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From deterministic to stochastic planning problems

A basic planning model for deterministic systems (e.g., graph/tree search
algorithms, etc.) is :

Planning Model (Transition system + goal)

A (discrete, deterministic) feasible planning model is defined by

A countable set of states S.
A countable set of actions A.
A transition relation →⊆ S ×A× S.
An initial state s1 ∈ S.
A set of goal states sG ⊂ S.

We considered the case in which the transition relation is purely
deterministic: if (s, a, s ′) are in relation, i.e., (s, a, s ′) ∈→, or, more
concisely, s

a−→ s ′, then taking action a from state s will always take the
state to s ′.
Can we extend this model to include (probabilistic) uncertainty in the
transitions?
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Markov Decision Process

Instead of a (deterministic) transition relation, let us define transition
probabilities; also, let us introduce a reward (or cost) structure:

Markov Decision Process (Stoch. transition system + reward)

A Markov Decision Process (MDP) is defined by

A countable set of states S.

A countable set of actions A.

A transition probability function T : S ×A× S → R+.

An initial state s0 ∈ S.

A reward function R : S ×A× S → R+.

In other words: if action a is applied from state s, a transition to
state s ′ will occur with probability T (s, a, s ′).

Furthermore, every time a transition is made from s to s ′ using action
a, a reward R(s, a, s ′) is collected.
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Some remarks

In a Markov Decision Process, both transition probabilities and
rewards only depend on the present state, not on the history of the
state. In other words, the future states and rewards are independent
of the past, given the present.

A Markov Decision Process has many common features with Markov
Chains and Transition Systems.

In a MDP:

Transitions and rewards are stationary.

The state is known exactly. (Only transitions are stochastic.)

MDPs in which the state is not known exactly (HMM + Transition
Systems) are called Partially Observable Markov Decision Processes
(POMDP’s): these are very hard problems.
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Total reward in a MDP

Let us assume that it is desired to maximize the total reward collected
over infinite time.

In other words, let us assume that the sequence of states is
S = (s1, s2, . . . , st , . . .), and the sequence of actions is
A = (a1, a2, . . . , at , . . .); then the total collected reward (also called
utility) is

V =
∞∑
t=0

γtR(st , at , st+1),

where γ ∈ (0, 1] is a discount factor.

Philosophically: it models the fact that an immediate reward is better
than an uncertain reward in the future.

Mathematically: it ensures that the sum is always finite, if the rewards
are bounded (e.g., finitely many states/actions).
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Decision making in MDPs

Notice that the actual sequence of states, and hence the actual total
reward, is unknown a priori.

We could choose a plan, i.e., a sequence of actions: A = (a1, a2, . . .).

In this case, transition probabilities are fixed and one can compute the
probability of being at any given state at each time step—in a similar
way as the forward algorithm in HMMs—and hence compute the
expected reward:

E[R(st , at , st+1)|st , at ] =
∑
s∈S

T (st , at , s)R(st , at , s)

Such approach is essentially open loop, i.e., it does not take
advantage of the fact that at each time step the actual state reached
is known, and a new feedback strategy can be computed based on
this knowledge.

Frazzoli (MIT) Lecture 22: MDPs November 29, 2010 8 / 16



Introduction to value iteration

Let us assume we have a function Vi : S → R+ that associates to
each state s a lower bound on the optimal (discounted) total reward
V ∗(s) that can be collected starting from that state. Note the
connection with admissible heuristics in informed search algorithms.

For example, we can start with V0(s) = 0, for all s ∈ S.

As a feedback strategy, we can do the following: at each state,
choose the action that maximizes the expected reward of the present
action + estimate total reward from the next step onwards.

Using this strategy, we can get an update Vi+1 on the function Vi .

Iterate until convergence...
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Value iteration algorithm

A bit more formally:

Set V0(s)← 0, for all s ∈ S

iterate, for all s ∈ S:

Vi+1(s)← max
a

E
[
R(s, a, s ′) + γVi (s

′)
]

= max
a

∑
s′∈S

T (s, a, s ′)
[
R(s, a, s ′) + γVi (s

′)
]
,

until maxs |Vi+1(s)− Vi (s)| < ε.
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Value iteration example

Let us consider a simple MDP:

The state space is a 10-by-10 grid.

The border cells and some of the interior cells are “obstacles” (marked in
gray).

The initial state is the top-left feasible cell.

A reward of 1 is collected when reaching the bottom right feasible cell. The
discount factor is 0.9.

At each non-obstacle cell, the agent can attempt to move to any of the
neighboring cells. The move will be successful with probability 3/4.
Otherwise the agent will move to a different neighboring cell, with equal
probability.

The agent always has the option to stay put, which will succeed with
certainty.
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Value iteration example

Initial condition:

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
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Value iteration example

After 1 iteration:

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0.75 0

0 0 0 0 0 0 0 0.75 1 0

0 0 0 0 0 0 0 0 0 0
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Value iteration example

After 2 iterations:

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0.51 0

0 0 0 0 0 0 0 0.56 1.43 0

0 0 0 0 0 0 0 1.43 1.9 0

0 0 0 0 0 0 0 0 0 0
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Value iteration example
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Media File (video/quicktime)



Value iteration example

After 50 iterations:

0 0 0 0 0 0 0 0 0 0

0 0.44 0.54 0.59 0.82 1.15 0.85 1.09 1.52 0

0 0.59 0.69 0 0 1.52 0 0 2.13 0

0 0.75 0.90 0 0 2.12 2.55 2.98 3.00 0

0 0.95 1.18 0 2.00 2.70 3.22 3.80 3.88 0

0 1.20 1.55 1.87 2.41 2.92 3.51 4.52 5.00 0

0 1.15 1.47 1.74 2.05 2.25 0 5.34 6.47 0

0 0.99 1.26 1.49 1.72 1.74 0 6.69 8.44 0

0 0.74 0.99 1.17 1.34 1.27 0 7.96 9.94 0

0 0 0 0 0 0 0 0 0 0
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Bellman’s equation

Under some technical conditions (e.g., finite state and action spaces,
and γ < 1), value iteration converges to the optimal value function
V ∗.

The optimal value function V ∗ satisfies the following equation, called
the Bellman’s equation, a nice (perhaps the prime) example of the
principle of optimality

V ∗(s) = max
a

E
[
R(s, a, s ′) + γV ∗(s ′)

]
= max

a

∑
s′∈S

T (s, a, s ′)
[
R(s, a, s ′) + γV ∗(s ′)

]
, ∀s ∈ S.

In other words, the optimal value function can be seen as a fixed
point for value iteration.

The Bellman’s equation can be proven by contradiction.
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Value iteration summary

Value iteration converges monotonically and in polynomial time to
the optimal value function.

The optimal policy can be easily recovered from the optimal value
function:

π∗(s) = arg max
a

E
[
R(s, a, s ′) + γV ∗(s ′)

]
, ∀s ∈ S.

Knowledge of the value function turns the optimal planning problem
into a feedback problem,

Robust to uncertainty

Minimal on-line computations
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