MIT OpenCourseWare http://ocw.mit.edu

16.36 Communication Systems Engineering Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

16.36: Communication Systems Engineering Lecture 15: Cyclic Codes and error detection

Eytan Modiano

Cyclic Codes

- A cyclic code is a linear block code where if c is a codeword, so are all cyclic shifts of c
 - E.g., {000,110,101,011} is a cyclic code
- Cyclic codes can be dealt with in the very same way as all other LBC's
 - Generator and parity check matrix can be found
- A cyclic code can be completely described by a generator string G
 - All codewords are multiples of the generator string
- In practice, cyclic codes are often used for error detection (CRC)
 - Used for packet networks
 - When an error is detected by the received, it requests retransmission

- Used by the receiver to determine if a packet contains errors
- If a packet is found to contain errors the receiver requests the transmitter to re-send the packet
- Error detection techniques
 - Parity check
 E.g., single bit
 - Cyclic redundancy check (CRC)

k Data bits r Check bits	•
--------------------------	---

• Each parity check is a modulo 2 sum of some of the data bits

Example:

$$C_{1} = X_{1} + X_{2} + X_{3}$$
$$C_{2} = X_{2} + X_{3} + X_{4}$$
$$C_{3} = X_{1} + X_{2} + X_{4}$$

• The check bit is 1 if frame contains odd number of 1's; otherwise it is 0

1011011 -> 1011011 1 1100110 -> 1100110 0

- Thus, encoded frame contains even number of 1's
- Receiver counts number of ones in frame
 - An even number of 1's is interpreted as no errors
 - An odd number of 1's means that an error must have occured A single error (or an odd number of errors) can be detected An even number of errors cannot be detected Nothing can be corrected
- Probability of undetected error (independent errors)

$$P(un \det ected) = \sum_{i even} {N \choose i} p^{i} (1-p)^{N-i} \qquad \begin{array}{l} N = packet size \\ p = error prob. \end{array}$$

• A CRC is implemented using a feedback shift register

$$T = M 2^r + R$$

- How do we compute R (the check bits)?
 - Choose a generator string G of length r+1 bits
 - Choose R such that T is a multiple of G ($T = A^*G$, for some A)
 - Now when T is divided by G there will be no remainder => no errors
 - All done using mod 2 arithmetic

 $T = M 2^r + R = A^*G \Rightarrow M 2^r = A^*G + R \pmod{2}$ arithmetic)

Let R = remainder of M 2^r/G and T will be a multiple of G

Choice of G is a critical parameter for the performance of a CRC

Checking for errors

- Let T' be the received sequence
- Divide T' by G
 - If remainder = 0 assume no errors
 - If remainder is non zero errors must have occurred

Example: Send T = 110101011 Receive T' = 110101011 (no errors)

No way of knowing how many errors occurred or which bits are In error

Effectiveness of error detection technique

• Effectiveness of a code for error detection is usually measured by three parameters:

1) minimum distance of code (d) (min # bit errors undetected) The minimum distance of a code is the smallest number of errors that can map one codeword onto another. If fewer than d errors occur they will always detected. Even more than d errors will often be detected (but not always!)

- 2) burst detecting ability (B) (max burst length always detected)
- 3) probability of random bit pattern mistaken as error free (good estimate if # errors in a frame >> d or B)
- Useful when framing is lost
- K info bits => 2^k valid codewords
- With r check bits the probability that a random string of length k+r maps onto one of the 2^k valid codewords is 2^k/2^{k+r} = 2^{-r}

- For r check bits per frame and a frame length less than 2^{r-1}, the following can be detected
 - 1) All patterns of 1,2, or 3 errors (d > 3)
 - 2) All bursts of errors of r or fewer bits
 - 3) Random large numbers of errors with prob. 1-2^{-r}
- Standard DLC's use a CRC with r=16 with option of r=32

- CRC-16, $G = X^{16} + X^{15} + X^2 + 1 = 1100000000000101$

- Most Physical Layers (communications channels) are not well described by a simple BER parameter
- Most physical error processes tend to create a mix of random & bursts of errors
- A channel with a BER of 10⁻⁷ and a average burst size of 1000 bits is very different from one with independent random errors
- Example: For an average frame length of 10⁴ bits
 - random channel: E[Frame error rate] ~ 10^{-3}
 - burst channel: E[Frame error rate] ~ 10^{-6}
- Best to characterize a channel by its Frame Error Rate
- This is a difficult problem for real systems