16.410/413 Principles of Autonomy and Decision Making Lecture 23: Markov Decision Processes Policy Iteration

Emilio Frazzoli

Aeronautics and Astronautics Massachusetts Institute of Technology

December 1, 2010

Frazzoli (MIT)

Lecture 23: MDPs

December 1, 2010 1 / 22

Assignments

Readings

- Lecture notes
- [AIMA] Ch. 17.1-3.

Frazzoli (MIT)

Lecture 23: MDPs

- 2 December 1, 2010 2 / 22

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Searching over policies

- Value iteration converges exponentially fast, but still asymptotically.
- Recall how the best policy is recovered from the current estimate of the value function:

$$\pi_i(s) = \arg\max_{a} \operatorname{E} \left[R(s, a, s') + \gamma V_i(s')
ight], \qquad orall s \in \mathcal{S}.$$

- In order to figure out the optimal policy, it should not be necessary to compute the optimal value function exactly...
- Since there are only finitely many policies in a finite-state, finite-action MDP, it is reasonable to expect that a search over policies should terminate in a finite number of steps.

Frazzoli (MIT)

Policy evaluation

- Let us assume we have a policy, e.g., π : S → A, that assigns an action to each state. I.e., action π(s) will be chosen each time the system is at state s.
- Once the actions taken at each state are fixed,
 - the MDP is turned into a Markov chain (with rewards).
 - one can compute the expected utility collected over time using that policy
- In other words, one can evaluate how well a certain policy does by computing the value function induced by that policy.

イロト 不得 トイヨト イヨト 二日

Policy evaluation example — naïve method

- Same planning problem as the previous lecture, in a smaller world (4x4).
- Simple policy π: always go right, unless at the goal (or inside obstacles).
- Expected utility (value function) starting from top left corner (cell 2, 2):

$$V_{\pi}(2,2) pprox 0.06 \cdot 8.1 = 0.5$$

Path	Prob.	Utility		
\rightarrow	0.75	0		
1	0.08	0		
\leftarrow	0.08	0		
$\downarrow \rightarrow$	0.06	8.1		

Policy evaluation

 Recalling the MDP properties, one can write the value function at a state as the expected reward collected at the first step + expected discounted value at the next state under the given policy

$$V_{\pi}(s) = \mathbb{E}\left[R(s, \pi(s), s') + \gamma V(s')\right]$$

= $\sum_{s' \in S} T(s, \pi(s), s') \left[R(s, \pi(s), s') + \gamma V(s')\right], \quad \forall s \in S$

- Note that this is a set of card(S) linear equations in the card(S) unknowns {V_π(s), s ∈ S}.
- This can be solved efficiently, in $O(\operatorname{card}(S)^3)$

Policy evaluation example

- Let us consider the variables v_{2,2}, v_{3,2}, v_{3,3} (the others are trivially 0).
- We have:

$$v_{2,2} = \frac{3}{4}(0+0.9\cdot 0) + \frac{1}{12}(0+0.9v_{3,2})$$

$$v_{3,2} = \frac{3}{4}(1+0.9v_{3,3}) + \frac{1}{12}(0+0.9v_{2,2})$$

$$v_{3,3} = 1(1+0.9v_{3,3})$$

Policy π

•	·	•	•
•	\rightarrow	•	•
•	\rightarrow	·	•
•	·	•	•

Value function V_{π}

0	0	0	0
0	0.566	0	0
0	7.542	10	0
0	0	0	0

Solving, we get:

$$v_{3,3} = 10$$

 $v_{2,2} = \frac{3}{40}v_{3,2} = \dots = 0.5657$
 $v_{3,2} = 7.5 + \frac{9}{1600}v_{3,2} = \frac{1600}{1591}7.5 = 7.5424$

Frazzoli (MIT)

- Given a baseline policy π_0 , with induced value function V_{π_0} , we can always get another policy π_1 that is at least as good (i.e., such that $V_{\pi_1}(s) \geq V_{\pi_0}(s)$, for all $s \in S$.
- Idea: for each state *s*, choose the action that maximizes the expected total reward that will be collected if the baseline policy is used from the next step onwards, i.e.,

$$\begin{aligned} \pi_1(s) &= \arg\max_{a \in \mathcal{A}} \operatorname{E} \left[R(s, a, s') + \gamma V(s') \right] \\ &= \arg\max_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} T(s, a, s') \left[R(s, \pi(s), s') + \gamma V_{\pi_0}(s') \right], \qquad \forall s \in \mathcal{S} \end{aligned}$$

Frazzoli (MIT)

Roll-out policy example

• Baseline policy:

•
$$\pi_0(2,2) = \rightarrow$$
,
• $\pi_0(3,2) = \rightarrow$,
• $\pi_0(3,3) = \cdot$.

•
$$\pi_1(2,2) = \arg \max \begin{cases} \rightarrow : & 0.566 \\ \downarrow : & 3/4 \cdot 0.9 \cdot 7.542 \\ \uparrow : & 1/12 \cdot 0.9 \cdot 7.542 \end{cases}$$

• $\pi_1(3,2) = \arg \max \begin{cases} \rightarrow : & 7.542 \\ \downarrow : & 1/12 \cdot 0.9 \cdot 10 \\ \uparrow : & 1/12 \cdot 0.9 \cdot 0.566 \end{cases}$

Baseline policy π_0

Improved policy π_1

< 17 ▶

э

- Idea: given a baseline policy, an improved policy can be computed using roll-out. The improved policy can be further improved by applying roll-out again. Repeat.
- Since there are a finite number of states and a finite number of actions, this will eventually terminate with a policy that cannot be further improved
- This is in fact an optimal policy.

Policy Iteration

Policy iteration algorithm:

- Pick an arbitrary policy π .
- iterate:

Policy evaluation: solve the linear system

$$V(s) = \sum_{s' \in S} T(s, \pi(s), s') \left[R(s, \pi(s), s') + \gamma V(s') \right], \forall s \in S$$

2 Policy improvement: for each $s \in S$:

$$\pi(s) \leftarrow \arg \max_{a} \sum_{s' \in \mathcal{S}} T(s, a, s') \left[R(s, a, s') + \gamma V(s') \right]$$

until π is unchanged.

Frazzoli (MIT)

Lecture 23: MDPs

3

- 4 同 ト - 4 目 ト

Back to the 10x10 grid:

2/5

Back to the 10x10 grid:

Frazzoli (MIT)

Lecture 23: MDPs

December 1, 2010 13 / 22

3/5

Back to the 10x10 grid:

Frazzoli (MIT)

Lecture 23: MDPs

December 1, 2010 14 / 22

4/5

Back to the 10x10 grid:

Frazzoli (MIT)

Lecture 23: MDPs

December 1, 2010 15 / 22

After 4 iterations:

0	0	0	0	0	0	0	0	0	0
0	0.45	0.56	0.61	0.84	1.17	0.87	1.11	1.5411	0
0	0.61	0.71	0	0	1.54	0	0	2.16	0
0	0.78	0.93	0	0	2.16	2.59	3.02	3.03	0
0	0.98	1.21	0	2.03	2.74	3.26	3.84	3.91	0
0	1.23	1.58	1.90	2.44	2.95	3.54	4.56	5.03	0
0	1.18	1.50	1.78	2.09	2.28	0	5.38	6.51	0
0	1.02	1.29	1.52	1.76	1.77	0	6.74	8.49	0
0	0.76	1.02	1.20	1.37	1.30	0	8.01	10	0
0	0	0	0	0	0	0	0	0	0

5/5

This is the optimal value function, induced by the optimal policy (notice exact convergence in a finite number of steps).

- - E - N

- Policy iteration is desirable because of its finite-time convergence to the optimal policy.
- However, policy iteration requires solving possibly large linear systems: each iteration takes O(card(S)³) time.
- Value iteration requires only $O(\operatorname{card}(\mathcal{S}) \cdot \operatorname{card}(\mathcal{A}))$ time at each iteration usually the cardinality of the action space is much smaller than that of the state space.

イロト イポト イヨト イヨト 三日

- Some times, solving the linear system for policy evaluation may be too time consuming (e.g., for large state spaces).
- It turns out that we can get a good approximation of the value function V by doing the following simplified value iteration (simplified since π is given):

$$V_{i+1}(s) = \sum_{s' \in \mathcal{S}} T(s, \pi(s), s') \left[R(s, \pi(s), s') + \gamma V_i(s) \right]$$

Frazzoli (MIT)

- In fact, one can even do the following:
- Pick a subset of states $\tilde{\mathcal{S}} \subseteq \mathcal{S}$
- Apply either Value Iteration, or (modified) Policy Iteration to those states.

Repeat

Model-free MDPs

- In many cases of interest, the exact details of the MDP (i.e., transition probabilities) are not known.
- Reinforcement learning: learn good control policies via the analysis of state/action/rewards sequences collected in simulation and/or experiments.
- Several options, e.g., :
 - Certainty equivalence: estimate transition probabilities through data, then apply standard methods. *Expensive, not on-line*
 - Temporal Difference learning: Only maintain an estimate of the value function V. For each transition, e.g., $s \xrightarrow{a} s'$, update the estimate:

$$V(s) \leftarrow (1 - \alpha_t)V(s) + \alpha_t [R(s, a, s') + \gamma V(s')],$$

where $\alpha_t \in (0, 1)$ is a learning parameter. Note: α_t should decay (e.g., as $\alpha_t = 1/t$) as the number of updated goes to infinity.

Learning depends on the particular policies applied.

Frazzoli (MIT)

Lecture 23: MDPs

December 1, 2010 20 / 22

Q-learning

- Estimate total collected reward for state-action pairs.
- Q-factor Q(s, a): estimate of the total collected reward collected (i) starting at state s, (ii) applying action a at the first step, (iii) acting optimally for all future times.
- Q-factor update law, based on an observed transition $s \xrightarrow{a} s'$:

$$Q(s, a) \leftarrow (1 - \alpha_t)Q(s, a) + \alpha_t \left[R(s, a, s') + \max_{a'} Q(s', a')
ight],$$

Note: α_t must be decaying over time for convergence, e.g., $\alpha_t = 1/t$.

- Q-learning does not depend on a particular policy.
- Issue: Exploitation (choose "best" *a*) vs. exploration (choose a poorly characterized *a*).

Frazzoli (MIT)

▲日 ▶ ▲冊 ▶ ▲ 田 ▶ ▲ 田 ▶ ● ● ● ● ●

Approximation techniques

- Very often (e.g., when the state space S is a discretization of a continuous state space, e.g., ℝⁿ), the dimensions of the state space make value iteration/policy iteration/Q-learning/etc. unfeasible in practice.
- Choose an approximation architecture ϕ , with *m* parameters *r*, e.g.,
 - ϕ : basis functions, r: coefficients
 - ϕ : "feature vector", r: coefficients
 - ϕ : neural network, *r* parameters (weights/biases, etc.)

• Write, e.g.,

$$Q(s,a) = \tilde{Q}(s,a,r) = \sum_{k=1}^{m} r_k \phi_k(s,a)$$

• Updates to Q(s, a) correspond to updates to the (low-dimensional) parameter vector r: find best r such that

$$Q(\cdot,\cdot)\approx \tilde{Q}(\cdot,\cdot,r).$$

Frazzoli (MIT)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

16.410 / 16.413 Principles of Autonomy and Decision Making $\ensuremath{\mathsf{Fall}}$ _2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.