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Assignments

•� Remember:
Problem Set #5 due today, Wed, Oct. 6th, 2010. 

Problem Set #6 out today. 

•� Reading:
–� Today: Dechter, R., I. Meiri, J. Pearl, “Temporal Constraint 

Networks,” Artificial Intelligence, 49, pp. 61-95,1991.

–� Wednesday: Logic [AIMA] Ch. 7, 8

•� Exam:
–� Mid-Term - October 20th.
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Executing Time Critical Missions�

4

An effective Scrub Nurse: 

•� works hand-to-hand, face-to-face with surgeon, 

•� assesses and anticipates needs of surgeon, 

•� provides assistance and tools in order of need, 

•� responds quickly to changing circumstances, 

•� responds quickly to surgeon’s cues and requests. 

Team Coordination under Time Pressure�

Image credit: NASA.

Images of scrub nurses and surgeons
removed due to copyright restrictions.
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Human-Robot Teaming�

6

Robust Execution of Time-critical Tasks 

•� Executing Simple Plans 

•� Robust Execution 

–� Describing Temporal Plans 

–� Checking Temporal Plan Consistency 

–� Scheduling Plans 

–� Robust, Dynamic Scheduling 

Images of human-robot teaming (in surgical, space, and rescue settings)
removed due to copyright restrictions.
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Partial Order Plans <Actions, Orderings, Links>

Remove Irrelevant Commitments 
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Partial Order Plan Execution 

Start�

Partial Order Plan Execution 

Initialize queue Ready, with action Start..

Mark all actions as “not executed.”

Loop

•� If Ready is empty, Then terminate.

•� Dequeue action a from Ready and execute.

•� When completed, mark a as executed.

•� For each succeeding action b such that
a < b or linked(a,b,p),

–� If every preceding action c is marked “executed,”
such that c < b or linked(c,b,p’),

–� Then queue b on Ready.
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Plan Execution w Action Monitoring 

Start�

Plan Execution w Action Monitoring 

Initialize queue Ready, with action Start.

Mark all actions as “not executed.”

Loop

•� If Ready is empty, Then terminate.

•� Dequeue action a from Ready.

•� If a’s preconditions satisfied, then execute, else fail.

•� When completed, mark a as executed.

•� For each succeeding action b such that
a < b or linked(a,b,p),

–� If every preceding action c is marked “executed,”
such that c < b or linked(c,b,p’),

–� Then queue b on Ready.
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Execution Monitoring 
•�Check if any preconditions of unexecuted actions are violated. 

�� Check if a causal link that crosses the current time is violated. 

Plan Execution w Execution Monitoring 

Initialize agenda Ready with action Start

Initialize agenda ActiveLinks to empty 

Mark all actions as “not executed.”

Loop

•� If Ready is empty then terminate. 

•� For each link on ActiveLinks

–� If the proposition for link doesn’t hold,
Then return failure 

•� Dequeue action a from Ready

•� If preconditions of action are satisfied

–� Then execute 

–� Else return failure 

•� … (continued on next slide) 
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Plan Execution w Execution Monitoring (cont) 

Loop

•� … (continued from previous slide)

•� Mark a as “executed.”

•� For each action c such that linked(c,a,p).

–� dequeue <c,a,p> from ActiveLinks.

•� For each action d such that linked(a,d,p).

–� queue <a,d,p> on ActiveLinks.

•� For each action b such that a < b or linked(a,b,p).

–� If every action c has been executed,
such that c < b or linked(c,b,p’)

–� Then queue b on Ready.

16

Robust Execution of Time-critical Tasks 

•� Executing Simple Plans 

•� Robust Execution 
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Executing Timed Programs and Plans Robustly 

Start End
Rover1.goto(p4)

Rover2.goto(p1)

Rover1.imageTargets Rover1.goto(p5) Rover1.goto(p3)

Rover2.goto(p2)Rover2.imageTargets Rover2.goto(p3)

imageScienceTargets(Rover1, Rover2)  
{Parallel

   {Sequence 

[5,10] Rover1.goto(p4);

[5,10] Rover1.goto(p5);
[2,5] Rover1.imageTargets();  

[5,10] Rover1.goto(p3); 

   }, 

   {Sequence 

 [5,10] Rover2.goto(p1); 

 [5,10]Rover2.imageTargets(); 
        [2,5] Rover2.goto(p2); 

 [5,10] Rover2.goto(p3); 

   } 

}

p1

p2
p3

p4

p5
1

2

[5,10] [5,10] [2,5] [5,10]

[5,10] [5,10] [2,5] [5,10]

Agents adapt to temporal disturbances in a coordinated manner 

by scheduling the start of activities on the fly. 
In general, categorize durations into controllable and uncontrollable (STNUs).�

in RMPL [williams et al]�

18

To Execute a Temporal Plan�

offline 

online 

�

3. Schedule Plan�

�

1. Describe Temporal Plan�

�

�
�

2. Test Consistency�

�

4. Execute Plan�

�

Part I : Scheduling Off-line 

�

4. Dynamically Execute Plan�

�

�

3. Reformulate Plan�

�

2. Test Consistency�

�

1. Describe Temporal Plan�

�

�

Part II: Scheduling Online 
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Start

End

Rover1.goto(p4)

Rover2.goto(p1)

Rover1.imageTargets 

Rover1.goto(p5)

Rover1.goto(p3)

p1

p2
p3

p4

p5
1

2

Rover1.goto(p5)

Rover1.imageTargets 

Rover2.goto(p2)

Rover2.imageTargets 

Rover2.goto(p3)

Rover2.goto(p2) Rover2.goto(p3)

Rover2.imageTargets 

Ask site1 = ¬¬ obstructed

Ask site1 = ¬ obstructed

Rover2.imageTargets

sk site1 = ¬ obstructed

 Failure

Tell site1 = ¬¬ obstructedobstructed

imageScienceTargets(Rover1, Rover2) 

{

   {

        [5,10] Rover1.goto(p4);

choose {

            { 

                do { [5,10] Rover1.goto(p5); }

maintaining( site1 = ¬ obstructed);

                 [2,5] Rover1.imageTargets();  

           } 

           { 

              [2,5] Rover1.imageTargets();  

              [5,10] Rover1.goto(p5); 

           } 

          }; 

         [5,10] Rover1.goto(p3); 

    },

    { 

       [5,10] Rover2.goto(p1);

choose {

         { 

             do { [2,5 ]Rover2.imageTargets(); } 

maintaining ( site1 = ¬ obstructed);           

             [5,10] Rover2.goto(p2); 

             [5,10] Rover2.goto(p3); 

         }

          { 

                [5,10] Rover2.goto(p2);

               [5,10] Rover2.goto(p3); 

               [2,5] Rover2.imageTargets();  

}

      } 

}

Expanding Robustness by

Dynamically Choosing Methods

distributed Kirk�
[Kim:Effinger;Block; Wehowsky]]�

in RMPL [williams et al]�

20

Expanding Robustness by

Dynamically Assigning Tasks 

20

Remove one ball from red bin�

Remove one ball from blue bin�

Remove one ball from green bin�

Remove one ball from pink bin�

Swap black striped ball�

•� Right Robot picks up and 
offers ball.�

•� Robots perform hand-to-hand 
swap.�

Swap red striped ball�

•� Left Robot picks up and offers 
ball.�

•� Robots perform hand-to-hand 
swap.�

  tstart�   tfinish�

(Someone) Remove one ball from red bin�

Remove one ball from red bin�

L[32,39] V R[42,55]�

OR�

Agents choose and�
schedule activities�

Chaski, Drake, Kirk�
[Kim; Shah; Conrad]�

in RMPL [williams et al]�
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Expanding Robustness 

by Dynamically Assigning Tasks 

•� Off-nominal

•� Partner adapts 

in response to 

teammate’s

failure.

22

Expanding Robustness by�
Coordinating Underactuated Systems

Chekov; Sulu: Kongming�
[Hofmann; Leaute; Blackmore; Ono; Li]�
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Expanding Robustness by�
Coordinating Underactuated Systems�

Chekov; Sulu: Kongming�
[Hofmann; Leaute; Blackmore; Ono; Li]�

24

Robust Execution of Time-critical Tasks 

•� Executing Simple Plans 

•� Robust Execution 

–� Describing Temporal Plans 

–� Checking Temporal Plan Consistency 

–� Scheduling Plans 

–� Robust, Dynamic Scheduling 
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To Execute a Temporal Plan�

offline 

online 

�

3. Schedule Plan�

�

1. Describe Temporal Plan�

�

�
�

2. Test Consistency�

�

4. Execute Plan�

�

Part I : Schedule Off-line   Part II: Schedule Online 

�

4. Dynamically Execute Plan�

�

�

3. Reformulate Plan�

�

2. Test Consistency�

�

1. Describe Temporal Plan�

�

�

26

Describing Temporal Plans�
�
�

•�  Activities to perform�
•� Relationships among activities�

Egress/ Setup

Remove NH3 Shunt Vent NH3 Shunt & Stow Release Loop A Tray

Configure Vent Tools Fluid Caps SFU Reconfig Release Loop B Tray

t = tmax

Image credit: NASA.
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Describing Temporal Plans�
�
Qualitative Temporal Relationships (Allen 83)�

�

Y�

X� Y�

X� Y�

X� Y�

Y�X�

Y�X�

Y� X�

X�

X before Y

X meets Y

X overlaps Y

X during Y

X starts Y

X finishes Y

X equals Y

Y after X

Y met-by X

Y overlapped-by X

Y contains X

Y started-by X

Y finished-by X

Y equals X

X disjoint Y

28

Describing Temporal Plans�
�
Example: Deep Space One Remote Agent Experiment�

Max_ThrustIdle Idle

Poke

Timer 

Attitude

Accum thrust 

SEP Action 

SEP_Segment

Th_Seg

contained_by�

equals� equals�
meets�

meets�

contained_by�

Start_Up Start_Up
Shut_Down Shut_Down

Thr_Boundary

Thrust ThrustThrustThrustStandby Standby Standby

Th_Sega Th_Seg Th_SegIdle_Seg Idle_Seg

Accum_NO_Thr Accum_Thr Accum_Thr Accum_Thr Thr_Boundary

contained_by�

CP(Ips_Tvc) CP(Ips_Tvc) CP(Ips_Tvc)

contained_by�

Th_Seg
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Describing Temporal Plans�
�
Adding Metric Information�

•� Going to the store takes at least 10 min and at 
most 30 min. 

•� Bread should be eaten within one day of baking.

Activity: Going to the store�

[10min, 30min]�

Activity: Bake Bread�
[0d, 1d]�

Activity: Eat Bread�

30

Describing Temporal Plans�
�
Simplify by reducing interval relations to�

 relations on timepoints.�

Activity A�

Start Activity A�

A+� A-�

End Activity A�
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Describing Temporal Plans�
�
Qualitative Temporal Relationships as timepoint inequalities�

�

Y�

X� Y�

X� Y�

X� Y�

Y�X�

Y�X�

Y� X�

X�

X before Y

X meets Y

X overlaps Y

X during Y

X starts Y

X finishes Y

X equals Y

X+ < Y-

X+ = Y-

Y- < X+ and X- < Y+ �

Y- < X- and X+ < Y+ �

X- = Y- and X+ < Y+ �

X- < Y- and X+ = Y+ �

X- = Y- and X+ = Y+ �

X disjoint Y X+ < Y- or Y+ < X- �

Y-�X+�
[0,inf]�

Y-�
[0,0]�

X+�

32

Describing Temporal Plans�
�
Encode metric Information by generalizing inequalities 

to interval constraints.�
•� Going to the store takes at least 10 min and at 
most 30 min. 

•� Bread should be eaten within one day of baking.

Start Going to Store�

G-� G+�

End Going to Store�

[10,30]�
10 < [G+ - G-] < 30�

End Bake Bread�

B+� E-�

Start Eat Bread�

[0,1]�
0 < [E- - B+] < 1�
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•� Simple Temporal Problem (STP)�
•� variables X1,…Xn, representing �

time points with real-valued domains, �
•� binary constraints of the form:�

Temporal Relations Described as an STP�

X1� X3�

X2�

[l1, u1]�

[l2, u2]� [l3, u3]�

Xk � Xi( ) � aik ,bik[ ].

Sufficient to represent:�
•� all Allen relations but 1…�
•� simple metric constraints�

Can’t represent:�
•� Disjoint activities�

34

•� Temporal Constraint 
Satisfaction Problem (TCSP)�

•� Extends STP by allowing multiple 
intervals for each binary constraints: �

Temporal Relations Described as a TCSP�

X1� X2�

[l1, u1]V [l2, u2]V…V[ln,un] �

Supports:�

•�Multiple time windows for accomplishing an 
activity.�

•�Different methods of accomplishing an activity.�

�

X1� X2�

[5, 7] V [10, 11]�

Xk � Xi( ) � P aik ,bik[ ] | aik � bik{ }( ).
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•� Disjunctive Temporal Problem (DTP)�
•� Extends TCSP by allowing non-binary constraints. �

Temporal Relations Described as a DTP�

MS� D-�

[0, inf]�
D+� S-� S+�

I-� I+�

[5, 10]� [0, inf]� [4, 5]�

[15, 15]�

[1, 1]�

[0, inf]�

Activities of Mars Rover: Drill (D) , Image (I), Send Data (S)�

Drilling causes vibration.�

Image cannot occur �

•� during the last two minutes before drilling, or�

•� during the first minute after drilling ends.�

2 < D+ - I+ < inf�
OR�

1 < I - - D+ < inf�

Send data�Drill�

Image�

36

•� Disjunctive Temporal Problem (DTP)�
•� extends a TCSP by allowing non-binary constraints. �

A Temporal Plan Described as a DTP�

DTP� -�non-binary constraints�

-�multiple intervals in constraints�

TCSP� -� binary constraints�

-�multiple intervals�

STP�
-� binary constraints�

-�simple intervals�
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RMPL - Nested Compositions:�
•� Activity�

•� Sequence�
•� Parallel�

•� Choice�

•� With Time�

Temporal Plan Networks and Conditional STPs�

�������
��
�

��
��
� ������

� �������� ������

��
��
�

��

�����

�����

�����

��

� �

� �������� ������

� �������� ������

� � � �

� �������� ������

� �

��
��
�

�����

�����

��
��
�

�

�����

p1

p2

p4

p5
1

2

TPN:�
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To Execute a Temporal Plan�

offline 

online 

�

3. Schedule Plan�

�

1. Describe Temporal Plan�

�

�
�

2. Test Consistency�

�

4. Execute Plan�

�

Part I : Schedule Off-line
[1,10]�

[0,9]�

[1,1]�

[2,2]�

A�
B�

C�

D�
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Input:�An STP <X, C> where Cj = <Xk, Xi, lj, uj>�
�

�
�

�

�
�

�
Output: True iff there exists an X satisfying C�

Consistency of an STP�

[1,10]�

[0,9]�

[1,1]�

[2,2]�

A�
B�

C�
D�

40

Map STP to Equivalent Distance Graph 

For efficient 

inference 

Idea: Map STN to distance (weighted) graph and check for negative cycles. 

•� Map upper bound to outgoing, non-negative arc. 

•� Map lower bound to incoming, negative arc. 

[13,13] 

[19,19] 

13

-13

19

-19

l  Xj – Xi  u�

Xj – Xi  u�

Xi – Xj  - l�
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STP Consistency 

•� Example of inconsistent constraint: 

–� An STP is consistent iff its distance graph has no negative 

cycles.

–� Detect by computing shortest path from one node to all 
other nodes. 

•� Single Source Shortest Path (SSSP) 

A B
[2, 1] 

A B

1

-2

42

STP Consistency: 

Generic Labeling Algorithm 

Detect negative cycles by computing the shortest-path
from a single node to all other nodes (Single Source Shortest Path).

1.� For all nodes s in graph G 

2.� d(s) = inf 

3.� d(sstart) = 0 

4.� while some arc(i,j) is violating, 

5.�          d(j) = d(i) + c(i,j) 

d(A) = inf d(B) = inf 
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STP Consistency: 

Generic Labeling Algorithm 

Can detect negative cycles by just computing the shortest-path from a single node to 
all the other nodes (Single Source Shortest Path)

1.� For all nodes s in graph G 

2.�    d(s) = inf 

3.� d(sstart) = 0 

4.� while some arc(i,j) is violating, 

5.�          d(j) = d(i) + c(i,j) 

d(A) = 0 d(B) = inf 

44

STP Consistency: 

Generic Labeling Algorithm 

Can detect negative cycles by just computing the shortest-path from a single node to 
all the other nodes (Single Source Shortest Path)

1.� For all nodes s in graph G 

2.�    d(s) = inf 

3.� d(sstart) = 0 

4.� while some arc(i,j) is violating, 

5.� d(j) = d(i) + c(i,j) 

d(A) = 0 d(B) = inf 

arc(i,j) is violating if, 

d(j) > d(i) + c(i,j) 
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STP Consistency: 

Generic Labeling Algorithm 

Can detect negative cycles by just computing the shortest-path from a single node to 
all the other nodes (Single Source Shortest Path)

1.� For all nodes s in graph G 

2.�    d(s) = inf 

3.� d(sstart) = 0 

4.� while some arc(i,j) is violating, 

5.� d(j) = d(i) + c(i,j) 

d(A) = 0 d(B) = 2 

46

STP Consistency: 

Generic Labeling Algorithm 

Can detect negative cycles by just computing the shortest-path from a single node to 
all the other nodes (Single Source Shortest Path)

1.� For all nodes s in graph G 

2.�    d(s) = inf 

3.� d(sstart) = 0 

4.� while some arc(i,j) is violating, 

5.� d(j) = d(i) + c(i,j) 

d(A) = -1 d(B) = 2 
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STP Consistency: 

Generic Labeling Algorithm 

Can detect negative cycles by just computing the shortest-path from a single node to 
all the other nodes (Single Source Shortest Path)

1.� For all nodes s in graph G 

2.�    d(s) = inf 

3.� d(sstart) = 0 

4.� while some arc(i,j) is violating, 

5.� d(j) = d(i) + c(i,j) 

d(A) = -1 d(B) = 1 

48

STP Consistency: 

Generic Labeling Algorithm 

Can detect negative cycles by just computing the shortest-path from a single node to 
all the other nodes (Single Source Shortest Path)

1.� For all nodes s in graph G 

2.�    d(s) = inf 

3.� d(sstart) = 0 

4.� while some arc(i,j) is violating, 

5.� d(j) = d(i) + c(i,j) 

d(A) = -2 d(B) = 1 
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STP Consistency: 

Generic Labeling Algorithm 

Can detect negative cycles by just computing the shortest-path from a single node to 
all the other nodes (Single Source Shortest Path)

1.� For all nodes s in graph G 

2.�    d(s) = inf 

3.� d(sstart) = 0 

4.� while some arc(i,j) is violating, 

5.� d(j) = d(i) + c(i,j) 

d(A) = -2 d(B) = 0 

50

STP Consistency: 

Generic Labeling Algorithm 

Can detect negative cycles by just computing the shortest-path from a single node to 
all the other nodes (Single Source Shortest Path)

1.� For all nodes s in graph G 

2.�    d(s) = inf 

3.� d(sstart) = 0 

4.� while some arc(i,j) is violating, 

5.� d(j) = d(i) + c(i,j) 

d(A) = -3 d(B) = 0 
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STP Consistency: 

Generic Labeling Algorithm 

Can detect negative cycles by just computing the shortest-path from a single node to 
all the other nodes (Single Source Shortest Path)

1.� For all nodes s in graph G 

2.�    d(s) = inf 

3.� d(sstart) = 0 

4.� while some arc(i,j) is violating, 

5.� d(j) = d(i) + c(i,j) 

d(A) = -3 d(B) = -1 

52

STP Consistency: 

Generic Labeling Algorithm 

Can detect negative cycles by just computing the shortest-path from a single node to 
all the other nodes (Single Source Shortest Path)

1.� For all nodes s in graph G 

2.�    d(s) = inf 

3.� d(sstart) = 0 

4.� while some arc(i,j) is violating, 

5.� d(j) = d(i) + c(i,j) 

d(A) = -4 d(B) = -1 
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STP Consistency: 

Generic Labeling Algorithm 

Can detect negative cycles by just computing the shortest-path from a single node to 
all the other nodes (Single Source Shortest Path)

1.� For all nodes s in graph G 

2.�    d(s) = inf 

3.� d(sstart) = 0 

4.� while some arc(i,j) is violating, 

5.� d(j) = d(i) + c(i,j) 

d(A) = -4 d(B) = -1 

How do we detect inconsistency? 
1.� One way: Check for any d-value to drop below –nC

54

STP Consistency: 

FIFO Labeling Algorithm 

Can detect negative cycles by just computing the shortest-path from a single node to 
all the other nodes (Single Source Shortest Path)

1.� For all nodes s in graph G 

2.�    d(s) = inf 

3.� d(sstart) = 0 

4.� while some arc(i,j) is violating,

5.�          d(j) = d(i) + c(i,j) 

d(A) = -4 d(B) = -1 

•�Maintain queue of updated nodes. 

•�For each node on queue, check for 

outgoing arcs that may be potentially 

violating.
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To Execute a Temporal Plan�

offline 

online 

�

3. Schedule Plan�

�

1. Describe Temporal Plan�

�

�
�

2. Test Consistency�

�

4. Execute Plan�

�

Part I : Schedule Off-line
[1,10]�

[0,9]�

[1,1]�

[2,2]�

A�
B�

C�

D�

56

Scheduling

X0 Ls Le

Ss Se

[10,20] [30,40]

[10,20]

[40,50]

[60,70]

•� Idea: Expose Implicit Constraints in STP 

X0� Ls� Le�

S s� S e�

[40,50]�

[10,20]� [30,40]�

[20,30]�
[10,20]�

[60,70]�

[40,50]�

[20,30]�

[50,60]�

[10
,20

]�
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Scheduling with All Pairs Shortest Path Graph 

-10 

20

-30 

40

-10 
20

-40 

50

X0 Ls Le

Ss Se

70

-60 

X0 Ls Le

Ss Se

[10,20] [30,40]

[10,20]

[40,50]

[60,70]

•� Idea: Expose Implicit Constraints in STP 

•� Compute All-Pairs-Shortest-Path (APSP) of d-graph 
(Floyd-Warshall). 

58

Distance Graph Gd implies Constraints

•� Path constraint: i0 =i, i1 = . . ., ik = j 

� Conjoined path constraints result in the shortest 
path as bound: 

where dij is the shortest path from i to j

X j � Xi � uij�1 ,i j
j=1

k

�

Xj � Xi � dij
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All Pairs Shortest Path  
Floyd-Warshall (alternatively Johnson) 

1. for i := 1 to n do dii     0; 

2. for i, j := 1 to n do dij     w(i,j); 

3. for k := 1 to n do 

4.   for i, j := 1 to n do 

5.     dij     min{dij, dik + dkj};

Complexity O(n3)

i�
k�

j�

Initialize distances�

Take minimum distance�
over all triangles�

60

APSP

-10 

20

-30 

40

-10 
20

-40 

50

20

X0 Ls Le

Ss Se

 inf  inf 70

-10 40  inf  inf 

 inf -30 -10  inf 

inf  inf 20 50

-60  inf  inf 40

Initial d-graph 

70

-60 

0

Slatest = (d01, � , d0n)

i = X0, k = Ls, j = L
�
3. for k := 1 to n do�
4.   for i, j := 1 to n do�
5.     dij     min{dij, dik + dkj};�
�

60�
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Scheduling with All Pairs Shortest Path Graph 

20 50 30 70

-10 40 20 60

-40 -30 -10 30

-20 -10 20 50

-60 -50 -20 40

APSP d-graph 

X0� Ls� Le�

S s� S e�

[40,50]�

[10,20]� [30,40]�

[20,30]�
[10,20]�

[60,70]�

[40,50]�

[20,30]�

[50,60]�

[10
,20

]�

After Floyd Warshall�
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Scheduling: Latest Solution 

-10 

20

-30 

40

-10 
20

-40 

50

20

X0 Ls Le

Ss Se

50 30 70

-10 40 20 60

-40 -30 -10 30

-20 -10 20 50

-60 -50 -20 40

APSP d-graph 

70

-60 

reference0

Slatest = (d01, � , d0n)

Active constraints�
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Scheduling: Earliest Solution 

-10 

20

-30 

40

-10 
20

-40 

50

20

X0 Ls Le

Ss Se

50 30 70

-10 40 20 60

-40 -30 -10 30

-20 -10 20 50

-60 -50 -20 40

APSP d-graph 

70

-60 

reference0

Searliest = (-d10, � , dn0)

Active constraints�
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Scheduling: Window of Feasible Values 

20 50 30 70

-10 40 20 60

-40 -30 -10 30

-20 -10 20 50

-60 -50 -20 40

APSP d-graph 

0 Latest Times 

Earliest Times 

•�Ls in [10, 20] 

•�Le in [40, 50] 

•�Ss in [20, 30] 

•�Se in [60, 70] 
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Scheduling without Search: 

 Solution by Decomposition 

Key ideas 

•� Incrementally tighten feasible intervals,

  as commitments are made. 

•� Perform on demand. 

•� Can assign variables in any order, without backtracking. 

X0� Ls� Le�

S s� S e�

[40,50]�

[10,20]� [30,40]�

[20,30]�
[10,20]�

[60,70]�

[40,50]�

[20,30]�

[50,60]�

[10
,20

]�
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Scheduling without Search: 

 Solution by Decomposition 

Key ideas 

•� Incrementally tighten feasible intervals,

  as commitments are made. 

•� Perform on demand. 

•� Can assign variables in any order, without backtracking. 

X0� Ls� Le�

S s� S e�

[40,50]�

[10,20]� [30,40]�

[20,30]�
[10,20]�

[60,70]�

[40,50]�

[20,30]�

[50,60]�

[10
,20

]�

•� Select value for X0�

� ��

t=0
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Scheduling without Search: 

 Solution by Decomposition 

Key ideas 

•� Incrementally tighten feasible intervals,

  as commitments are made. 

•� Perform on demand. 

•� Can assign variables in any order, without backtracking. 

X0� Ls� Le�

S s� S e�

[40,50]�

[10,20]� [30,40]�

[20,30]�
[10,20]�

[60,70]�

[40,50]�

[20,30]�

[50,60]�

[10
,20

]�

•� Select value for X0�

•� Select value for Ls, 
consistent with X0�

� ��

t=0 [10,20]
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Scheduling without Search: 

 Solution by Decomposition 

Key ideas 

•� Incrementally tighten feasible intervals,

  as commitments are made. 

•� Perform on demand. 

•� Can assign variables in any order, without backtracking. 

X0� Ls� Le�

S s� S e�

[40,50]�

[10,20]� [30,40]�

[20,30]�
[10,20]�

[60,70]�

[40,50]�

[20,30]�

[50,60]�

[10
,20

]�

•� Select value for X0�

•� Select value for Ls, 
consistent with X0�

•� Select value for Le, 
consistent with X0, Ls�

� ��

t=0 t=15 [45,50]
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Scheduling without Search: 

 Solution by Decomposition 

Key ideas 

•� Incrementally tighten feasible intervals,

  as commitments are made. 

•� Perform on demand. 

•� Can assign variables in any order, without backtracking. 

X0� Ls� Le�

S s� S e�

[40,50]�

[10,20]� [30,40]�

[20,30]�
[10,20]�

[60,70]�

[40,50]�

[20,30]�

[50,60]�

[10
,20

]�

•� Select value for X0�

•� Select value for Ls, 
consistent with X0�

•� Select value for Le, 
consistent with X0, Ls�

� ��

t=0 t=15 t=45
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Scheduling without Search: 

 Solution by Decomposition 

Key ideas 

•� Incrementally tighten feasible intervals,

  as commitments are made. 

•� Perform on demand. 

•� Can assign variables in any order, without backtracking. 

X0� Ls� Le�

S s� S e�

[40,50]�

[10,20]� [30,40]�

[20,30]�
[10,20]�

[60,70]�

[40,50]�

[20,30]�

[50,60]�

[10
,20

]�

•� Select value for X0�

•� Select value for Ls, 
consistent with X0�

•� Select value for Le, 
consistent with X0, Ls�

•� Select  value for Ss, 
consistent with X0, Ls, 
Le�

t=0 t=15 t=45

[25,30]
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Scheduling without Search: 

 Solution by Decomposition 

Key ideas 

•� Incrementally tighten feasible intervals,

  as commitments are made. 

•� Perform on demand. 

•� Can assign variables in any order, without backtracking. 

X0� Ls� Le�

S s� S e�

[40,50]�

[10,20]� [30,40]�

[20,30]�
[10,20]�

[60,70]�

[40,50]�

[20,30]�

[50,60]�

[10
,20

]�

•� Select value for X0�

•� Select value for Ls, 
consistent with X0�

•� Select value for Le, 
consistent with X0, Ls�

•� Select  value for Ss, 
consistent with X0, Ls, 
Le�

t=0 t=15 t=45

t=30
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Scheduling without Search: 

 Solution by Decomposition 

Key ideas 

•� Incrementally tighten feasible intervals,

  as commitments are made. 

•� Perform on demand. 

•� Can assign variables in any order, without backtracking. 

X0� Ls� Le�

S s� S e�

[40,50]�

[10,20]� [30,40]�

[20,30]�
[10,20]�

[60,70]�

[40,50]�

[20,30]�

[50,60]�

[10
,20

]�

•� Select value for X0�

•� Select value for Ls, 
consistent with X0�

•� Select value for Le, 
consistent with X0, Ls�

•� Select  value for Ss, 
consistent with X0, Ls, 
Le�

•� Select value for Se…�

t=0 t=15 t=45

t=30 t=70
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To Execute a Temporal Plan�

offline 

online 

�

3. Schedule Plan�

�

1. Describe Temporal Plan�

�

�
�

2. Test Consistency�

�

4. Execute Plan�

�

Part I : Schedule Off-line Problem: delays and fluctuations in task 
duration can cause plan failure.�

�

Observation: Least commitment 
temporal plans leave room to 
adapt.�

�

Flexible Execution adapts through 
dynamic scheduling [Muscettola et al]�
–� Assigns time to event when 

executed�
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To Execute a Temporal Plan�

offline 

online 

�

3. Schedule Plan�

�

1. Describe Temporal Plan�

�

�
�

2. Test Consistency�

�

4. Execute Plan�

�

Part I : Schedule Off-line Part II: Schedule Online 

�

4. Dynamically Execute Plan�

�

�

3. Reformulate Plan�

�

2. Test Consistency�

�

1. Describe Temporal Plan�

�

�
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To Execute a Temporal Plan�

offline 

online 

Part I : Schedule Off-line Part II: Schedule Online 

�

4. Dynamically Execute Plan�

�

�

3. Reformulate Plan�

�

2. Test Consistency�

�

1. Describe Temporal Plan�

�

�

[1,10]�

[0,9]�

[1,1]�

[2,2]�

[0,9]�

[1,1]�

[1,1]�

A�
B�

C�

D�

A�

B�

C�

D�

[0,9]�

[1,1]�

[1,1]�A�

B�

C�

D�
t=0�

t=2�

t=3�

t=4�

How do we schedule on line?�

76

Dynamic Scheduling by Decomposition?�

Consider a Simple Example�

C

D

B

[2,11]�

A [1,1]�

[0,10]�

[0,10]� [2,2]�

[1,1]�

•� Select executable timepoint and assign�

•� Propagate assignment to neighbors�
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Dynamic Scheduling by Decomposition?�

Consider a Simple Example�

C

D

B

[2,11]�

A [1,1]�

[0,10]�

[0,10]� [2,2]�

[1,1]�

•� Select executable timepoint and assign�

•� Propagate assignment to neighbors�

At = 0 

[0, 10] 

[0, 10] 

[2, 11] 
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Dynamic Scheduling by Decomposition?�

Consider a Simple Example�

C

D

B

[2,11]�

A [1,1]�

[0,10]�

[0,10]� [2,2]�

[1,1]�

•� Select executable timepoint and assign�

•� Propagate assignment to neighbors�

At = 0 

t = 3 

[2, 2] 

[4, 4] 

Uh oh! �

C must be 
executed at t =2 �
in the past! �

How can we fix it?�
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Dispatching Execution Controller�

•� How can we fix it?�
–� Assignments must monotonically increase in value.�

–� Respect induced orderings.�

•� Execute an event when enabled and alive�

�
–� Enabled –  Predecessors are completed�

�

–� Alive – Current time within bound of task�

A�

C�

D�

B�
[0,10]�

[2,11]�

[0,10]�

[1,1]�

[2,2]�

[1,1]�
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Dispatching Execution Controller�

Initially:�
•� E = Time points w/o predecessors�
•� S = { }�

Repeat:�
1.� Wait until current time has advanced 

such that some TP in E is active�
2.� Set TP’s execution time to current time.�

3.� Add TP to S.�
4.� Propagate time of execution to TP’s 

immediate neighbors�

5.� Add to E, all immediate neighbors that 
become enabled�

•� TP enabled if all +lb edges 
starting at TP have their 
destination in S.�

A�

C�

D�

B�
[0,10]�

[2,11]�

[0,10]�

[1,1]�

[2,2]�

[1,1]�
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Dynamic Scheduling through Dispatchable Execution 

Compiler

Dispatcher

Temporal 

Plan 

Observations of 

past events 

Generate dynamic 

schedule 

offline 

online 

Image credit: NASA.



MIT OpenCourseWare
http://ocw.mit.edu 

16.410 / 16.413 Principles of Autonomy and Decision Making
Fall 2010

 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms



