
Monte Carlo Tree Search

1

By the end, you will know…

• Why we use Monte Carlo Search Trees

• The pros and cons of MCTS

• How it is applied to Super Mario Brothers and
Alpha Go

2

Outline

I. Pre-MCTS Algorithms

II. Monte Carlo Tree Search

III. Applications

3

Motivation

• Want to create programs to play games

• Want to play optimally

• Want to be able to do this in a reasonable
amount of time

4

Backgammon
Monopoly

Card GamesBattleship

Fully
Observable

Partially
Observable

Deterministic
Nondeterministic

(Chance)

Chess
Checkers

Go

5

Pre-MCTS Algorithms

• Deterministic, Fully Observable Games

• “Perfect information”

• Can construct a tree that contains all possible
outcomes because everything is fully
determined

6

Minimize the maximum possible loss

7

Minimax

8

Simple Pruning

9

Alpha-Beta Pruning

• Prunes away branches that cannot influence
the final decision

10

Alpha - Beta

11

24 vs. 2250

© Macmillan Publishers Limited, part of Springer Nature. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

12

https://ocw.mit.edu/help/faq-fair-use/

Outline

I. Pre-MCTS Algorithms

II. Monte Carlo Tree Search

III. Applications

13

Asymmetric Tree Exploration

From Bandit Algorithms for Tree Search, Coquelin and Munos, 2007
14

MCTS Outline

3. Simulate

1. Descend through the tree

4. Update the tree

2. Create new node

Value = Δ

+Δ

+Δ

+Δ

Repeat!

5. When you’re out of time,

Return “best” child.

15

What do we store?

3/4

1/2

For game state k:

nk = # games played involving k

wk,p = # games won (by player p)
that involved k 0/21/2

0/11/1 0/1

1/1

wk,1 / nk

16

1. Descending

We want to expand,

but also to explore.

© Zach Weinersmith. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

7

17

https://ocw.mit.edu/help/faq-fair-use/

1. Descending
Solution: Upper Confidence Bound

3/4

1/2

0/21/2

0/11/1 0/1

1/1

wk,1 / nk

At each step,

maximize UCB1(k, p)

expand explore

18

2. Expanding

Not very complicated.

Make a new node!

Set nk = 0, wk = 0
0/0

19

3. Simulating

Simulating a real game is hard.

Let’s just play the game out randomly!

If we win, Δ = +1. If we lose or tie, Δ = 0.

X X

O

X O O

X X

O O X

X O O

X X

O X O

X O O

X X X

O O

X O O

X wins X wins O wins

X

A lot of options…

20

4. Updating the Tree

3/4

1/2

wk,1 / nk

0/0

Propagate recursively up the
parents.

Given simulation result Δ,

for each k:

nk-new = nk-old + 1

wk,1-new = wk,1-old + Δ
Δ = +1

1/1

2/3

4/5

21

5. Terminating

Return the best-ranked first ancestor!

What determines “best”?

- Highest E[win|k]

- Highest E[win|k] AND most
visited

X X O X O

X

3/5 11/20

X O

22

4/5

2/3

0/21/2

0/11/1 0/1

1/11/1

0/0

Δ = +1

1/1

2/3

0/0

Δ = +1

1/1

2/2

5/6

0/0

Δ = 0

0/1

1/2

2/4

5/7

0/0

Δ = +1

1/1

1/2

3/4

0/0

Δ = 0

0/1

0/3

expand explore23

Why use MCTS?
Pros:
- Grows tree asymmetrically,

balancing expansion and
exploration

Cons:
- Can’t handle extreme tree

depth

- Requires ease of simulation,
massive computation resources

- Relies on random play being
“weakly correlated”

- Many variants, need expertise
to tune

- Theoretical properties not yet
understood

- Easy to adapt to new games

- Heuristics not required, but
can also be integrated

- Can finish on demand, CPU
time is proportional to answer
quality

- Complete: guaranteed to find
a solution given time

- Depends only on the rules

- Trivially parallelizable

24

Screenshots of video games removed due to copyright restrictions.

25

Outline

I. Pre-MCTS Algorithms

II. Monte Carlo Tree Search

III. Applications

… Wait for it…

26

Part III
Applications

27

MCTS-based Mario Controller!

© Nintendo Co., Ltd. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

28
28

https://ocw.mit.edu/help/faq-fair-use/

MCTS modifications for Super Mario Bros

• Single player

• Multi-simulation

• Domain knowledge

• 5-40ms computation time

29

Problem Formulation

• Nodes
• State

• Mario position, speed, direction, etc

• Enemy position, speed, direction, etc

• Location of blocks

• etc

• Value

• Edges
• Mario’s possible action (right, left, jump, etc)

left
jump right

© Nintendo Co., Ltd. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/.

30

https://ocw.mit.edu/help/faq-fair-use/

Calculating Simulation Result

Domain Knowledge: multi-objective weighted sum

Distance 0.1 hiddenBlocks 24 marioStatus 1024

Flower 64 killsByStomp 12 timeLeft 2

Mushrooms 58 killsByFire 4 marioMode 32

greenMushrooms 1 killsByShell 17 Coins 16

Hurts -42 killsTotal 42 Stomps 1

31

Simulation type

Regular Multi-SimulationBest of N

32

Demo

33

https://www.youtube.com/watch?v=HRiEUUC9TUA

Results

Outperforms Astar

34

AlphaGo

© Saran Poroong. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

35

https://ocw.mit.edu/help/faq-fair-use/

The Rules

• Board is 19x19. Starts empty.

• Players alternate placing one stone.

• Capture enemy stone by surrounding

• A player’s territory is all the area surrounded

• Score = Territory + Captured pieces

36

Go vs Chess

CHESS

35 options

80 turns

10120 games

GO

250 options

150 turns

10761 games

37

MCTS modifications for Go

•Combines Neural Networks with MCTS
•2 Policy Networks (slow and fast)

•1 Value Network

38

2 Policy Networks

• Input is the game state, as an image

• Output is a probability distribution over legal actions

• Supervised learning on 30 million positions from human expert games

Slow Policy Network

57% accuracy

3,000 microseconds

Fast Policy Network

24% accuracy

2 microseconds

39

Policy Network – Reinforcement Learning

Next step: predict winning moves, rather than expert human moves

Policy Networks play against themselves!

Tested best Policy Network against Pachi
• Pachi relies on 100,000 MCTS simulations at each turn

• AlphaGo’s Policy Network won 85% of the games (3ms per turn)

• Intuition tends to win over long reflection in Go?

40

Value Network

Trained on positions from the Policy Network’s
reinforcement learning

• Similar to evaluation function (as in DeepBlue), but
learned rather than designed.

•Predictions get better towards end game

41

Using Neural Networks with MCTS

Slow Policy Network guides tree search

Value of state = simulationFast Policy Network + Value Network Output

42

Why use Policy and Value Networks?

They work hand-in-hand.

The VN learns from the PN, and the PN is improved by the VN.

• Value Network Alone
• Would have to exhaustively compare the value of all children

• PN Predicts the best move, narrows the search space by only considering moves that are most
likely victorious

• Policy Network Alone
• Unable to directly compare nodes in different parts of the tree

• VN gives estimate of winner as if the game were played according to the PN
• Values direct later searches towards moves that are actually evaluated to be better

43

Why combine Neural Networks with MCTS?

• How does MCTS improve a Policy Network?
• Recall: MCTS (Pachi) beat the Policy Network in 15% of games

• Policy Network is just a prediction

• MCTS and Monte-Carlo rollouts help the policy adjust towards moves that are
actually evaluated to be good

• How do Neural Networks improve MCTS?
• The Slow Policy more intelligently guides tree exploration

• The Fast Policy Network more intelligently guides simulations

• Value Network and Simulation Value are complementary

44

AlphaGo vs Other AI

Distributed AlphaGo won 77% of games
against single-machine AlphaGo

Distributed AlphaGo won 100% of games
against other AI

AI name Elo rating

Distributed
AlphaGo (2015)

3140

AlphaGo (2015) 2890

CrazyStone 1929

Zen 1888

Pachi 1298

Fuego 1148

GnuGo 431

45

AlphaGo vs Lee Sedol

Only one human with a higher Elo….

Ke Jie (Elo 3,621)

AlphaGO

4 wins

3,586 Elo

Lee Sedol

1 win

3,520 Elo

© Reuters. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

46

https://ocw.mit.edu/help/faq-fair-use/

Timeline
• 1952 – computer masters Tic-Tac-Toe

• 1994 – computer master Checkers

• 1997 – IBM’s Deep Blue defeats Garry Kasparov in chess

• 2011 – IBM’s Watson defeats to Jeopardy champions

• 2014 – Google algorithms learn to play Atari games

• 2015 – Wikipedia: “Thus, it is very unlikely that it will be possible to program
a reasonably fast algorithm for playing the Go endgame flawlessly, let alone
the whole Go game.”

• 2015 – Google’s AlphaGo defeats Fan Hui (2-dan player) in Go

• 2016 – Google’s AlphaGo defeats Lee Sedol 4-1 (9-dan player) in Go

47

Conclusion

• MCTS expands the search tree based on
random sampling of the search space (game
board).

1. Descend 2. Create New Node 3. Simulate 4. Update

48

References

Mario: http://www.slideshare.net/ssuser7713a0/monte-carlo-tree-search-for-the-super-mario-bros

AlphaGo Full: http://airesearch.com/wp-content/uploads/2016/01/deepmind-mastering-go.pdf

AlphaGo Summary: https://www.tastehit.com/blog/google-deepmind-alphago-how-it-works/

49

http://www.slideshare.net/ssuser7713a0/monte-carlo-tree-search-for-the-super-mario-bros
http://airesearch.com/wp-content/uploads/2016/01/deepmind-mastering-go.pdf
https://www.tastehit.com/blog/google-deepmind-alphago-how-it-works/

X X X

O O O

X O OSample Tree
O

X

O

O X

X

O

O X

X

O

O X

X

O O

O X

X

O O

O X

X O

X O

O X

X

O X O

O X

X X

O O

O X

X O

O

. . . O X

X

X O O

O X

X X

O O

50

MIT OpenCourseWare
https://ocw.mit.edu

16.412J / 6.834J Cognitive Robotics
Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

