Monte Carlo Tree Search

By the end, you will know...

- Why we use Monte Carlo Search Trees
- The pros and cons of MCTS
- How it is applied to Super Mario Brothers and Alpha Go

Outline

- I. Pre-MCTS Algorithms
- II. Monte Carlo Tree Search
- III. Applications

Motivation

- Want to create programs to play games
- Want to play optimally
- Want to be able to do this in a reasonable amount of time

	Deterministic	Nondeterministic (Chance)	
Fully Observable	Chess Checkers Go	Backgammon Monopoly	
Partially Observable	Battleship	Card Games	

Pre-MCTS Algorithms

- Deterministic, Fully Observable Games
- "Perfect information"
- Can construct a tree that contains all possible outcomes because everything is fully determined

Minimize the maximum possible loss

Minimax

Simple Pruning

Alpha-Beta Pruning

 Prunes away branches that cannot influence the final decision

© Macmillan Publishers Limited, part of Springer Nature. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Outline

- I. Pre-MCTS Algorithms
- II. Monte Carlo Tree Search
- III. Applications

Asymmetric Tree Exploration

From Bandit Algorithms for Tree Search, Coquelin and Munos, 2007

MCTS Outline

- 1. Descend through the tree
- 2. Create new node
- 3. Simulate
- 4. Update the tree Repeat!
- 5. When you're out of time, Return "best" child.

What do we store?

For game state k:

n_k = # games played involving k
w_{k,p} = # games won (by player p)
that involved k

1. Descending

We want to **expand**, but also to **explore**.

© Zach Weinersmith. All rights reserved. This content is excluded from our Creative 17 Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

1. Descending

Solution: Upper Confidence Bound

2. Expanding

- Not very complicated. Make a new node!
- Set $n_k = 0$, $w_k = 0$

3. Simulating

Simulating a real game is hard.

Let's just play the game out randomly! If we win, $\Delta = +1$. If we lose or tie, $\Delta = 0$.

4. Updating the Tree

Propagate recursively up the parents.

Given simulation result Δ , for each k:

$$n_{k-new} = n_{k-old} + 1$$
$$w_{k,1-new} = w_{k,1-old} + \Delta$$

5. Terminating

Return the best-ranked first ancestor!

What determines "best"?

- Highest E[win|k]
- Highest E[win|k] AND most visited

Why use MCTS?

Pros:

- Grows tree asymmetrically, balancing expansion and exploration
- Depends only on the rules
- Easy to adapt to new games
- Heuristics not required, but can also be integrated
- Can finish on demand, CPU time is proportional to answer quality
- Complete: guaranteed to find a solution given time
- Trivially parallelizable

Cons:

- Can't handle extreme tree depth
- Requires ease of simulation, massive computation resources
- Relies on random play being "weakly correlated"
- Many variants, need expertise to tune
 - Theoretical properties not yet understood

Screenshots of video games removed due to copyright restrictions.

Outline

- I. Pre-MCTS Algorithms
- II. Monte Carlo Tree Search
- III. Applications

... Wait for it...

Part III

Applications

MCTS-based Mario Controller!

© Nintendo Co., Ltd. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

MCTS modifications for Super Mario Bros

- Single player
- Multi-simulation
- Domain knowledge
- 5-40ms computation time

Problem Formulation

Nodes

- State
 - Mario position, speed, direction, etc
 - Enemy position, speed, direction, etc
 - Location of blocks
 - etc
- Value
- Edges
 - Mario's possible action (right, left, jump, etc)

© Nintendo Co., Ltd. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Calculating Simulation Result

Domain Knowledge: multi-objective weighted sum

Distance	0.1	hiddenBlocks	24	marioStatus	1024
Flower	64	killsByStomp	12	timeLeft	2
Mushrooms	58	killsByFire	4	marioMode	32
greenMushrooms	1	killsByShell	17	Coins	16
Hurts	-42	killsTotal	42	Stomps	1

Simulation type

Demo

Results

Outperforms Astar

AlphaGo

© Saran Poroong. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

The Rules

- Board is 19x19. Starts empty.
- Players alternate placing one stone.
- Capture enemy stone by surrounding
- A player's territory is all the area surroun
- Score = Territory + Captured pieces

Go vs Chess

MCTS modifications for Go

- Combines Neural Networks with MCTS
 - 2 Policy Networks (slow and fast)
 - 1 Value Network

2 Policy Networks

- Input is the game state, as an image
- Output is a probability distribution over legal actions
- Supervised learning on 30 million positions from human expert games

Policy Network – Reinforcement Learning

Next step: predict winning moves, rather than expert human moves

Policy Networks play against themselves!

Tested best Policy Network against Pachi

- Pachi relies on 100,000 MCTS simulations at each turn
- AlphaGo's Policy Network won 85% of the games (3ms per turn)
- Intuition tends to win over long reflection in Go?

Value Network

Trained on positions from the Policy Network's reinforcement learning

- Similar to evaluation function (as in DeepBlue), but *learned* rather than designed.
- Predictions get better towards end game

Using Neural Networks with MCTS

Slow Policy Network guides tree search

Value of state = Fast Policy Network simulation + Value Network Output

Why use Policy and Value Networks?

They work hand-in-hand.

The VN learns from the PN, and the PN is improved by the VN.

- Value Network Alone
 - Would have to exhaustively compare the value of all children
 - PN Predicts the best move, narrows the search space by only considering moves that are most likely victorious
- Policy Network Alone
 - Unable to directly compare nodes in different parts of the tree
 - VN gives estimate of winner as if the game were played according to the PN
 - Values direct later searches towards moves that are actually evaluated to be better

Why combine Neural Networks with MCTS?

• How does MCTS improve a Policy Network?

- Recall: MCTS (Pachi) beat the Policy Network in 15% of games
- Policy Network is just a *prediction*
- MCTS and Monte-Carlo rollouts help the policy adjust towards moves that are actually evaluated to be good
- How do Neural Networks improve MCTS?
 - The Slow Policy more intelligently guides tree exploration
 - The Fast Policy Network more intelligently guides simulations
 - Value Network and Simulation Value are complementary

AlphaGo vs Other Al

Al name	Elo rating
Distributed AlphaGo (2015)	3140
AlphaGo (2015)	2890
CrazyStone	1929
Zen	1888
Pachi	1298
Fuego	1148
GnuGo	431

Distributed AlphaGo won **77%** of games against single-machine AlphaGo

Distributed AlphaGo won **100%** of games against other Al

AlphaGo vs Lee Sedol

© Reuters. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Only one human with a higher Elo....

Ke Jie (Elo **3,621**)

Timeline

- 1952 computer masters Tic-Tac-Toe
- 1994 computer master Checkers
- 1997 IBM's Deep Blue defeats Garry Kasparov in chess
- 2011 IBM's Watson defeats to Jeopardy champions
- 2014 Google algorithms learn to play Atari games
- 2015 Wikipedia: "Thus, it is very unlikely that it will be possible to program a reasonably fast algorithm for playing the Go endgame flawlessly, let alone the whole Go game."
- 2015 Google's AlphaGo defeats Fan Hui (2-dan player) in Go
- 2016 Google's AlphaGo defeats Lee Sedol 4-1 (9-dan player) in Go

Conclusion

 MCTS expands the search tree based on random sampling of the search space (game board).

References

Mario: http://www.slideshare.net/ssuser7713a0/monte-carlo-tree-search-for-the-super-mario-bros AlphaGo Full: http://airesearch.com/wp-content/uploads/2016/01/deepmind-mastering-go.pdf AlphaGo Summary: https://www.tastehit.com/blog/google-deepmind-alphago-how-it-works/

MIT OpenCourseWare https://ocw.mit.edu

16.412J / 6.834J Cognitive Robotics Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.