheres 
through a laptop computer. 

3.1	 Modeling and Analysis of the SPHERES 
Components 

The SpecTRM specification/modeling tool used in the 
case study is based on intent specifications [9]. Briefly, an 
intent specification differs from a standard specification pri­
marily in its structure: the intent specification is structured 
as a hierarchy of “models” designed to describe the sys­
tem from different viewpoints, with complete traceability 
between models (see Figure 2). Levels do not represent the 
more familiar refinement abstraction, but a why or intent ab­
straction with higher levels providing the rationale (why) for 
the lower levels. Rather than each level representing more 
detailed information than the higher levels, each level of an 
intent specification represents a different model of the same 
system from a different perspective and supports a different 

cal levels. They also implement the tracing of system-level 
requirements and design constraints to related design de­
cisions, and vice versa, to explain why the design decisions 
were made. Note that the structure of the specification does 
not imply that the development must proceed from the top 
levels down to the lower levels in that order, only that at 
the end of the development process, all levels are complete. 
An environment that involves extensive reuse, for example, 
might follow a very different development process from one 
that involves a lot of first-time development. 
Information about design rationale, as argued above, is 

critical to successful reuse. The necessary design rationale 
information, including the underlying assumptions upon which 
the design and validation is based, is integrated directly into 
the intent specification and its structure, rather than relying 
on it being captured and maintained in separate documents. 
To avoid accidents and mission losses, reused components 

must be analyzed to determine whether they violate the de­
sign rationale, assumptions, and safety constraints of the 
system within which they are to be used. This process is 
usually impractical, if not impossible, for reuse at the code 
level but not for reuse at the blackbox model specification 
level and above (Levels 1 to 3), where most of the original 
safety analysis is done. 
During operations, if changes are made to any physical 

system component (or if software is to be reused in a differ­
ent system), potential violation of assumptions underlying 
the original system design must trigger re-analysis of the 
software. To accomplish this goal, not only must the engi­
neers know when assumptions change, but they must be able 
to figure out which parts of the design rely on those assump­
tions in order to reduce the costs of revalidating correctness 
and safety. Intent specifications are designed to make that 
process feasible and practical. 

Level 0 
The top level (Level 0) of an intent specification provides 
a project management view and insight into the relation­
ship between the plans and the project development status 
through links to the other parts of the intent specification. 
One problem in managing large projects is simply getting 
visibility into the progress of the project, particularly when 
a lot of software in involved. The project management level 
might include project plans, such as risk management plans, 
pert charts, system safety plans, etc., with embedded hyper­
links to the various parts of the intent specification where 
the plans are implemented. 

Level 1 
Level 1 is the customer view of the project and includes the 
high-level goals, contractual requirements (the shall state­
ments or functional requirements), design constraints, envi­
ronmental constraints and assumptions, operator and inter­
face requirements, system hazard analyses and hazard lists, 
and system limitations. Links from these parts of the specifi­
cation down to other levels provides understanding of design 
rationale and the ability to determine how the requirements, 
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environmental assumptions, and hazard analysis informa­
tion are implemented in the system design. 
An example requirement for the propulsion subsystem (re­

ferred to below) is: 

[FR.4] If force and torque vectors are received from 
the Sphere Controller, the propulsion subsystem shall 
determine on and off times for each thruster based on 
the thruster’s location and the force and torque needed 
[↓ DP.3.2]. 

Rationale: The guest scientists should have the 
ability to stock compute firing times for the thrusters 
based on desired force and torque vectors. 

[FR.7] The Propulsion Subsystem shall include enough 
thrusters to provide actuation throughout the six-degrees-
of-freedom [↓ DP.1.3.]. 

Rationale: The SPHERES system is designed to 
operate in space and therefore must be able to 
translate in three dimensions and rotate in three 
dimensions. 

A propulsion subsystem hazard is: 

[H.1] A pressure rise in the propulsion subsystem above 
4500 psi [← SC.3]. 

Rationale: Such a pressure rise may result in an 
explosion that could either injure an astronaut or 
damage the Sphere. 

The safety constraint at Level 1 related to this hazard is: 

[SC.3] A mechanical system must be included in each 
Sphere that will mitigate a pressure rise in the propul­
sion subsystem [→ H.1, ↓ DP.2.4]. 

Level 2 
Level 2 is the system engineering view and assists engineers 
in recording and reasoning about the system in terms of the 
physical principles and application design principles upon 
which the system design is based. It describes how the Level 
1 requirements are achieved in the overall system design, 
including any “derived” requirements and design features 
not related to the Level 1 requirements, and how the Level 
1 design constraints are enforced. It is at this level that the 
user of the intent specification can get an overview of the 
system design and determine why the design decisions were 
made, either by information included at this level or via the 
hyperlinks to Level 1. Examples from Level 2: 

[DP.1.3] The thrusters are arranged on the Sphere to 
provide pure body-axis force or torque using only two 
thrusters, assuming uniform mass and inertia proper­
ties. The twelve thrusters are arranged in six back-
to-back pairs, allowing for full six-degrees-of-freedom 
actuation. Figure 2 shows the Sphere thruster config­
uration [↑ FR.7]. 

Rationale: It is expected that the majority of ma­
neuvers will involve primarily body-axis rotations, 
and the flight thruster geometry is significantly 
more propellant-efficient than other geometries for 
these maneuvers. 

[DP.2.4] There are two pressure release mechanisms, 
or burst disks, in the propulsion subsystem. One is 
attached to the tank coupling and one is on the reg­
ulator itself. These mechanisms burst if the pressure 
builds to greater than 4500 psi [↑ H.1, SC.3]. 

Rationale: The burst disks will rupture before the 
tank reaches a hazardous pressure of greater than 
4500 psi, thereby releasing the pressure buildup. 

[DP.2.5] The regulator is used to expand the liquid 
CO2 into a gas and simultaneously decrease the thruster 
feed pressure to between 0 and 35 psig. 

Rationale: At 35 psig, the average thruster force 
is approximately 0.1N, which is the desired oper­
ating thrust for each thruster. 

[DP.3.2.1] The Pulse Modulation software calculates 
the duration that thrusters should be opened based 
on body-referenced force and torque vectors from the 
Sphere controller using the following equations . . . [↑ 
FR.4, ↓ Thruster Pair 17 Calculation,  . . . ].  

Level 3 
Level 3 is the System Architecture Level. It includes infor­
mation about the allocation of the design decisions at Level 
2 to individual system components (hardware, software, and 
operators) and the component blackbox behavior that im­
plements those decisions. Level 3 in turn has links to the 
implementation of the specified behavior (i.e., behavioral 
requirements) in the design of the software, hardware, and 
operator procedures. If it is necessary to make a change to 
a component or to reuse it in a different system, it is pos­
sible to trace the function implemented by that component 
upward in the intent specification to determine its design 
assumptions, the requirements it is satisfying, related de­
sign principles, the design rationale, the safety-critical con­
straints enforced, and its role in the overall system design. 
Level 3 essentially serves as an unambiguous interface be­

tween system engineers and component engineers. At Level 
3, the system functions defined at Level 2 are allocated to 
components and specified rigorously. Blackbox behavioral 
component models are used to specify and reason about 
the logical design of the system as a whole and the inter­
actions among individual system components without being 
distracted by component design and implementation details. 
We believe the models at this level are the most effective 
place to start most reuse efforts. For the case study, we cre­
ated generic Level 3 models that can be instantiated for any 
particular system in which the component is to be reused. 
The design of the formal language at this level, called 

SpecTRM-RL, is the result of lessons learned from the use 
of RSML and later variants of RSML on real projects and 
in laboratory experiments on specification language design, 
particularly lessons about error-prone features. For exam­
ple, although internally broadcast events were included in 
RSML, they caused so many errors and so much difficulty 
in review of the models that they are not used in SpecTRM-
RL. The primary goals for the new language were readability 
and reviewability (ability to find errors), completeness with 
respect to safety, and assisting with system safety analysis 
of the requirements. 
SpecTRM-RL has a formal foundation (a simple state ma­

chine) so it can be executed and subjected to some types 
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Figure 4: The and/or tables used to specify the logic 
under which the state variable Solenoid Valve 1 State 
is assigned the values Unknown, Open, and Closed. 
Tables evaluate to true (and the state transition is 
taken) if any of the columns in the table evaluate 
to true, i.e., each row of the column is true. Aster-
isks represent ”don’t care” conditions. For exam-
ple, the first column in the logic describing when 
the Solenoid Valve 1 State will have the value Open 
says that the state variable should have this value if 
the propulsion subsystem is not in the startup state, 
its current control mode is Direct Mode, and it has 
received an input to turn the thruster On. When 
the propulsion system is in Force Torque Mode, it  
receives a force/torque vector from the Sphere Con-
troller that specifies the forces and torques needed 
to accomplish a required maneuver. The Propulsion 
Subsystem then calculates how long the thrusters 
need to be on to achieve the actuation (the Thruster 
Pair 17 Calculation, the details of which are not 
shown). Solenoid Valve 1 stays open until the time 
since the valve was opened is greater than or equal 
to the calculated Open duration for the thruster. 

of formal analysis, such as completeness and consistency 
analysis, while being designed to be readable with minimal 
training—the models can be read and reviewed by engineers 
and operators after about 10-15 minutes instruction. Fig­
ure 4 shows an example of the specification of detailed logic 
using and/or tables. These tables essentially incorporate 
formal propositional logic in disjoint normal form in a way 
that is easily reviewed (and written) by those not trained 
in formal logic. The tables can be machine parsed and exe­
cuted. 
We have also experimented with visualization to under­

stand whether usability of formal specification languages 
might also be improved through the use of interactive visual­
izations automatically generated from the underlying formal 
model [1, 2]. 

Levels 4, 5, and 6 
The Design Representation and Physical Representation lev­
els provide the information necessary to reason about indi­
vidual component design and implementation issues. Some 
parts of Level 4 may not be needed if at least portions of 
the physical design can be generated automatically from the 
models at Level 3. The final level, Operations, provides a 
view of the operational system and is useful in mapping be­
tween the designed system and its underlying assumptions 
about the operational environment envisioned during design 
and the actual operational environment. Level 6 provides a 
place to accumulate the operational information helpful in 
reusing the component in a different system or in a new use 
of the same system. 
Levels 4, 5 were not created for the case study (although 

the Spheres code obviously exists) because they were not 
needed to evaluate the potential for reuse at the higher lev­
els. Spheres operation has been delayed due to the Columbia 
accident (it was scheduled to go up to the ISS on the next 
shuttle flight after Columbia) so operational information is 
not available for Level 6. 

3.2 Evaluation of Reuse in the Case Study 
For the case study, Weiss produced a library of generic in­

tent specifications (Levels 1, 2, and 3) that could be reused 
by the guest scientists to create new algorithmic test envi­
ronments and by the SPHERES team itself for future ver­
sions of the system. The effort took about six person-weeks, 
including developing a simulation environment and an ani­
mation of the Spheres moving in space as the SpecTRM-RL 
models are “executed” together in a simulation environment. 
The first version of the system included only one Sphere 

and a guest scientist program called a Rate Damper. Later, 
to demonstrate reuse, a second Sphere was assembled from 
the preexisting components and a second Rate Matcher guest 
scientist program integrated into the two-Sphere configuration— 
all in under an hour. The changes were then simulated 
to evaluate their correctness. A new version of the ba­
sic SPHERES platform is planned, and we will evaluate 
whether and how well the generic models and intent speci­
fications assist with reuse of the original code. 

4. CONCLUSIONS 
This paper described a set of requirements we believe are 

necessary for reuse of embedded application software to be 
both practical and safe. A description of a case study using 
a commercial system engineering development environment 



on a real spacecraft followed. We believe that similar types 
of engineering environments, where reuse is attempted at 
the software behavioral requirements level rather than the 
code level, will allow engineering teams to tailor reused com­
ponents and designs to fit their needs rather than requiring 
them to fit their needs to a particular piece of code. It also 
makes the process of validating and verifying the correctness 
and safety of reused software practical and, in turn, may al­
low more safety-critical software reuse. This hypothesis, of 
course, needs to be more thoroughly validated in realistic 
development environments. 
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