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Deep Learning Refers to...

Machine Learning algorithms designed to

extract high-level abstractions from data

via multi-layered processing architectures

using nonlinear transformations at each layer
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Human Visual System
• Distributed Hierarchical processing in the primate cerebral cortex (1991)
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How To Classify a Face?

• Identify where the face region is
• Foreground Extraction
• Edge Detection

• Classify features of the face
• Identify and describe eyes, nose, mouth areas

• Look at face as a collection of those features

© ACM, Inc. All rights reserved. This content
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Common Architectures

•Deep Convolutional Neural Networks (CNNs)
•Deep Belief Networks (DBNs)
•Recurrent Neural Network
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ImageNet Competition Through Time 

10



Overview

• What is Deep Learning?

• Image Processing 

• CNN Architecture

• Training Process

• Image Classification Results

• Limitations

11



Classic Classification -- Feature Engineering
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What if the techniques could be “learned”?
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Step 1: Convolution - Definition

Informal Definition: Procedure where two sources of information are intertwined.

Formal Definition : 

Discrete : 

Continuous : 
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Convolution - Example

Assume the following kernel/filter : 

1 0 1

0 1 0

1 0 1
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Convolution
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More Information? Fourier Transform!
Sum of a set of sinusoidal gratings differing in spatial frequency, orientation, 

amplitude, phase
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Fourier Transform
● Fourier Transform image itself is weird to visualize -- Phase and Magnitude!

● Magnitude -- orientation information at all spatial scales

● Phase -- contour information
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Why Neural Net

Hubel & Wiesel (1959, 1962) 
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The Structure of a Neuron 
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Combining Neurons into Nets
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Convolution Step
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Convolution Step 
(dot product between filter and input)
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Convolutional Layer
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Activation Step
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Activation Layer
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CNN overview

Convolution 
and 

Activation 
Subsampling 
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Activation Step

Each neuron adds up its inputs, and then feeds the sum into a function -- the 
activation function -- to determine the neuron's output. 

Eg : Sigmoid, tanh, ReLu
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Activation  functions - sigmoid 
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Activation function - tanh
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Activation function - ReLu
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Non-linearity Constraint

Activation function is to introduce non-linearity into the network

Without a nonlinear activation function in the network, NN, no matter how many 
layers it has, will behave like a linear system and we will not be able to mimic 
a ‘complicated’ function

A neural network may very well contain neurons with linear activation functions, 
such as in the output layer, but these require the company of neurons with a 
nonlinear activation function in other parts of the network.
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Convolution Step

An RGB image is represented by a 3 dimensional matrix

The first channel holds the ‘R’ value of each pixel

The second channel holds the ‘G’ value of each pixel

The third channel holds the ‘B’ value of each pixel

Eg: A 32x32 image is represented by a 32x32x3 matrix
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32x32x3

Filter 5x5x3
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32x32x3
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Input Volume vs Output Volume for convolution

W1

H1

D1

W2

H2

D2

W2 = W1 - (filter width) + 1

H2 = H1 - (filter height) + 1

D2 = 1 (D1 = filter depth)

Input Output
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Neurons Activation Map

28x28x1 28x28x1
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32x32x3 ( 28x28x1 ) * 5 
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Parameters

Input volume: 32x32x3

Filter size : 5x5x3

Size of 1 activation map: 28*28*1   

Depth of first layer: 5 

Total Number of neurons: 28*28*5 = 3920

Weights per neuron: 5*5*3 = 75

Total Number of parameters: 75*3920 = 294 000 

Neurons Activation Map
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CNN overview

Convolution 
and 

Activation 
Subsampling 
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Subsampling
Objectives: 

Reduce the size of input/feature space 

Keep output of the most responsive neuron of the given interest region.

Common Methods: 

- Max Pooling

- Average Pooling 

This involves splitting up the matrix of filter outputs into small non-overlapping 
grids and taking the maximum/average 
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Max Pooling
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Input Volume vs Output Volume for Max Pooling 

W1

H1

D1

W2

H2

D2

W2 = W1 - (pool width) + 1

H2 = H1 - (pool height) + 1

D2 = D1

Input Output
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CNN overview

Convolution 
and 

Activation 
Subsampling 

?
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Fully Connected Layer
Neurons in fully connected layers have full connections to all activations in the 
previous layer

...
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Softmax
Typically, output layer has one neuron corresponding to each label/class

The softmax function, or normalized exponential, "squashes" multi-dimensional 
vector  of arbitrary real values to a multi-dimensional vector  of values in the range 
(0, 1) that add up to 1.
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Train the Network (setup the problem)
- The training is in fact to find a set of weights (for the filters) that minimize the cost 

functions, C(w,b).

- Normally, gradient descent algorithm is used to find the optimal

- Therefore, we need to find ∂C/∂wljk and ∂C/∂blj,and we update the weights and bias 
by: 
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Train the Network (compute the gradient) 

- Traditionally, for one training data, If using conventional method (central 
difference) and we have a million weights, the cost function, C(w,b), will 
need to be calculated a million times !! 

- How can we just calculate C(w,b) once? -- (Backpropagation Algorithm, 
Rumelhart, Hinton, and Williams, 1986).
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Backward Propagation of Errors
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Backward Propagation of Errors
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Backward Propagation of Errors
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Backward Propagation of Errors (put it together)

- Proof: http://neuralnetworksanddeeplearning.com/chap2.html
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Backward Propagation of Errors (put it together)
- Tutorial: http://neuralnetworksanddeeplearning.com/chap2.html
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Backward Propagation of Errors (put it together)
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Backward Propagation of Errors (put it together)
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Backward Propagation of Errors (put it together)
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Train the network (Initializing Weights) 

Initialization is need for the gradient descent algorithm and it is critical for the 
learning performance: 
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Initial Weights 

We want to stay away from the saturation area.

Suppose there is n weights coming in one Neuron
Best strategy is: Normal(0,          )
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Example architecture

Alex Net, 61 millions weights
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Preprocessing Tricks and Tips
Suppose we have dataset X = [N X D], where N is number of data points, and D is 
their dimensionality

1. Mean Image Subtraction: Subtraction of the mean across each individual 
feature in dataset 

2. Normalization for Dimension: Division by standard deviation
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Preprocessing Tricks and Tips
3. Principle Component Analysis (PCA) for dimensionality reduction

- Generate covariance matrix across the data
- SVD factorization
- Decorrelation, rotation into Eigenbasis
- Choose a top-k eigenvalues: X’ = [NxK]

4. Whitening
- Divide by eigenvalues (square roots of singular val)
- Result: Zero mean, Identity Covariance
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Data Augmentation

1. Rotations

2. Reflections

3. Scaling

4. Cropping

5. Color space 
remapping

6. Randomization!
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Revisiting the ImageNet Competition (ILSVRC 2010)

Model Top-1 error rate Top-5 error rate

Sparse coding 0.47 0.28

SIFT + FVs 0.46 0.26

CNNs 0.37 0.17
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Krizhevsky, Alex et al. Imagenet classification 
with deep convolutional neural nets. NIPS 2012 69
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Google Street View House Numbers
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“Multi-digit Number Recognition from Street View Imagery using Deep 
Convolutional Neural Networks” by Ian J. Goodfellow, Yaroslav Bulatov, 
Julian Ibarz,   Sacha Arnoud, Vinay Shet

Courtesy of Goodfellow, Ian et al. Used with permission.
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Recognizing Hand Gestures-HCI application

N. Jawad, D. Frederick, A. Gianni, C. Dan and M. Ueli, “Max-pooling convolutional 
neural networks for vision-based hand gesture recognition”, IEEE International 
Conference on Signal and Image Processing Applications, 2011. 
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Extended Image Classification: Video Classification

Extend image classification by adding temporal component to classify videos

Note that this adds additional complexity, but the underlying system is the same: Convolutional 
Neural Nets
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Even the Best have Issues

Microsoft won the most recent ImageNet competition and currently holds the 
state-of-the-art implementation 

They can recognize 1000 categories of images, extremely reliably. 

However:

1000 categories does not cover as many objects as you might expect.

Uses 1.28 million images to train

Takes weeks to train on multiple GPUs, with heavy optimization

http://arxiv.org/abs/1512.03385
76
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Szegedy et al. Intriguing Properties of Neural Networks. 2014.

Courtesy of Szegedy, Christian et al. License: CC-BY.
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Nguyen A, Yosinski J, Clune J. Deep Neural Networks are Easily Fooled: High Confidence Predictions for 
Unrecognizable Images. In Computer Vision and Pattern Recognition (CVPR ’15), IEEE, 2015.
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Nguyen A, Yosinski J, Clune J. Deep Neural Networks are Easily Fooled: High Confidence Predictions for 
Unrecognizable Images. In Computer Vision and Pattern Recognition (CVPR ’15), IEEE, 2015.

Gradient Ascent
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Nguyen A, Yosinski J, Clune J. Deep Neural Networks are Easily Fooled: High Confidence Predictions for 
Unrecognizable Images. In Computer Vision and Pattern Recognition (CVPR ’15), IEEE, 2015.

Indirect Encoding
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• Deep Learning is a powerful tool that relies on many 
iterations of processing

• CNNs outperform all other algorithms for image classification 
because of the image processing power of convolutional 
filters

• Backpropagation is used to efficiently train CNNs

• CNNs need tons of data and processing power

Takeaways
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Getting Started With Deep Learning
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Appendix
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Backward Propagation of Errors 

- The gradient of weights and bias can be found by back chaining the auxiliary 
variable, defined as:

- By chain rule:

- The back propagate it (chain rule again):
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Backward Propagation of Errors (put it together)
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Train the Network (put it together)
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Convolution: Filters 
An output pixel’s value is some function of the corresponding input pixel’s 

neighbors

Examples:

Smooth, sharpen, contrast, shift

Enhance edges

Detect particular orientations

Approach: Kernel Convolution

1/9 = 40

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 90 0

0 0 0 90 90 90 90 90 90 0

0 0 0 90 90 90 90 90 90 0

0 0 0 90 90 90 90 90 90 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 1 1

1 1 1

1 1 1
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Convolution for 2D matrices

Given two three-by-three matrices, one a kernel, and the other an image piece, 
convolution is the process of multiplying entries and summing

The output of this operation constitutes the input to a single neuron in the following 
layer. 
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