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Assignment 
•  Remember:  

–  PS #2, due Today at midnight, Wednesday, September 23rd, 2015. 
–  Problem Set #3, out Today, due Wednesday, September 30th, 2015. 
–    

•  Reading:  
–  Today: Informed search and exploration: AIMA Ch. 4.1-2, Ch. 25.4. 

             Computing Shortest Paths: Cormen, Leiserson & Rivest, (opt.) 
             “Introduction to Algorithms” Ch. 25.1-.2. 

–  Wed:   Activity Planning: [AIMA] Ch.10 & 11. 
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Motion planning 

E. Frazzoli (MIT) L15: Sampling-Based Motion Planning November 3, 2010 20 / 36
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Motion planning 

9/23/15 
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Review: Roadmaps are an effective  
        state space abstraction 
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Constructing Road Maps 
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Finding A Shortest Path 

Input: <gr, w, S, G>, where 
•  gr is a (directed) graph <V,E> with  
•  weight function w: VxV è R, 
•  S ∈ V is the Start and G ∈ V is the Goal. 
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Finding A Shortest Path 

Input: <gr, w, S, G>, where 
•  gr is a (directed) graph <V,E> with  
•  weight function w: VxV è R, 
•  S ∈ V is the Start and G ∈ V is the Goal. 

 Output: 
    A simple path P = <v1, v2 …vn> from S to G,  

with the shortest path weight g = δ(S,G),  
and its corresponding weight. 
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Optimal Search 

Problem: Find the path to the goal G with  
the shortest path length g. 

Augment search tree nodes 
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start  A* biases uniform co
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Uniform cost search Informed Search 
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Classes of Search 
Blind   Depth-First      Systematic exploration of whole tree 

(uninformed)  Breadth-First      until the goal is found. 

  Iterative-Deepening 

Variants   Hill-Climbing (w backup) 

  Beam 

  IDA* 

Best-first  Uniform-cost       Uses path “length” measure to 

(informed)  Greedy            find “shortest” path. 

  A* 

Bounding  Branch and Bound   Prunes suboptimal branches. 

  Alpha/Beta     Prunes options that the adversary rules out. 

9/23/15 
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Classes of Search 
Blind   Depth-First      Systematic exploration of whole tree 

(uninformed)  Breadth-First      until the goal is found. 

  Iterative-Deepening 

Best-first  Uniform-cost       Uses path “length” measure to 

  Greedy           find “shortest” path. 

  A* 
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goal 
start 

Uniform cost search 
spreads evenly from 

g = 6 the start 
g = 4 

g = 2 

Does uniform cost search find the shortest path? Yes, Optimal 
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Enumerates partial paths in order of increasing path length g. 
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Enumerates partial paths in order of increasing path length g. 
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Enumerates partial paths in order of increasing path length g. 
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Uniform Cost 
edpath length 

Enumerates partial paths in order of increasing path length g. 
Better path visited later. 
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Expands nodes already visited. 

Enumerates partial paths in order of increasing path length g. 

May expand vertex more than once. 

Better path visited later. 
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edpath length 

Expands nodes already visited. 

Enumerates partial paths in order of increasing path length g. 

May expand vertex more than once. 

Best path expanded first. 
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•  The shortest path from S to G  
is (G D A S). 

edge cost 

•  D is reached first using  
path (D S). 

Suppose we expand only the  
first path that visits each vertex X? 
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•  D is reached first using  
path (D S). 

•  This prevents path (D A S) 
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•  D is reached first using  
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Why Expand a Vertex More Than Once? 

path length 
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•  The shortest path from S to G  
is (G D A S). 

edge cost 

•  D is reached first using  
path (D S). 

•  This prevents path (D A S) 
from being expanded. Suppose we expanded only the  

first path that visits each vertex X? 
•  The suboptimal path (G D S)  

is returned. ð Solution: Eliminate the Visited List. 
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Generic Search Algorithm 

1.  Initialize Q with partial path (S) as only entry; set Visited = ( ); 
2.   If Q is empty, fail;  Else, pick partial path N from Q; 
3.  If head(N) = G, return N ;   (we’ve reached the goal!) 
4.   (Otherwise) Remove N from Q; 
5.   Find all children of head(N) (its neighbors in gr) not in Visited 

and create all the one-step extensions of N to each child; 
6.   Add to Q all the extended paths;  
7.   Add children of head(N) to Visited; 
8.   Go to Step 2. 

Let gr be a Graph.   Let Q be a list of simple partial paths in gr. 
Let S be the start vertex in gr.  Let G be a Goal vertex in gr. 

9/23/15 
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Uniform Cost Search Algorithm 

1.  Initialize Q with partial path (S) as only entry; set Visited = ( ); 
2.   If Q is empty, fail;  Else, pick partial path N from Q with best g; 
3.   If head(N) = G, return N ;   (we’ve reached the goal!) 
4.  (Otherwise) Remove N from Q; 
5.  Find all children of head(N) (its neighbors in Gr) not in Visited 

and create all the one-step extensions of N to each child; 
6.  Add to Q all the extended paths;  
7.   Add children of head(N) to Visited; 
8.   Go to Step 2. 

Let gr be a weighted Graph.  Let Q be a list of simple partial paths in gr. 
Let S be the start vertex in gr.  Let G be a Goal vertex in gr. 
Let g be the path weight from S to N. 
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Implementing the  
Search Strategies 

Depth-first: 

 Pick first element of Q 

 Add path extensions to front of Q 
Breadth-first: 

 Pick first element of Q 

 Add path extensions to end of Q 
Uniform-cost: 

  Pick first element of Q  

 Add path extensions to Q in order of  
                increasing path weight g. 

Uses visited list 

Uses visited list 

No visited list 

Implement priority queue with a heap. For graph with n nodes:  
•  Keeping a queue sorted takes time O(n2). 
•  Heap implementation takes time O(n lg n). 

9/23/15 
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Best First with Uniform Cost  
Pick first element of Q;  Insert path extensions, sorted by g. 
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 Here we: 
•  Insert on queue in order of g. 
•  Remove first element of queue. 
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Best First with Uniform Cost  
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•  Remove first element of queue. 
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Best First with Uniform Cost  
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 Here we: 
•  Insert on queue in order of g. 
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Best First with Uniform Cost  

(6 D B S) (6 D A S) (10 G B S)  5 
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Pick first element of Q;  Insert path extensions, sorted by g. 
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Can we stop as soon as  
the goal is enqueued (“visited”)? 

•  Other paths to the goal that are shorter may not yet be enqueued. 
•  Only when a path is pulled off the Q are we guaranteed that  

no shorter path will be added. 
•  This assumes all edges are positive. 

Q 
1 (0 S) 
2 (2 A S) (5 B S) 
3 (4 C A S) (5 B S) (6 D A S) 
4 (5 B S) (6 D A S) 
5 (6 D B S) (6 D A S) (10 G B S) 
6 (6 D A S)(8 G D B S) (9 C D B S) (10 G B S) 

(8 G D A S) (8 G D B S) (9 C D A S) (9 C D B S) 7 (10 G B S) 

9/23/15 
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Implementing the  
Search Strategies 

Depth-first: 

 Pick first element of Q 

 Add path extensions to front of Q 
Breadth-first: 

 Pick first element of Q 

 Add path extensions to end of Q 
Uniform-cost: 

  Pick first element of Q  

 Add path extensions to Q in increasing order of path weight g. 

Uses visited list 

Uses visited list 

No visited list 

Best-first: (generalizes uniform-cost) 

  Pick first element of Q  

 Add path extensions in increasing order of any cost function f.  

No visited list 

9/23/15 
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Best-first Search Algorithm 

1.   Initialize Q with partial path (S) as only entry; 
2.   If Q is empty, fail.  Else, pick partial path N from Q with best f; 
3.   If head(N) = G, return N;   (we’ve reached the goal!) 
4.   (Otherwise) Remove N from Q; 
5.   Find all children of head(N) (its neighbors in gr) and create all 

the one-step extensions of N to each child; 
6.   Add to Q all the extended paths;  
7.   Go to Step 2. 

Let gr be a Graph   Let Q be a list of simple partial paths in gr. 
Let S be the start vertex in gr.  Let G be a Goal vertex in gr. 
Let f  be a cost function on N. 

9/23/15 
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Cost and Performance 

Search 
Method 

Worst 
Time 

Worst 
Space 

Guaranteed to 
find a path? Optimal? 

Depth-First bm b*m Yes No 
Breadth-First bd+1 bd+1 Yes Yes for unit edge cost 

Best-First 

Beam 
(beam width = k) 
Hill-Climbing 
(no backup) 
Hill-Climbing 
(backup) 

Searching a tree with branching factor b, solution depth d, and max depth m 

Worst case time is proportional to number of nodes visited 
Worst case space is proportional to maximal length of Q 

Yes if uniform cost or  
A* w admissible heuristic Yes bd+1 bd+1 

9/23/15 
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Remarks 

•  UCS is a straightforward instance of BFS. 
•  UCS is complete and optimal. 
•  However, like BFS (or DFS),  

UCS does not consider the goal node  
during search and could be slow. 

9/23/15 Brian Williams, Fall  15 
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Classes of Search 
Blind   Depth-First      Systematic exploration of whole tree 

(uninformed)  Breadth-First      until the goal is found. 

  Iterative-Deepening 

Best-first  Uniform-cost       Uses path “length” measure.  Finds 

  Greedy           “shortest” path. 

  A* 

9/23/15 Brian Williams, Fall  15 
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Chicago, Il 

Rapid City Boston, Ma 

Uniform cost search explores the direction away  
from the goal as much as with the goal. 

Greedy search is directed 
owards the goal. 
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Greedy Search 
Search in an order imposed by a heuristic function, measuring cost to go. 

 

Heuristic function h – is a function of the current node n,  
       not the partial path s to n. 

 

•  Estimated distance to goal – h (n,G)  

•  Example: straight-line distance in a road network.  

•  “Goodness” of a node – h (n) 

•  Example: elevation. 

•       Foothills, plateaus and ridges are problematic. 
9/23/15 
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Greedy 
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Heuristic values in red 
Order of nodes in blue. 

Pick first element of Q;  Insert path extensions, sorted by h. 
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Greedy 
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Greedy 

Q 

1 (10 S) 
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3 (1 C A S) (3 B S) (4 D A S) 
4 (3 B S) (4 D A S) 
5 

Added paths in blue; heuristic value of head is in front. 

C 

S 

B 

G 
A 

D 

1 

2 

3 

10 

2 

1 

0 

4 

3 

Heuristic values in red 
Order of nodes in blue. 

Pick first element of Q;  Insert path extensions, sorted by h. 
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Greedy 
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1 (10 S) 
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Greedy 

Q 

1 (10 S) 
2 (2 A S) (3 B S) 
3 (1 C A S) (3 B S) (4 D A S) 
4 (3 B S) (4 D A S) 
5 (0 G B S) (4 D A S) ) (4 D B S) 

Added paths in blue; heuristic value of head is in front. 
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Pick first element of Q;  Insert path extensions, sorted by h. 

Edge cost in green. 

Did Greedy search produce the shortest path? 
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Remarks 

•  The performance of GS depends strongly on 
the quality of the heuristic. 
– With a good heuristic,  

GS reaches the goal quickly. 
– With a misleading heuristic,  

GS may “get stuck” and  
perform worse than UCS. 

•  GS is not optimal. 
9/23/15 Brian Williams, Fall  15 
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Classes of Search 
Blind   Depth-First      Systematic exploration of whole tree 

(uninformed)  Breadth-First      until the goal is found. 

  Iterative-Deepening 

Best-first  Uniform-cost       Uses path “length” measure.  Finds 

  Greedy           “shortest” path. 

  A* 
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A search biases uniform cost 
owards the goal by using h: 

•  f = g + h 

•  g = distance from start. 

•  h = estimated distance  
         to goal. 

A

Uniform cost search 
spreads evenly from 
he start 

reedy goes for the 
oal, but forgets its 
ast. 
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Comparison of UCS and GS 

UCS 
•  Think about the past:  

GS 
•  Think about the future: 

order the queue by g(v),  order the queue by h(v),  
the path cost from the start the estimated path cost to 
(cost-to-come). the goal (cost-to-go). 

•  Optimal. •  Not optimal. 
•  Usually not fast. •  Maybe fast. 

9/23/15 Brian Williams, Fall  15 
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Combining UCS and GS 
•  What if we put g(v) and h(v) together? 

Order the queue according to  

 
•  Resulting can be both optimal and fast. 

The A search algorithm

The problems

Uniform-Cost search is optimal, but may wander around a lot before finding
the goal.
Greedy search is not optimal, but in some cases it is e�cient, as it is heavily
biased towards moving towards the goal. The non-optimality comes from
neglecting “the past.”

The idea

Keep track both of the cost of the partial path to get to a vertex, say g(v),
and of the heuristic function estimating the cost to reach the goal from a
vertex, h(v).
In other words, choose as a “ranking” function the sum of the two costs:

f (v) = g(v) + h(v)

g(v): cost-to-come (from the start to v).
h(v): cost-to-go estimate (from v to the goal).
f (v): estimated cost of the path (from the start to v and then to the goal).

E. Frazzoli (MIT) L05: Informed Search November 1, 2010 24 / 46
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Remarks 

•  A search generalizes both UCS and GS. 
– Setting h(v)=0, we get UCS. 
–  Ignoring g(v), we get GS. 

•  A search appears fast, but is not optimal. 
What is the problem? 

9/23/15 Brian Williams, Fall  15 
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A* Search 

To make A search optimal,  
•  h(v) must always underestimate the distance to

the goal.  
• In other words, the heuristic must be optimistic

(admissible):

Remarks on the A search algorithm

A search is similar to UCS, with a bias induced by the heuristic h. If
h = 0, A = UCS.

The A search is complete, but is not optimal. What is wrong?
(Recall that if h = 0 then A = UCS, and hence optimal...)

A⇤ Search

Choose an admissible h(v)  h⇤(v)
(The star means “opti

The A search with an admissible heuristic is called A⇤, which is
guaranteed to be optimal.

E. Frazzoli (MIT) L05: Informed Search November 1, 2010 31 / 46

9/23/15 Brian Williams, Fall  15 
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Simple Optimal Search Algorithm 
BFS + Admissible Heuristic 

Let gr be a Graph   Let Q be a list of simple partial paths in gr 
Let S be the start vertex in gr and  Let G be a Goal vertex in gr. 
Let f = g + h  be an admissible heuristic function. 

1.   Initialize Q with partial path (S) as only entry;  
2.   If Q is empty, fail.  Else, use f to pick “best” partial path N from Q; 
3.   If head(N) = G, return N;    (we’ve reached the goal) 
4.   (Otherwise) Remove N from Q; 
5.   Find all the descendants of head(N) (its neighbors in Gr) and create all the 

one-step extensions of N to each descendant; 
6.   Add to Q all the extended paths; 
7.   Go to Step 2. 

9/23/15 
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In the example, is h  
an admissible heuristic? 

C 

S 

B 

G 
A 

D 

1 

2 2 3 
2 0 

4 2 4 
10 5 1 3 5 

•  A is ok. 
• B is ok.  
•  C is ok. 
•  D is too big; needs to be ≤ 2. 
•  S is too big; can always use 0 for start. 

Heuristic Values of h in Red. 
Edge cost in Green. A finds an optimal solution  

if h never over estimates. 

•  Search is called A*. 
9/23/15 

•  h is called “admissible.” 
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Admissible heuristics for 8 puzzle? 

6 2 8 
3 5 

4 7 1 

1 2 3 
8 4 
7 6 5 

S G 

What is the heuristic? 
•  An underestimate of number of moves to the goal. 

Examples: 

1.   Number of misplaced tiles (7) 

2.   Sum of Manhattan distance of each tile to its goal location 
9/23/15 

(17) 
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Finding admissible heuristics 

•  Often domain-specific knowledge is 
required. 

•  Examples 

Admissible heuristics

How to find an admissible heuristic? i.e., a heuristic that never
overestimates the cost-to-go.

Examples of admissible heuristics

h(v) = 0: this always works! However, it is not very useful, and in
this case A⇤ = UCS .

h(v) = distance(v , g) when the vertices of the graphs are physical
locations.

h(v) = kv � gkp, when the vertices of the graph are points in a
normed vector space.

A general method

Choose h as the optimal cost-to-go function for a relaxed problem, that is
easy to compute.
(Relaxed problem: ignore some of the constraints in the original problem)
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Finding admissible heuristics 

•  Relaxation 
– Create a relaxed problem by ignoring some 

constraints in the original problem. 
•  Consistency 

– A heuristic function h is consistent if  
 
– A consistent heuristic function is admissible. 

Consistent heuristics

An additional useful property for A⇤ heuristics is called consistency

A heuristic h : X ! R�0

is said consistent if

h(u)  w (e = (u, v)) + h(v), 8(u, v) 2 E .

In other words, a consistent heuristics satisfies a triangle inequality.

If h is a consistent heuristics, then f = g + h is non-decreasing along
paths:

f (v) = g(v) + h(v) = g(u) + w(u, v) + h(v) � f (u).

Hence, the values of f on the sequence of nodes expanded by A⇤ is
non-decreasing: the first path found to a node is also the optimal
path ) no need to compare costs!
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Benefits of heuristics 

0 

5000 

10000 

15000 

20000 

25000 

30000 

35000 

40000 

45000 

50000 

2 4 6 8 10 12 14 16 18 20 22 24 

IDS 
A*(h1) 
A*(h2) 
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AIMA, Sect. 3.6, Fig. 3.29 
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Why the difference? 

•  h(v)=0 •  h(v)=h*(v) 

9/23/15 Brian Williams, Fall  15 
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A* optimality: intuition 

If the heuristic function  
•  over-estimates the distance to the goal,  

–  we eliminate the optimal solution and  
make a mistake that is irrecoverable. 

•  under-estimates the distance,  
–  the search may be misled.  
–  However, as the search continues, the cost of the 

sub-optimal path rises, and  
–  we eventually recover from the mistake. 

9/23/15 Brian Williams, Fall  15 
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A* optimality: proof 

Proof (sketch) of A⇤ optimality

By contradiction

Assume that A⇤ returns P , but w(P) > w⇤

(w⇤ is the optimal path weight/cost).

Find the first unexpanded node on the optimal path P⇤, call it n.

f (n) > w(P), otherwise we would have expanded n.

f (n) = g(n) + h(n) by definition

= g⇤(n) + h(n) because n is on the optimal path.

 g⇤(n) + h⇤(n) because h is admissible

= f ⇤(n) = W ⇤ because h is admissible

Hence W ⇤ � f (n) > W , which is a contradiction.
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Can We Prune Search Branches? 

Property: Shortest Paths are extensions of Shortest Sub-Paths. 

•  Suppose path P = P1 o P2 , from S to G, is shortest. 

•  Suppose P2 , from U to G, is not. 

•  Then there exists P2’  from U to G that is shorter than P2. 

•  Hence P’ = P1 o P2’ is shorter than P. 

•  By contradiction, if P is a shortest, then P2 is a shortest sub-path. 

9/23/15 
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Can We Prune Search Branches? 

Property: Shortest Paths are extensions of Shortest Sub-Paths. 

 

Idea: when shortest path S to U is found, ignore other paths S to U. 

•  When BFS dequeues the first partial path with head node U,  
this path is guaranteed to be the shortest path from S to U. 

"   Given the first path to U, we don’t need to extend other paths to U; 
delete them (expanded list). 

9/23/15 
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Simple Optimal Search Algorithm 
How do we add dynamic programming? 

1.   Initialize Q with partial path (S) as only entry;  
2.   If Q is empty, fail.  Else, use f to pick the “best” partial path N from Q; 
3.   If head(N) = G, return N;    (we’ve reached the goal) 
4.   (Else) Remove N from Q; 
5.   Find all children of head(N) (its neighbors in gr) and  

create all the one-step extensions of N to each child; 
6.   Add to Q all the extended paths; 
7.   Go to Step 2. 

Let gr be a Graph.   Let Q be a list of simple partial paths in gr. 
Let S be the start vertex in gr.  Let G be a Goal vertex in gr. 
Let f = g + h  be an admissible heuristic function. 

9/23/15 
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A* Optimal Search Algorithm 
BFS + Dyn Prog + Admissible Heuristic 

1.   Initialize Q with partial path (S) as only entry; set Expanded = ( ); 
2.   If Q is empty, fail.  Else, use f to pick “best” partial path N from Q; 
3.   If head(N) = G, return N;    (we’ve reached the goal) 
4.   (Else) Remove N from Q;  
5.   if head(N) is in Expanded, go to Step 2; otherwise, add head(N) to Expanded; 
6.   Find all the children of head(N) (its neighbors in gr) not in Expanded,  

and create all one-step extensions of N to each child; 
7.   Add to Q all the extended paths; 
8.   Go to Step 2. 

Let gr be a Graph   Let Q be a list of simple partial paths in gr. 
Let S be the start vertex in gr.  Let G be a Goal vertex in gr. 
Let f = g + h  be an admissible heuristic function. 

9/23/15 
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A* (BFS + DynProg + Admissible Heuristic) 

Q 
1 (0 S) 

1 

Added paths in blue; cost f at head of each path. 

C 

S 

B 

G 
A 

D 

1 

2 2 3 
2 0 

1 2 4 
5 1 0 3 5 

Heuristic Values of g in Red 
Edge cost in Green 

Pick first element of Q;  Insert path extensions, sorted by path length + heuristic. 

Expanded 

9/23/15 
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A* (BFS + DynProg + Admissible Heuristic) 

Q 

2 
1 (0 S) 

Added paths in blue; cost f at head of each path 

C 

2 2 3 G 
A 2 0 

1 
1 2 4 D 
S 5 1 0 3 5 B 

1 

Heuristic Values of g in Red 
Edge cost in Green 

Expanded 

S 

Pick first element of Q;  Insert path extensions, sorted by path length + heuristic. 

9/23/15 
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A* (BFS + DynProg + Admissible Heuristic) 

Q 
1 (0 S) 
2 (4 A S) (8 B S) 
3 

2 

1 

C 

S 

B 

G 
A 

D 

1 

2 2 3 
2 0 

1 2 4 
5 1 0 3 5 

Added paths in blue; cost f at head of each path 

Heuristic Values of g in Red 
Edge cost in Green 

Pick first element of Q;  Insert path extensions, sorted by path length + heuristic. 

Expanded 

S 
S A 
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A* (BFS + DynProg + Admissible Heuristic) 

Q 
1 (0 S) 
2 (4 A S) (8 B S) 
3 (5 C A S) (7 D A S) (8 B S) 
4 

3 

2 

1 

C 

S 

B 

G 
A 

D 

1 

2 2 3 
2 0 1 

2 4 
5 1 0 3 5 

Added paths in blue; cost f at head of each path 

Heuristic Values of g in Red 
Edge cost in Green 

Pick first element of Q;  Insert path extensions, sorted by path length + heuristic. 

Expanded 

S 
S A 
S A C 
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A* (BFS + DynProg + Admissible Heuristic) 

Q 
1 (0 S) 
2 (4 A S) (8 B S) 
3 (5 C A S) (7 D A S) (8 B S) 
4 (7 D A S) (8 B S) 
5 

3 

2 

4 
1 

C 

S 

B 

G 
A 

D 

1 

2 2 3 
2 0 

1 2 4 
5 1 0 3 5 

Added paths in blue; cost f at head of each path 

Heuristic Values of g in Red 
Edge cost in Green 

Expanded 

S 
S A 
S A C 
S A C D 

Pick first element of Q;  Insert path extensions, sorted by path length + heuristic. 

9/23/15 
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A* (BFS + DynProg + Admissible Heuristic) 

Q 
1 (0 S) 
2 (4 A S) (8 B S) 
3 (5 C A S) (7 D A S) (8 B S) 
4 (7 D A S) (8 B S) 
5 (8 G D A S) (8 B S) 

3 

5 
2 

4 
1 

C 

S 

B 

G 
A 

D 

1 

2 2 3 
2 0 

1 2 4 
5 1 0 3 5 

Added paths in blue; cost f at head of each path 

Heuristic Values of g in Red 
Edge cost in Green 

Expanded 

S 
S A 
S A C 
S A C D 

Pick first element of Q;  Insert path extensions, sorted by path length + heuristic. 

9/23/15 
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Expanded List can offer  
Exponential Saving 

Enumerate all (sub)paths: 

•  For simple paths of length n through S states, O(|S|2n+1). 

•  For simple paths up to length n, O(|S|2n+2. 
 

Enumerate all shortest (sub)paths: 

•  Property: Shortest paths are extensions of Shortest Sub-Paths. 

•  Algorithm: Dynamic Programming:  

•  Compute shortest paths of length n from shortest (sub)paths of length n-1. 

 

•  O(n|S|2) for shortest paths up to length n and |S| states. 
 

 

Dynamic Programming

The optimality principle

Let P = (s, . . . , v , . . . g) be an optimal path (from s to g). Then, for any
v 2 P , the sub-path S = (v , . . . , g) is itself an optimal path (from v to g).

Using the optimality principle

Essentially, optimal paths are made of optimal paths. Hence, we can
construct long complex optimal paths by putting together short
optimal paths, which can be easily computed.

Fundamental formula in dynamic programming:

h⇤(u) = min
(u,v)2E

[w( (u, v) ) + h⇤(v)] .

Typically, it is convenient to build optimal paths working backwards
from the goal.
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Remarks 

•  The performance of A* search depends on 
the quality of the heuristic. 

•  A* search is optimal. 

9/23/15 Brian Williams, Fall  15 
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spreads evenly from 
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Recap: Informed Search 
Chicago, Il 
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Appendices 

•  Bounding. 
•  Variants. 
•  More about Informed Search. 
•  Dynamic Programming. 



Classes of Search 
Blind   Depth-First      Systematic exploration of whole tree 

(uninformed)  Breadth-First      until the goal is found. 

  Iterative-Deepening 

Best-first  Uniform-cost       Uses path “length” measure.  Finds 

  Greedy           “shortest” path. 

  A* 

Bounding  Branch and Bound   Prunes suboptimal branches. 

  Alpha/Beta (L6)     Prunes options that the adversary rules out. 

9/23/15 Brian Williams, Fall  15 
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Branch and Bound 

0 S 

B 

C D D G 

G C G C 

A 
4 

5 

8 

7 

10 8 10 10 

7 10 

C 

S 

B 

G 
A 

D 2 

5 

4 

2 
3 

2 

5 1 

2 

1 

0 
1 

3 

0 

Heuristic Values of g in Red 
Edge cost in Green 

•  A* generalizes best-first search. 

•  How do we generalize depth-first search? 

9/23/15 
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Branch and Bound 

0 S 

B 

C D D G 

G C G C 

4 8 
A 

5 7 7 

10 8 10 10 

10 

C 

S 

B 

G 
A 

D 

1 

2 2 3 
2 0 

1 2 4 
5 1 3 5 

0 

Heuristic Values of g in Red 
Edge cost in Green 

•  Idea 1: Maintain the best solution found thus far (incumbent). 

•  Idea 2: Prune all subtrees worse than the incumbent. 

Incumbent: 
 cost U = ∞, 8 
 path P = (), (S A D G) 

9/23/15 
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Branch and Bound 

0 S 

B 

C D D G 

G C G C 

4 8 
A 

5 7 7 

10 8 10 10 

10 

C 

S 

B 

G 
A 

D 

1 

2 2 3 
2 0 

1 2 4 
5 1 3 5 

0 

Heuristic Values of g in Red 
Edge cost in Green 

•  Idea 1: Maintain the best solution found thus far (incumbent). 

•  Idea 2: Prune all subtrees worse than the incumbent. 

•  Any search order allowed (DFS, Reverse-DFS, BFS, Hill w BT…). 

Incumbent: 
 cost U = 
 path P = 

∞, 
(), 

10, 
(S B G) 

8 
(S A D G) 

9/23/15 
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Simple Optimal Search  
Using Branch and Bound 

Let gr be a Graph.   Let Q be a list of simple partial paths in gr. 
Let S be the start vertex in gr.  Let G be a Goal vertex in gr. 
Let f = g + h  be an admissible heuristic function. 
U and P are the cost and path of the best solution thus far (Incumbent). 

1.   Initialize Q with partial path (S); Incumbent U = ∞, P = (); 
2.   If Q is empty, return Incumbent U and P, 

Else, remove a partial path N from Q; 
3.   If f(N) >= U, Go to Step 2. 
4.   If head(N) = G, then U = f(N) and P = N  (a better path to the goal) 
5.   (Else) Find all children of head(N) (its neighbors in gr) and  

create all the one-step extensions of N to each child. 
6.   Add to Q all the extended paths. 
7.   Go to Step 2. 

9/23/15 

83



Appendices 

•  Bounding. 
•  Variants. 
•  More about Informed Search. 
•  Dynamic Programming. 
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Classes of Search 
Blind   Depth-First      Systematic exploration of whole tree 

(uninformed)  Breadth-First      until the goal is found. 

  Iterative-Deepening 

Variants   Hill-Climbing (w backup) 

  Beam 

  IDA* 

Best-first  Uniform-cost       Uses path “length” measure.  Finds 

  Greedy           “shortest” path. 

  A* 

Bounding  Branch and Bound   Prunes suboptimal branches. 

  Alpha/Beta     Prunes options that the adversary rules out. 

9/23/15 
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C 

S 

B 

G 
A 

D 

1 

Q 

1 (10 S) 
2 (2 A S) (3 B S) 
3 
4 

Heuristic Values 
A=2  C=1  S=10 
B=3  D=4  G=0 

Added paths in blue; heuristic value of head is in front. 

Hill-Climbing 
Pick first element of Q;  Replace Q with extensions (sorted by heuristic value) 
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C 

S 

B 

G 
A 

D 

2 

1 

Q 

1 (10 S) 
2 (2 A S) (3 B S) 
3 (1 C A S) (4 D A S) 
4 

Heuristic Values 
A=2  C=1  S=10 
B=3  D=4  G=0 

Added paths in blue; heuristic value of head is in front. 

Hill-Climbing 
Pick first element of Q;  Replace Q with extensions (sorted by heuristic value) 

Removed 
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87



Brian Williams, Fall  15 

C 

S 

B 

G 
A 

D 

2 

1 

3 

Q 

1 (10 S) 
2 (2 A S) (3 B S) 
3 (1 C A S) (4 D A S) 
4 ( ) 

Heuristic Values Fails to find a path! 
A=2  C=1  S=10 
B=3  D=4  G=0 

Added paths in blue; heuristic value of head is in front. 

Hill-Climbing 
Pick first element of Q;  Replace Q with extensions (sorted by heuristic value) 
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Cost and Performance 
Searching a tree with branching factor b, solution depth d, and max depth m 

Search Worst Worst Guaranteed to 
Optimal? Method Time Space find a path? 

Depth-First bm b*m Yes No 
Breadth-First bd+1 bd+1 Yes Yes for unit edge cost 

Best-First bd+1 bd+1 Yes Yes if uniform cost or  
A* w admissible heuristic. 

Beam 
(beam width = k) 
Hill-Climbing 

b*m b No No (no backup) 
Hill-Climbing 
(backup) 

Worst case time is proportional to number of nodes visited 
Worst case space is proportional to maximal length of Q 

9/23/15 
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Hill-Climbing (with backup) 

C 

S 

B 

G 
A 

D 

1 

Q 

1 (10 S) 
2 (2 A S) (3 B S) 
3 
4 
5 Heuristic Values 

A=2  C=1  S=10 
B=3  D=4  G=0 

Added paths in blue; heuristic value of head is in front. 

Pick first element of Q;  Add path extensions (sorted by heuristic value) to front of Q 
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Hill-Climbing (with backup) 

C 

S 

B 

G 
A 

D 

2 

1 

Pick first element of Q;  Add path extensions (sorted by heuristic value) to front of Q 

Q 

1 (10 S) 
2 (2 A S) (3 B S) 
3 (1 C A S) (4 D A S) (3 B S)  
4 
5 Heuristic Values 

A=2  C=1  S=10 
B=3  D=4  G=0 

Added paths in blue; heuristic value of head is in front. 

All new nodes before old 
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Hill-Climbing (with backup) 

C 

S 

B 

G 
A 

D 

3 

2 

1 

Pick first element of Q;  Add path extensions (sorted by heuristic value) to front of Q 

Q 

1 (10 S) 
2 (2 A S) (3 B S) 
3 (1 C A S) (4 D A S) (3 B S)  
4 (4 D A S) (3 B S) 
5 Heuristic Values 

A=2  C=1  S=10 
B=3  D=4  G=0 

Added paths in blue; heuristic value of head is in front. 
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Hill-Climbing (with backup) 

C 

S 

B 

G 
A 

D 

3 

2 

4 

1 

Pick first element of Q;  Add path extensions (sorted by heuristic value) to front of Q 

Q 

1 (10 S) 
2 (2 A S) (3 B S) 
3 (1 C A S) (4 D A S) (3 B S)  
4 (4 D A S) (3 B S) 
5 (0 G D A S) (1 C A S) (3 B S) Heuristic Values 

A=2  C=1  S=10 
B=3  D=4  G=0 

Added paths in blue; heuristic value of head is in front. 
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Hill-Climbing (with backup) 

C 

S 

B 

G 
A 

D 

3 

5 
2 

4 

1 

Q 

1 (10 S) 
2 (2 A S) (3 B S) 
3 (1 C A S) (4 D A S) (3 B S)  
4 (4 D A S) (3 B S) 
5 (0 G D A S) (1 C A S) (3 B S) Heuristic Values 

A=2  C=1  S=10 
B=3  D=4  G=0 

Added paths in blue; heuristic value of head is in front. 

Pick first element of Q;  Add path extensions (sorted by heuristic value) to front of Q 
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Cost and Performance 
Searching a tree with branching factor b, solution depth d, and max depth m 

Search Worst Worst Guaranteed to 
Optimal? Method Time Space find a path? 

Depth-First bm b*m Yes No 
Breadth-First bd+1 bd+1 Yes Yes for unit edge cost 

Best-First bd+1 bd+1 Yes Yes if uniform cost or  
A* w admissible heuristic. 

Beam 
(beam width = k) 
Hill-Climbing 

b*m b No No (no backup) 
Hill-Climbing 
(backup) 

Worst case time is proportional to number of nodes visited 
Worst case space is proportional to maximal length of Q 
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Cost and Performance 
Searching a tree with branching factor b, solution depth d, and max depth m 

Search Worst Worst Guaranteed to 
Optimal? Method Time Space find a path? 

Depth-First bm b*m Yes No 
Breadth-First bd+1 bd+1 Yes Yes for unit edge cost 

Best-First bd+1 bd+1 Yes Yes if uniform cost or  
A* w admissible heuristic. 

Beam 
(beam width = k) 
Hill-Climbing 

b*m b No No (no backup) 
Hill-Climbing 

bm b*m Yes No (backup) 

Worst case time is proportional to number of nodes visited 
Worst case space is proportional to maximal length of Q 
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Classes of Search 
Blind   Depth-First      Systematic exploration of whole tree 

(uninformed)  Breadth-First      until the goal is found. 

  Iterative-Deepening 

Variants   Hill-Climbing (w backup) 

  Beam 

  IDA* 

Best-first  Uniform-cost       Uses path “length” measure.  Finds 

  Greedy           “shortest” path. 

  A* 

Bounding  Branch and Bound   Prunes suboptimal branches 

  Alpha/Beta     Prunes options the adversary rules out 
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Q 

1 (10 S) 
2 

 
 

Expand all Q elements; Keep the k best extensions (sorted by heuristic value) 

C 

S 

B 

G 
A 

D 

1 

Heuristic Values Idea: Incrementally expand the k best paths 
A=2  C=1  S=10 
B=3  D=4  G=0 

Added paths in blue; heuristic value of head is in front. 

Let k = 2 

Beam 
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C 

S 

B 

G 
A 

D 

1 

Expand all Q elements; Keep the k best extensions (sorted by heuristic value) 

Q 

1 (10 S) 
2 (2 A S) (3 B S) 

 
 

Heuristic Values 
A=2  C=1  S=10 
B=3  D=4  G=0 

Added paths in blue; heuristic value of head is in front. 

Idea: Incrementally expand the k best paths 

Let k = 2 

Beam 
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C 

S 

B 

G 
A 

D 

2 

1 2 

Q 

1 (10 S) 
2 (2 A S) (3 B S) 

(0 G B S) (1 C A S)  
3 

(4 D A S) (4 D B S)  

Heuristic Values 
A=2  C=1  S=10 
B=3  D=4  G=0 

Added paths in blue; heuristic value of head is in front. 

Keep  
k best 

Expand all Q elements; Keep the k best extensions (sorted by heuristic value) 

Idea: Incrementally expand the k best paths 

Let k = 2 

Beam 
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C 

S 

B 

G 
A 

D 

3 
2 

1 2 

Q 

1 (10 S) 
2 (2 A S) (3 B S) 

(0 G B S) (1 C A S)  
3 

(4 D A S) (4 D B S)  

Heuristic Values 
A=2  C=1  S=10 
B=3  D=4  G=0 

Added paths in blue; heuristic value of head is in front. 

Beam 
Expand all Q elements; Keep the k best extensions (sorted by heuristic value) 

Keep  
k best 

Idea: Incrementally expand the k best paths 

Let k = 2 
9/23/15 
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Cost and Performance 

Search Worst Worst Guaranteed to 
Optimal? Method Time Space find a path? 

Depth-First bm b*m Yes No 
Breadth-First bd+1 bd+1 Yes Yes for unit edge cost 

Best-First bd+1 bd+1 Yes Yes if uniform cost or  
A* w admissible heuristic. 

Beam 
k*b*m k*b No No (beam width = k) 

Hill-Climbing 
b*m b No No (no backup) 

Hill-Climbing 
bm b*m Yes No (backup) 

Searching a tree with branching factor b, solution depth d, and max depth m 

Worst case time is proportional to number of nodes visited 
Worst case space is proportional to maximal length of Q 
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Appendices 

•  Bounding 
•  Variants 
•  More about Informed Search. 
•  Dynamic Programming. 



•  Optimal (shortest) path <s,b,g> 
•  Sub-optimal path <s,a,d,g>, … 

Example: point-to-point shortest path

Find the minimum-weight path from s to g in the graph below:

Solution: a simple path P = hg , d , a, si (P = hg , d , b, si would be
acceptable, too), with weight w(P) = 8.

E. Frazzoli (MIT) L05: Informed Search November 1, 2010 5 / 46

Breadth-first search: an example 
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Example: point-to-point shortest path

Find the minimum-weight path from s to g in the graph below:

Solution: a simple path P = hg , d , a, si (P = hg , d , b, si would be
acceptable, too), with weight w(P) = 8.

E. Frazzoli (MIT) L05: Informed Search November 1, 2010 5 / 46

Uniform-cost search: an example 
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Uniform-cost search 

Q  hstarti ; // Initialize the queue with the starting node

while Q is not empty do
Pick (and remove) the path P with lowest cost g = w(P) from the queue Q ;
if head(P) = goal then return P ; // Reached the goal

foreach vertex v such that (head(P), v) 2 E, do //for all neighbors
add hv ,Pi to the queue Q ; // Add expanded paths

return FAILURE ; // Nothing left to consider.

Uniform-Cost Search

Note: no visited list!

E. Frazzoli (MIT) L05: Informed Search November 1, 2010 6 / 46
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A trace of UCS execution 

Q:
path cost

hsi 0

sstart

a

b

c

d g

2

2
3

4

5

5

2

Example of Uniform-Cost Search: Step 1
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Q:

path cost

ha, si 2
hb, si 5

sstart

a

b

c

d g

2

2
3

4

5

5

2

Example of Uniform-Cost Search: Step 2
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Q:

state cost

hc , a, si 4
hb, si 5
hd , a, si 6

sstart

a

b

c

d g

2

2
3

4

5

5

2

Example of Uniform-Cost Search: Step 3
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Q:

state cost

hb, si 5
hd , a, si 6
hd , c , a, si 7

sstart

a

b

c

d g

2

2
3

4

5

5

2

Example of Uniform-Cost Search: Step 4
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A trace of UCS execution 

Q:

state cost

hd , a, si 6
hd , c , a, si 7
hg , b, si 10

sstart

a

b

c

d g

2

2
3

4

5

5

2

Example of Uniform-Cost Search: Step 5
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Q:

state cost

hd , c , a, si 7
hg , d , a, si 8
hg , b, si 10

sstart

a

b

c

d g

2

2
3

4

5

5

2

Example of Uniform-Cost Search: Step 6
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Q:

state cost

hg , d , a, si 8
hg , d , c , a, si 9
hg , b, si 10

sstart

a

b

c

d g

2

2
3

4

5

5

2

Example of Uniform-Cost Search: Step 7
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Greedy (best-first) search 

Q  hstarti; // Initialize the queue with the starting node

while Q is not empty do
Pick the path P with minimum heuristic cost h(head(P)) from the queue Q;
if head(P) = goal then return P ; // We have reached the goal

foreach vertex v such that (head(P), v) 2 E, do
add hv ,Pi to the queue Q;

return FAILURE ; // Nothing left to consider.

Greedy (Best-First) Search

E. Frazzoli (MIT) L05: Informed Search November 1, 2010 16 / 46
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A trace of GS execution 

Q:
path cost h

hsi 0 10

s
10start

a
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d
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Example of Greedy (Best-First) Search: Step 1

E. Frazzoli (MIT) L05: Informed Search November 1, 2010 17 / 46

Q:

path cost h

ha, si 2 2
hb, si 5 3
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Example of Greedy (Best-First) Search: Step 2
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Q:

path cost h

hc , a, si 4 1
hb, si 5 3
hd , a, si 6 4
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Example of Greedy (Best-First) Search: Step 3
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Q:

path cost h

hb, si 5 3
hd , a, si 6 4
hd , c , a, si 7 4

s
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Example of Greedy (Best-First) Search: Step 4
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A trace of GS execution 

Q:

path cost h

hg , b, si 10 0
hd , a, si 6 4
hd , c , a, si 7 4

s
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a
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Example of Greedy (Best-First) Search: step 5
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A search 

Q  hstarti; // Initialize the queue with the starting node

while Q is not empty do
Pick the path P with minimum estimated cost f (P) = g(P) + h(head(P))
from the queue Q;
if head(P) = goal then return P ; // We have reached the goal

foreach vertex v such that (head(P), v) 2 E, do
add hv ,Pi to the queue Q;

return FAILURE ; // Nothing left to consider.

A Search

E. Frazzoli (MIT) L05: Informed Search November 1, 2010 25 / 46
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A trace of A search execution 

Q:
path g h f

hsi 0 10 10

s
10start
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Example of A Search: Step 1
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Example of A Search: step 2
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path g h f
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Example of A Search: step 3
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Q:

path g h f
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Example of A Search: step 4
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A trace of A search execution 

Q:

path g h f

hg , b, si 10 0 10
hd , a, si 6 5 11
hd , c , a, si 7 5 12
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Example of A Search: step 5
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A trace of A* search execution 
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path g h f

hsi 0 10 10
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6start
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Example of A⇤ Search: step 1
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Example of A⇤ Search: step 2
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path g h f

hc , a, si 4 1 5
hd , a, si 6 1 7
hb, si 5 3 8

s
6start

a
2

b
3

c
1

d
1

g
0

2

2
3

4

5

5

2

Example of A⇤ Search: step 3
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path g h f

hd , a, si 6 1 7
hb, si 5 3 8

hd , c , a, si 7 1 8

s
6start

a
2

b
3

c
1

d
1

g
0

2

2
3

4

5

5

2

Example of A⇤ Search: Step 4
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A trace of A* search execution 

Q:

path g h f

hg , d , a, si 8 0 8
hb, si 5 3 8

hd , c , a, si 7 1 8
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Example of A⇤ Search: step 5
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Appendices 

•  Bounding 
•  Variants 
•  More about Informed Search. 
•  Dynamic Programming. 



Dynamic programming 

•  Search algorithms work towards the goal.  
Hence the need for the heuristic h(v). 

•  What if we work backwards from the goal?  
h(G)=0, and h(v) becomes available when needed. 

•  Bellman’s dynamic programming principle: 

–  Shortest paths computed from smaller shortest paths. 

 

Dynamic Programming

The optimality principle

Let P = (s, . . . , v , . . . g) be an optimal path (from s to g). Then, for any
v 2 P , the sub-path S = (v , . . . , g) is itself an optimal path (from v to g).

Using the optimality principle

Essentially, optimal paths are made of optimal paths. Hence, we can
construct long complex optimal paths by putting together short
optimal paths, which can be easily computed.

Fundamental formula in dynamic programming:

h⇤(u) = min
(u,v)2E

[w( (u, v) ) + h⇤(v)] .

Typically, it is convenient to build optimal paths working backwards
from the goal.
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DP example Dijkstra’s algorithm: example
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Dynamic programming requires the computation of all optimal
sub-paths, from all possible initial states (curse of dimensionality).

On-line computation is easy via state feedback: convert an open-loop
problem into a feedback problem. This can be useful in real-world
applications, where the state is subject to errors.
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Comparison of A* and DP 

A* Dynamic programming 
•  Search towards the goal, •  Work backwards from the 

guided by a heuristic. goal. 
•  Fast if the heuristic is good. •  Slower. 
•  Find the optimal path from •  Find the optimal path from 

the start node to the goal every node to the goal node. 
node. •  Provide closed-loop 

•  Provide open-loop control. feedback control. 
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