Informed Search

Brian C. Williams

Slides adapted from: 16.410-13
6.034 Tomas Lozano Perez, Winston

’ ’ rd
David Hsu, and September 23 5

Russell and Norvig AIMA 2015

Assignment

« Remember:
— PS #2, due Today at midnight, Wednesday, September 2314, 2015.
— Problem Set #3, out Today, due Wednesday, September 30, 2015,

* Reading:
— Today: Informed search and exploration: AIMA Ch. 4.1-2, Ch. 25.4.

Computing Shortest Paths: Cormen, Leiserson & Rivest, (opt.)
“Introduction to Algorithms” Ch. 25.1-.2.

— Wed: Activity Planning: [AIMA] Ch.10 & 11.

9/23/15 Brian Williams, Fall 15

Motion planning

st SR S
9003 RIK ConcOTd AVN %g, «\%

—m_,_ﬁ'@. @Gambrldge oy N
N D/ ol
TR
Q/db 2
5.% Joh;TJ herh
= Fiel d
5 [
3 -
)

[T

ig Longrellow Brg
Charle> Ru-ur

SN\ e

_ Storrow Dy pet

© 2003 MapQuest.com, Inc.; ©2003 Naviqation Technolbqgies

9/23/15 Brian Williams, Fall 15

Motion planning

Bridge inspection with
a 35 dofs robot

Brian Williams, Fall 15

9/23/15

Review: Roadmaps are an effective
state space abstraction

AVES T BlrS T L BN 3
73;;‘?”\“": : GO"TC‘:O@??E \ E\’tf%}\z\’g =
o e dge 7 o S X

{ L. :‘:‘\

7,*. m

& F ¥

R, i

.". L ___'-A"- 4 e 4 !

S ‘%‘V\}Z?‘E'd.wand_ N

G/ SennottRark wa f
S 4 s P Py ™ d

/
&7 ‘#\', /!
i/ .
7 o) -
> -
- e J

Agl
4

-
fJ
-

,'
-"I'
o

-,

-
-—
o
- e -
- —

© 2003 MapQuest.com, Inc.; ©2003 Navig
9/23/15 Brian Williams, Fall 15

Constructing Road Maps

Configuration Spaces Cell Decompositions
And Visibility Graphs

Start

Goal

Probabilistic Road Maps

9/23/15
Brian Williams, Fall 15

Finding A Shortest Path

Input. <gr, w, S, G>, where

» grisa (directed) graph <V,E> with

« weight function w: VxV = R,

« S & Visthe Start and G € V i1s the Goal.

9/23/15 Brian Williams, Fall 15

Finding A Shortest Path

Input. <gr, w, S, G>, where

» grisa (directed) graph <V,E> with

« weight function w: VxV = R,

« S & Visthe Start and G € V i1s the Goal.

Output:

A simple path P =<v, v, ...v > from S to G,
with the shortest path weight g = 6(S,G),
and its corresponding weight.

9/23/15 Brian Williams, Fall 15

Optimal Search

Augment search tree nodes
to include path length g

*o

edge cost

Problem: Find the path to the goal G with
the shortest path length g.

9/23/15 Brian Williams, Fall 15

Informed Search Uniform cost search

spreads evenly from

/‘ the start

iz

N

g X
A B goal
start A* biases uniform cost

towards the goal

9/23/15 Brian Williams, Fall 15

10

asin33
Oval

Classes of Search

Blind

(uninformed)

Depth-First Systematic exploration of whole tree
Breadth-First until the goal is found.

Iterative-Deepening

Best-first Uniform-cost Uses path “length” measure to
(informed) Greedy find “shortest” path.

A*
Bounding Branch and Bound Prunes suboptimal branches.

Alpha/Beta Prunes options that the adversary rules out.
Variants Hill-Climbing (w backup)

9/23/15

Beam

I D A* Brian Williams, Fall 15

11

asin33
Rectangle

Classes of Search

Blind

—

uninformed)

Depth-First Systematic exploration of whole tree
Breadth-First until the goal is found.

Iterative-Deepening

Best-first

9/23/15

Uniform-cost Uses path “length” measure to
Greedy find “shortest” path.
A*

Brian Williams, Fall 15

Uniform cost search
spreads evenly from

__ the start
=06

\ \

B goal

star

Does uniform cost search find the shortest path? Yes, Optimal

9/23/15 Brian Williams, Fall 15

13

Uniform Cost

edge cost

path length —_ .

&

Enumerates partial paths in order of increasing path length g.

9/23/15 Brian Williams, Fall 15

Uniform Cost

edge cost

path length —_ .

s>
@2 @5

Enumerates partial paths in order of increasing path length g.

9/23/15 Brian Williams, Fall 15

Uniform Cost

edge cost

path length —_ .

>
Ca)2 GL

&S @

Enumerates partial paths in order of increasing path length g.

9/23/15 Brian Williams, Fall 15

Uniform Cost

edge cost

path length —_ .

s
(a2 @B)s

.S @

Enumerates partial paths in order of increasing path length g.

9/23/15 Brian Williams, Fall 15

Uniform Cost

edge cost

path length —_ .

(A2 COE
6@{&4 6 @ & 10

Enumerates partial paths in order of increasing path length g.

9/23/15 Brian Williams, Fall 15

Uniform Cost

edge cost

path length —_

s
a2 B)s
6 é)4 6 (0 ()10
1@ @ s
N

Better path visited later.
Enumerates partial paths in order of increasing path length g.

9/23/15 Brian Williams, Fall 15

Uniform Cost

edge cost

path length —_

Better path visited later. Expands nodes already visited.

Enumerates partial paths in order of increasing path length g.

May expand vertex more than once.

9/23/15 Brian Williams, Fall 15

Uniform Cost

edge cost

path length —_

Better path visited later. Expands nodes already visited.

Enumerates partial paths in order of increasing path length g.

May expand vertex more than once.

9/23/15 Brian Williams, Fall 15

Uniform Cost

edge cost

path length —_ 0

o (oD ‘8 O (@s

Best path expanded first. Expands nodes already visited.

Enumerates partial paths in order of increasing path length g.

May expand vertex more than once.

9/23/15 Brian Williams, Fall 15

22

Why Expand a Vertex More Than Once?

edge cost
path length —_

1
02/‘\O 4 @‘# D
4
The shortest path from Sto G

is(GDAS).

D is reached first using
path (D S).

Suppose we expand only the
first path that visits each vertex X?

9/23/15 Brian Williams, Fall 15

23

Why Expand a Vertex More Than Once?

edge cost
path length —_

1
‘€/®\® 5) 1 ‘
=3 4
3
« The shortest path from S to G

is(GDAS).

D is reached first using
path (D S).

This prevents path (D A S)

Suppose we expand only the from being expanded.

first path that visits each vertex X?

9/23/15 Brian Williams, Fall 15

24

Why Expand a Vertex More Than Once?

edge cost
path length —_

0

s

1
< Q‘ @‘LQ
=3 |
3 5
« The shortest path from S to G
is(GDAS).
D is reached first using

path (D S).

This prevents path (D A S)

Suppose we expand only the from being expanded.

first path that visits each vertex X?

9/23/15 Brian Williams, Fall 15

25

Why Expand a Vertex More Than Once?

edge cost

path length —_

« The shortest path from S to G
is(GDAS).

« Disreached first using
path (D S).

« This prevents path (DA S)
Suppose we expanded only the from being expanded.

.. 0
first path that visits each vertex X? The suboptimal path (G D 8)
= Solution: Eliminate the Visited List. s returned.

9/23/15 Brian Williams, Fall 15

26

A

o

Generic Search Algorithm

Let gr be a Graph. Let Q be a list of simple partial paths in gr.
Let S be the start vertex in gr. Let G be a Goal vertex in gr.

Initialize Q with partial path (S) as only entry; set Visited = ();
If Q is empty, fail; Else, pick partial path N from Q;

If head(N) = G, return N ; (we’ ve reached the goal!)
(Otherwise) Remove N from Q;

Find all children of head(N) (its neighbors in gr) not in Visited
and create all the one-step extensions of N to each child;

Add to Q all the extended paths;
Add children of head(N) to Visited;
Go to Step 2. Brian Williams, Fall 15

9/23/15
27

Uniform Cost Search Algorithm

Let gr be a weighted Graph. Let Q be a list of simple partial paths in gr.
Let S be the start vertex in gr. Let G be a Goal vertex in gr.
Let g be the path weight from S to N.

Initialize Q with partial path (S) as only entry; set-isited={:
If Q is empty, fail, Else, pick partial path N from Q with best g;
If head(N) = G, return N ; (we’ ve reached the goal!)
(Otherwise) Remove N from Q;

Find all children of head(N) (its neighbors in Gr) netin-Visited
and create all the one-step extensions of N to each child;

. Add to Q all the extended paths;

a B~ o b =

Addchitdrenof neaum) to-Visited;

_~J

. GO to Step 2. Brian Williams, Fall 15

Implementing the
Search Strategies

Depth-first:
Pick first element of Q Uses visited list
Add path extensions to front of Q

Breadth-first:
Pick first element of Q Uses visited list

Add path extensions to end of Q
Uniform-cost:

Pick first element of Q No visited list

Add path extensions to Q in order of
increasing path weight g.

Implement priority queue with a heap. For graph with n nodes:
« Keeping a queue sorted takes time O(n?).
* Heap implementation takes time O(n Ig n).

9/23/15 Brian Williams, Fall 15

29

Best First with Uniform Cost

Pick first element of Q; Insert path extensions, sorted by g.

Q

1 [(05)

2 (2AS)(5BYS)
3

4

5

6

7

Here we:

* Insert on queue in order of g.

* Remove first element of queue.
9/23/15 Brian Williams, Fall 15

Best First with Uniform Cost

Pick first element of Q; Insert path extensions, sorted by g.

Q
1 1(08)
2 |(2KS)(5BY)
3 |(4CAS)(5BS)(6DAS)
4
5
6
7
Here we:

* Insert on queue in order of g.

* Remove first element of queue.
9/23/15 Brian Williams, Fall 15

Best First with Uniform Cost

Pick first element of Q; Insert path extensions, sorted by g.

Q

(05)

(2KS)(5B S)

(4C/AS)(5BS)(6DAS)

(5BS)(6DAS)

O PO -

Here we:
* Insert on queue in order of g.

* Remove first element of queue.
9/23/15 Brian Williams, Fall 15

Best First with Uniform Cost

Pick first element of Q; Insert path extensions, sorted by g.

Q

(09)

(2K S)(5B S)

(40/AS)(5BS)(6DAS)
(557S)(6DAS)
(6D8,S)(6DAS)(10GBS)
(6DAS)(8GDBS)(9CDBS)(10GBS)

7 (8GDASWBGDBSHQCDASHQCDBS)
‘ (

10GBS)

O AW INN -

9/23/15 Brian Williams, Fall 15

Can we stop as soon as
the goal is enqueued (" visited”)?

Q

(0-9)

(2&S)(5B S)
(4C/AS)(5B8S)(BDAS)
(5B S) (6 DAS)
(6DES)(6DAS)[10GBS)
(6DAS)8 GDBS)(9CDBS)(10GBS)

(8GDAS)[8GDBS)(9CDAS)(9CDBS)
(10G B S)

O AN -

7

« Other paths to the goal that are shorter may not yet be enqueued.

* Only when a path is pulled off the Q are we guaranteed that
no shorter path will be added.

« This assumes all edges are positive.

9/23/15 Brian Williams, Fall 15

Implementing the
Search Strategies

Depth-first:
Pick first element of Q Uses visited list
Add path extensions to front of Q

Breadth-first:
Pick first element of Q Uses visited list

Add path extensions to end of Q
Uniform-cost:

Pick first element of Q No visited list
Add path extensions to Q in increasing order of path weight g.

Best-first: (generalizes uniform-cost)
Pick first element of Q No visited list

Add path extensions in increasing order of any cost function f.

9/23/15 Brian Williams, Fall 15

35

a B~ oo bdb =

»

Best-first Search Algorithm

Let gr be a Graph Let Q be a list of simple partial paths in gr.
Let S be the start vertex in gr. Let G be a Goal vertex in gr.
Letf be a cost function on N.

Initialize Q with partial path (S) as only entry;

If Q is empty, fail. Else, pick partial path N from Q with best f;
If head(N) = G, return N; (we’ ve reached the goal!)
(Otherwise) Remove N from Q;

Find all children of head(N) (its neighbors in gr) and create all
the one-step extensions of N to each child;

Add to Q all the extended paths;
Go to Step 2.

9/23/15 Brian Williams, Fall 15

36

Cost and Performance

Searching a tree with branching factor b, solution depth d, and max depth m

Search

Worst

Worst

Guaranteed to

imal?
Method Time Space find a path? Optima
Depth-First bm b*m Yes No
Breadth-First pd+1 bd+l Yes Yes for unit edge cost
Best-First Yes if uniform cost or
bd*! bd*! Yes A* wI aljjr:lissible heuristic
Beam
(beam width = k)
Hill-Climbing
(no backup)
Hill-Climbing
(backup)

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q

9/23/15

Brian Williams, Fall 15

37

Remarks

« UCS 1s a straightforward instance of BFS.

« UCS 1s complete and optimal.

 However, like BFS (or DFS),
UCS does not consider the goal node
during search and could be slow.

9/23/15 Brian Williams, Fall 15

Classes of Search

Blind

—

uninformed)

Depth-First Systematic exploration of whole tree
Breadth-First until the goal is found.

Iterative-Deepening

Best-first

9/23/15

Uniform-cost Uses path “length” measure. Finds
Greedy “shortest” path.
A*

Brian Williams, Fall 15

39

Chicago, Il

Uniform cost search
spreads evenly from
start
Rapid City, ND / \ Boston, Ma
(AN

/ %% \ \

A B goal
sta Greedy search is directed
towards the goal.

Uniform cost search explores the direction away
from the goal as much as with the goal.

9/23/15 Brian Williams, Fall 15

Greedy Search

Search in an order imposed by a heuristic function, measuring cost to go.

Heuristic function h — is a function of the current node n,
not the partial path s to n.

« Estimated distance to goal - h (n,G)

» Example: straight-line distance in a road network.

« “Goodness” of a node - h (n)
« Example: elevation.

* Foothills, plateaus and ridges are problematic.

9/23/15 Brian Williams, Fall 15

41

Greedy

Pick first element of Q; Insert path extensions, sorted by h.

(10 S)

N | W IN|

Heuristic values in red
Added paths in blue; heuristic value of head is in front. Order of nodes in blue.

9/23/15 Brian Williams, Fall 15

42

Greedy

Pick first element of Q; Insert path extensions, sorted by h.

Q
(16-S)

(2AS) (3B S)

N | W IN|

Heuristic values in red
Added paths in blue; heuristic value of head is in front. Order of nodes in blue.

9/23/15 Brian Williams, Fall 15

43

Greedy

Pick first element of Q; Insert path extensions, sorted by h.

Q

(16-S)

(24S) (3B S)
(1CAS)(3BS)(4DAS)

N | W IN|

Heuristic values in red
Added paths in blue; heuristic value of head is in front. Order of nodes in blue.

9/23/15 Brian Williams, Fall 15

44

Greedy

Pick first element of Q; Insert path extensions, sorted by h.

Q
1 | (16-8)
2 | (24S)(3BS)
3 |(1EAS)(3BS)(4DAS)
4 |(3BS)(4DAS)
5

Heuristic values in red
Added paths in blue; heuristic value of head is in front. Order of nodes in blue.

9/23/15 Brian Williams, Fall 15

45

Greedy

Pick first element of Q; Insert path extensions, sorted by h.

Q

(16-S)

(24S) (3B S)
(1L.CAS)(3BS)(4DAS)
(38S) (4DAS)
(0GBS)(4DAS)(4DBS)

N | W IN|

Heuristic values in red
Added paths in blue; heuristic value of head is in front. Order of nodes in blue.

9/23/15 Brian Williams, Fall 15

46

Greedy

Pick first element of Q; Insert path extensions, sorted by h.

Q

(16-S)

(24S) (3B S)
(1.6AS)(3BS)(4DAS)
(38S) (4DAS)
(0GBS){4DAS))(4DBS)

N | W IN|

Heuristic values in red
Added paths in blue; heuristic value of head is in front. =~ Edge cost in green.

Did Greedy search produce the shortest path?

9/23/15 Brian Williams, Fall 15

47

Remarks

* The performance of GS depends strongly on
the quality of the heuristic.

— With a good heuristic,
GS reaches the goal quickly.

— With a misleading heuristic,
GS may “get stuck” and
perform worse than UCS.

* GS 1s not optimal.

9/23/15 Brian Williams, Fall 15

Classes of Search

Blind

—

uninformed)

Depth-First Systematic exploration of whole tree
Breadth-First until the goal is found.

Iterative-Deepening

Best-first

9/23/15

Uniform-cost Uses path “length” measure. Finds
Greedy “shortest” path.
A*

Brian Williams, Fall 15

49

Uniform cost search
spreads evenly from

/‘ the start

B goal

star

9/23/15 Brian Williams, Fall 15

50

Uniform cost search
spreads evenly from

/‘ the start

Greedy goes for the
goal, but forgets its

%.ﬁ\ past. \
ACETR X

goal

start A search biases uniform cost
towards the goal by using h:

of=g+h

* g = distance from start.

9/23/15 Brian Williams, Fall 15 © h = estimated distance
to goal.

51

asin33
Oval

Comparison of UCS and GS

UCS GS

« Think about the past: * Think about the future:
order the queue by g(v), order the queue by A(v),
the path cost from the start the estimated path cost to
(cost-to-come). the goal (cost-to-go).

* Optimal. * Not optimal.

e Usually not fast. Maybe fast.

9/23/15 Brian Williams, Fall 15

52

Combining UCS and GS

 What if we put g(v) and A(v) together?
Order the queue according to

F(v) = g(v) + h(v)

o g(v): cost-to-come (from the start to v).
o h(v): cost-to-go estimate (from v to the goal).
o f(v): estimated cost of the path (from the start to v and then to the goal).

* Resulting can be both optimal and fast.

9/23/15 Brian Williams, Fall 15

Remarks

* A search generalizes both UCS and GS.
— Setting A4(v)=0, we get UCS.
— Ignoring g(v), we get GS.

* A search appears fast, but 1s not optimal.
What is the problem?

9/23/15 Brian Williams, Fall 15

A* Search

To make A search optimal,

* h(v) must always underestimate the distance to
the goal.

 In other words, the heuristic must be optimistic
(admissible):

h(v) < h*(v)

9/23/15 Brian Williams, Fall 15

Simple Optimal Search Algorithm
BFS + Admissible Heuristic
Let gr be a Graph Let Q be a list of simple partial paths in gr

Let S be the start vertex in gr and Let G be a Goal vertex in gr.
Letf=g+ h be an admissible heuristic function.

Initialize Q with partial path (S) as only entry;

If Q is empty, fail. Else, use f to pick “best” partial path N from Q;

If head(N) = G, return N; (we’ ve reached the goal)
(Otherwise) Remove N from Q;

a oo b -~

Find all the descendants of head(N) (its neighbors in Gr) and create all the
one-step extensions of N to each descendant;

Add to Q all the extended paths;
7. Go to Step 2.

»

9/23/15 Brian Williams, Fall 15

56

In the example, 1s h

an admissible heuristic?

*Ais ok.

* B is ok.

Cis ok.

* D is too big; needs to be < 2.

* S is too hig; can always use 0 for start.

A finds an optimal solution
if h never over estimates.

e Search is called A*.

Brian Williams, Fall 15

e his called “admissible.”

Heuristic Values of h in Red.

Edge cost in Green.

57

Admissible heuristics for 8 puzzle?

6 (2 |8 1 |2 |3

S =S amE

4 17 |1 7 16 |5
S G

What is the heuristic?
* An underestimate of number of moves to the goal.
Examples:

1. Number of misplaced tiles (7)

2. Sum of Manhattan distance of each tile to its goal location
(17)

9/23/15 Brian Williams, Fall 15

Finding admissible heuristics

* Often domain-specific knowledge 1s
required.

« Examples

@ h(v) = 0: this always works! However, it is not very useful, and in
this case A* = UCS.

e h(v) = distance(v, g) when the vertices of the graphs are physical
locations.

@ h(v) = ||v — g||p, when the vertices of the graph are points in a
normed vector space.

9/23/15 Brian Williams, Fall 15

59

Finding admissible heuristics

e Relaxation

— Create a relaxed problem by 1ignoring some
constraints in the original problem.

* Consistency

— A heuristic function /% 1s consistent if
h(u) < w(e=(u,v))+ h(v), V(u,v)€E.

— A consistent heuristic function is admissible.

9/23/15 Brian Williams, Fall 15

50000
45000
40000
35000
30000
25000
20000
15000
10000

5000

9/23/15

Benetits of heuristics

| /

| / ~IDs

/ / = A*(h1)
/ / A*(h2)

/ /

y A

2 4 6 g 10 12 14 16 18 20 22 24
Brian Williams, Fall 15
AIMA, Sect. 3.6, Fig. 3.29

Why the difference?

* h(v)=0 o h(v)=h*(v)

9/23/15 Brian Williams, Fall 15

A* optimality: intuition

If the heuristic function

» over-estimates the distance to the goal,

— we eliminate the optimal solution and
make a mistake that 1s irrecoverable.

* under-estimates the distance,
— the search may be misled.

— However, as the search continues, the cost of the
sub-optimal path rises, and

— we eventually recover from the mistake.

9/23/15 Brian Williams, Fall 15

63

A* optimality: proot

@ Assume that A* returns P, but w(P) > w*
(w* is the optimal path weight/cost).

@ Find the first unexpanded node on the optimal path P*, call it n.

o f(n) > w(P), otherwise we would have expanded n.

o f(n) = g(n)+ h(n) by definition

@ = g*(n)+ h(n) because n is on the optimal path.
o < g*(n)+ h*(n) because h is admissible

o = f*(n) = W" because h is admissible

@ Hence W* > f(n) > W, which is a contradiction.

9/23/15 Brian Williams, Fall 15

Can We Prune Search Branches?

Property: Shortest Paths are extensions of Shortest Sub-Paths.

* Suppose path P=P, o P, , from S to G, is shortest.

* Suppose P, , from U to G, 1s not.

Then there exists P,” from U to G that 1s shorter than P,.

Hence P’ =P, o P,’ 1s shorter than P.

By contradiction, if P 1s a shortest, then P, 1s a shortest sub-path.

9/23/15 Brian Williams, Fall 15

65

Can We Prune Search Branches?

Property: Shortest Paths are extensions of Shortest Sub-Paths.

Idea: when shortest path S to U 1s found, 1gnore other paths S to U.

 When BFS dequeues the first partial path with head node U,
this path 1s guaranteed to be the shortest path from S to U.

» Given the first path to U, we don’t need to extend other paths to U;
delete them (expanded list).

9/23/15 Brian Williams, Fall 15

66

Simple Optimal Search Algorithm
How do we add dynamic programming?
Let gr be a Graph. Let Q be a list of simple partial paths in gr.

Let S be the start vertex in gr. Let G be a Goal vertex in gr.
Letf=g+ h be an admissible heuristic function.

1. Initialize Q with partial path (S) as only entry;
2. If Qis empty, fail. Else, use f to pick the “best” partial path N from Q;
3. [Ifhead(N) = G, return N; (we’ ve reached the goal)
4. (Else) Remove N from Q;
5. Find all children of head(N) (its neighbors in gr) and
create all the one-step extensions of N to each child;
6. Add to Q all the extended paths;

7. Go to Step 2.

9/23/15 Brian Williams, Fall 15

67

A* Optimal Search Algorithm
BFS + Dyn Prog + Admissible Heuristic
Let gr be a Graph Let Q be a list of simple partial paths in gr.

Let S be the start vertex in gr. Let G be a Goal vertex in gr.
Letf=g+ h be an admissible heuristic function.

Initialize Q with partial path (S) as only entry; set Expanded = ();

If Q is empty, fail. Else, use fto pick "best™ partial path N from Q;

If head(N) = G, return N; (we’ ve reached the goal)
(Else) Remove N from Q;

if head(N) is in Expanded, go to Step 2; otherwise, add head(N) to Expanded;

o o A0 Dbh =

Find all the children of head(N) (its neighbors in gr) not in Expanded,
and create all one-step extensions of N to each child;

Add to Q all the extended paths;
8. Go to Step 2.

9/23/15 Brian Williams, Fall 15

~

68

A* (BFS + DynProg + Admissible Heuristic)

Pick first element of Q; Insert path extensions, sorted by path length + heuristic.

Q Expanded
1 1(09)

Heuristic Values of g in Red
Edge cost in Green

Added paths in blue; cost f at head of each path.

9/23/15 Brian Williams, Fall 15

69

A* (BFS + DynProg + Admissible Heuristic)

Pick first element of Q; Insert path extensions, sorted by path length + heuristic.

Expanded

’S o

)
—

Heuristic Values of g in Red
Edge cost in Green

Added paths in blue; cost f at head of each path

9/23/15 Brian Williams, Fall 15

70

A* (BFS + DynProg + Admissible Heuristic)

Pick first element of Q; Insert path extensions, sorted by path length + heuristic.

Q Expanded
)
2 |(4KS)(8BYS) S
SA

Heuristic Values of g in Red
Edge cost in Green

Added paths in blue; cost f at head of each path

9/23/15 Brian Williams, Fall 15

71

A* (BFS + DynProg + Admissible Heuristic)

Pick first element of Q; Insert path extensions, sorted by path length + heuristic.

Q Expanded
1 [(BS)
2 |(4KS)(8BYS) S
3 |(BCAS)(TDAS)(8BYS) SA
4 SAC

Heuristic Values of g in Red
Edge cost in Green

Added paths in blue; cost f at head of each path

9/23/15 Brian Williams, Fall 15

72

A* (BFS + DynProg + Admissible Heuristic)

Pick first element of Q; Insert path extensions, sorted by path length + heuristic.

Q Expanded
1 [(B-S)
2 |[4AS)(8BYS) S
3 |(SCAS)(TDAS)(8BYS) SA
4 |(LBAS)(8BS) SAC
5 SACD

Heuristic Values of g in Red
Edge cost in Green

Added paths in blue; cost f at head of each path

9/23/15 Brian Williams, Fall 15

73

A* (BFS + DynProg + Admissible Heuristic)

Pick first element of Q; Insert path extensions, sorted by path length + heuristic.

Q Expanded
1 |o8)
2 |(4KS)(8BS) S
3 |(5CAS)(7TDAS)(8BS) |SA
4 |(1BAS)(8BS) SAC
5 [(8GDAS)[8BS) SACD

Added paths in blue; cost f at head of each path

9/23/15

Brian Williams, Fall 15

Heuristic Values of g in Red
Edge cost in Green

74

Expanded List can offer
Exponential Saving

Enumerate all (sub)paths:
« For simple paths of length n through S states, O(|S|>"*1).
« For simple paths up to length n, O(|S|>"*2.

Enumerate all shortest (sub)paths:
* Property: Shortest paths are extensions of Shortest Sub-Paths.

e Algorithm: Dynamic Programming;:

* Compute shortest paths of length n from shortest (sub)paths of length n-1.

() = min_[w((u.v)) + ()],

* O(n|S|?) for shortest paths up to length n and |S] states.

9/23/15 Brian Williams, Fall 15

75

Remarks

e The performance of A* search depends on
the quality of the heuristic.

* A* search 1s optimal.

9/23/15 Brian Williams, Fall 15

Recap: Informed Search Uniform cost search
Chicago, 1 spreads evenly from

/‘ the start using g.
Greedy search is directed

towards the goal using h.

Rapid City, ND ¢'> Boston, Ma

- X
A B goal
start A* biases uniform cost

towards the goal b by adding
h.

9/23/15 Brian Williams, Fall 15

asin33
Oval

Appendices

Bounding.

Variants.

More about Informed Search.
Dynamic Programming.

Classes of Search

Blind

(uninformed)

Depth-First Systematic exploration of whole tree
Breadth-First until the goal is found.

Iterative-Deepening

Best-first Uniform-cost Uses path “length” measure. Finds
Greedy “shortest” path.
A*

Bounding Branch and Bound Prunes suboptimal branches.

Alpha/Beta (L6) Prunes options that the adversary rules out.

9/23/15

Brian Williams, Fall 15

79

Branch and Bound

- A* generalizes best-first search.

* How do we generalize depth-first search?

Heuristic Values of g in Red
Edge cost in Green

9/23/15 Brian Williams, Fall 15

80

Branch and Bound

- Idea 1: Maintain the best solution found thus far (incumbent).

* [dea 2: Prune all subtrees worse than the incumbent.

@ @
8

10 S % 10 10

Incumbent:
tU=o, 8
;Ztsh P=(, (SADG) Edge cost in Green

9/23/15 Brian Williams, Fall 15

Heuristic Values of g in Red

81

Branch and Bound

- Idea 1: Maintain the best solution found thus far (incumbent).

* [dea 2: Prune all subtrees worse than the incumbent.

» Any search order allowed (DFS, Reverse-DFS, BFS, Hill w BT...).
’ ‘\
4 / 8
P
7
© @ © "
10 é E 8 10 10

Incumbent: o |
cost U=, 10, g Heuristic V-alues of g in Red
pathP=(, (SBG) (SADG) Edge cost in Green

9/23/15 Brian Williams, Fall 15

82

Simple Optimal Search

Using Branch and Bound
Let gr be a Graph. Let Q be a list of simple partial paths in gr.
Let S be the start vertex in gr. Let G be a Goal vertex in gr.

Let f=g+ h be an admissible heuristic function.
U and P are the cost and path of the best solution thus far (Incumbent).

1. Initialize Q with partial path (S); Incumbent U = o, P = ();

2. If Qis empty, return Incumbent U and P,
Else, remove a partial path N from Q;

3. Iff(N) >=U, Go to Step 2.
4. If head(N)=G,thenU=f(N)andP=N (a better path to the goal)

5. (Else) Find all children of head(N) (its neighbors in gr) and
create all the one-step extensions of N to each child.

6. Add to Q all the extended paths.
7. Go to Step 2.

9/23/15 Brian Williams, Fall 15

83

Appendices

Bounding.

Variants.

More about Informed Search.
Dynamic Programming.

Classes of Search

Blind

(uninformed)

Depth-First Systematic exploration of whole tree
Breadth-First until the goal is found.

Iterative-Deepening

Best-first Uniform-cost Uses path “length” measure. Finds
Greedy “shortest” path.
A*
Bounding Branch and Bound Prunes suboptimal branches.
Alpha/Beta Prunes options that the adversary rules out.
Variants Hill-Climbing (w backup)

9/23/15

Beam
IDA*

Brian Williams, Fall 15

85

Hill-Climbing

Pick first element of Q; Replace Q with extensions (sorted by heuristic value)

Q
(16-S)
(2AS) (3B S)

Y NN -

Heuristic Values
A=2 C=1 S=10
B=3 D=4 G=0

Added paths in blue; heuristic value of head is in front.

9/23/15 Brian Williams, Fall 15

86

Hill-Climbing

Pick first element of Q; Replace Q with extensions (sorted by heuristic value)

Q

(16-S)

(2AS{(3BS)) Removed

———

(1CAS)(4DAS)

Y NN -

Heuristic Values
A=2 C=1 S=10
B=3 D=4 G=0

Added paths in blue; heuristic value of head is in front.

9/23/15

Brian Williams, Fall 15

87

Hill-Climbing

Pick first element of Q; Replace Q with extensions (sorted by heuristic value)

3
Q &
(16-S)
(24S) (3B S) <)

(+CAS)(4DAS)

(B

Y NN -

()

Heuristic Values
A=2 C=1 S=10
B=3 D=4 G=0

Fails to find a path!

Added paths in blue; heuristic value of head is in front.

9/23/15 Brian Williams, Fall 15

88

Cost and Performance

Searching a tree with branching factor b, solution depth d, and max depth m

Search Worst Worst Guaranteed to ,
. . Optimal?
Method Time Space find a path?
Depth-First bm b*m Yes No
Breadth-First pd+1 bd+l Yes Yes for unit edge cost
Best-First Yes if uniform cost or
b bd*! Yes A* w admissible heuristic.
Beam
(beam width = k)
Hill-Climbing
%k
(no backup) b*m b No No
Hill-Climbing
(backup)

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q

Brian Williams, Fall 15

9/23/15

Hill-Climbing (with backup)

Pick first element of Q; Add path extensions (sorted by heuristic value) to front of Q

Q
(16-S)
(2AS) (3B S)

N (bW IN|

Heuristic Values
A=2 C=1 S=10
B=3 D=4 G=0
Added paths in blue; heuristic value of head is in front.

9/23/15 Brian Williams, Fall 15

90

Hill-Climbing (with backup)

Pick first element of Q; Add path extensions (sorted by heuristic value) to front of Q

Q
(16-S)
(247S) (3B S)

(1CAS 4DAsH3§§::>

All new nodes before old

| AW IN| -

Heuristic Values
A=2 C=1 S=10
B=3 D=4 G=0
Added paths in blue; heuristic value of head is in front.

9/23/15 Brian Williams, Fall 15

91

Hill-Climbing (with backup)

Pick first element of Q; Add path extensions (sorted by heuristic value) to front of Q

Q

(16°S)

(24S) (3B S)
(+CAS)(4DAS)(3BS)
(4DAS)(3BS)

N | W IN|

Heuristic Values
A=2 C=1 S=10
B=3 D=4 G=0
Added paths in blue; heuristic value of head is in front.

9/23/15 Brian Williams, Fall 15

92

Hill-Climbing (with backup)

Pick first element of Q; Add path extensions (sorted by heuristic value) to front of Q

Q

(16-S)

(24S) (3B S)

(+CAS)(4DAS)(3BS)

(ABAS)(3BS)

(0GDAS)(1CAS)(3BS) Heuristic Values
A=2 C=1 S=10
B=3 D=4 G=0

| AW IN| -

Added paths in blue; heuristic value of head is in front.

9/23/15 Brian Williams, Fall 15

93

Hill-Climbing (with backup)

Pick first element of Q; Add path extensions (sorted by heuristic value) to front of Q

Q

(16-5)

(24S) (3B S)

(+CAS)(4DAS)(3BS)

(4DAS)(3BS)
(0GDAS) (I' CAS)(3BS) Heuristic Values

A=2 C=1 S=10

B=3 D=4 G=0
Added paths in blue; heuristic value of head is in front.

| AN -

9/23/15 Brian Williams, Fall 15

94

Cost and Performance

Searching a tree with branching factor b, solution depth d, and max depth m

Search Worst Worst Guaranteed to ,
. . Optimal?
Method Time Space find a path?
Depth-First bm b*m Yes No
Breadth-First pd+1 bd+l Yes Yes for unit edge cost
Best-First Yes if uniform cost or
b bd*! Yes A* w admissible heuristic.
Beam
(beam width = k)
Hill-Climbing
%k
(no backup) b*m b No No
Hill-Climbing
(backup)

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q

9/23/15

Brian Williams, Fall 15

Cost and Performance

Searching a tree with branching factor b, solution depth d, and max depth m

Search Worst Worst Guaranteed to ,
. . Optimal?
Method Time Space find a path?
Depth-First bm b*m Yes No
Breadth-First pd+1 bd+l Yes Yes for unit edge cost
Best-First Yes if uniform cost or
b bd*! Yes A* w admissible heuristic.
Beam
(beam width = k)
Hill-Climbing
%k
(no backup) b*m b No No
Hill-Climbing
m %k
(backup) b b*m Yes No

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q

9/23/15

Brian Williams, Fall 15

96

Classes of Search

Blind

(uninformed)

Depth-First Systematic exploration of whole tree
Breadth-First until the goal is found.

Iterative-Deepening

Best-first Uniform-cost Uses path “length” measure. Finds
Greedy “shortest” path.
A*

Bounding Branch and Bound Prunes suboptimal branches
Alpha/Beta Prunes options the adversary rules out

Variants Hill-Climbing (w backup)

9/23/15

Beam
IDA*

Brian Williams, Fall 15

97

Beam

Expand all Q elements; Keep the k best extensions (sorted by heuristic value)

Heuristic Values
A=2 C=1 S=10
B=3 D=4 G=0

Idea: Incrementally expand the k best paths

Added paths in blue; heuristic value of head is in front.

Letk=2

9/23/15 Brian Williams, Fall 15

98

Beam

Expand all Q elements; Keep the k best extensions (sorted by heuristic value)

Q

1 | (16-S)

2 [(2AS)(3BS)

Heuristic Values
A=2 C=1 S=10
B=3 D=4 G=0

Idea: Incrementally expand the k best paths

Added paths in blue; heuristic value of head is in front.

Letk=2

9/23/15 Brian Williams, Fall 15

99

Beam

Expand all Q elements; Keep the k best extensions (sorted by heuristic value)

Q
1 |(16°8)

2 | (2KS) (3879)

(0GBS)(1CAS) Keep
D ASIADB S k best

Heuristic Values
A=2 C=1 S=10
B=3 D=4 G=0

Idea: Incrementally expand the k best paths

Added paths in blue; heuristic value of head is in front.

Letk=2

9/23/15 Brian Williams, Fall 15

100

Beam

Expand all Q elements; Keep the k best extensions (sorted by heuristic value)

Q

1 | (16S)

2 | (2K7S) (3879)

(0GBS)(1CAS) Keep
4D ASIADB S k best

Heuristic Values
A=2 C=1 S=10
B=3 D=4 G=0

Idea: Incrementally expand the k best paths

Added paths in blue; heuristic value of head is in front.

Letk=2

9/23/15 Brian Williams, Fall 15

101

Cost and Performance

Searching a tree with branching factor b, solution depth d, and max depth m

Search Worst Worst Guaranteed to ,
. . Optimal?
Method Time Space find a path?
Depth-First bm b*m Yes No
Breadth-First pd+1 bd+l Yes Yes for unit edge cost
Best-First Yes if uniform cost or
b+ bd*! Yes A* w admissible heuristic.
Beam
kI k %
(beamwidth=k) | < 0Tm KD No No
Hill-Climbing
k
(no backup) b*m b No No
Hill-Climbing
m %k
(backup) b b*m Yes No

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q

9/23/15

Brian Williams, Fall 15

102

Appendices

Bounding

Variants

More about Informed Search.
Dynamic Programming.

Breadth-first search: an example

* Optimal (shortest) path <s,b,g>
* Sub-optimal path <s,a,d,g>, ...

9/23/15 Brian Williams, Fall 15

Uniform-cost search: an example

9/23/15 Brian Williams, Fall 15

Uniform-cost search

Q < (start) ; // Initialize the queue with the starting node

while @ is not empty do

Pick (and remove) the path P with lowest cost g = w(P) from the queue Q ;

if head(P) = goal then return P ; // Reached the goal

foreach vertex v such that (head(P),v) € E, do //for all neighbors
L add (v, P) to the queue Q ; // Add expanded paths

return FAILURE ; // Nothing left to consider.

9/23/15 Brian Williams, Fall 15

106

A trace of UCS execution

i

27

path | cost path | cost
S| | o5 AGo
G0 s
start—»‘—G)/ start—»é—/
| state | cost | .\ | state | cost | G>\
@: (b, s) 5 @ (d,a,s) 6
(d,a,s) | 6 (d,c,a,s) | 7
start— start—
9/23/15 Brian Williams, Fall 15

107

A trace of UCS execution

GK

0@

) 5
start— >

| state | cost | | state | cost |
(d,a,s) 6 . 2 @ Q: (d,c,a,s) | 7
(d,c,a,s) | 7 (g,d,a,s) | 8
<g7 b7 5> 10 (g, b, S> 10
start—>
| state | cost | G>\
o o8
(g,d,c,a,s) 9
(g,b,s) 10
start—>
9/23/15 Brian Williams, Fall 15

108

Greedy (best-first) search

Q < (start); // Initialize the queue with the starting node
while Q is not empty do

Pick the path P with minimum heuristic cost h(head(P)) from the queue Q;
if head(P) = goal then return P ; // We have reached the goal
foreach vertex v such that (head(P),v) € E, do

| add (v, P) to the queue Q;

return FATILURE ; // Nothing left to consider.

9/23/15 Brian Williams, Fall 15

109

A trace of GS execution

3
2 3

|path|cost| h | %ﬁ\ 2 7\ | path |cost|h| 2

QZ a g] d 2 g
5] 0 [10] 2 Y Q:[(as) | 2 |2 S @

2 (b,s) | 5 |3) 5
‘ 5 (b
start 3/ start—>
| path | cost | h | h path | cost | h %

0 (c,a,s) | 4 |1 a) 4 ‘ 2 78 (b, s) 5 |3 a 2 &
(b,s) 5 13 2/ 5 OJ @ (d,a,s) 6 |4 2/ ‘ N
(d,a,s) | 6 |4 2 (d,c,a,s) | 7 | 4 2 >

Start—> > startH
9/23/15 Brian Williams, Fall 15

110

A trace of GS execution

path \ cost \ h ‘
(g, b,s) 10 |0
(d,a,s) 6 |4
(dyc,a,s) | 7 |4

9/23/15

Brian Williams, Fall 15

111

A search

Q < (start); // Initialize the queue with the starting node
while Q is not empty do
Pick the path P with minimum estimated cost f(P) = g(P) + h(head(P))
from the queue Q;
if head(P) = goal then return P ; // We have reached the goal
foreach vertex v such that (head(P),v) € E, do

| add (v, P) to the queue Q;

return FAILURE ; // Nothing left to consider.

9/23/15 Brian Williams, Fall 15

112

A trace of A search execution

start —

%

4m2

&/

A
N

e

z@x [path [g|[h]f]
Q:\path\g\h\f\ /J‘?\4m2m Q:| (a,s) 2|24
[(s) [0]10]10] 2/ \y5w (b,s) | 5|38
2
5 (b
start ‘7
path |g|h]| f | 2.\ [path [g|h] f|
Q <C7375> 411 5 a 4 . 2 m Q <b35> 5|3 8
(b,s) |5|3] 8 2/ : N (d,a,s) | 65|11
(d,a,s) | 65|11 2 / (d,c,a,s) | 7|5 |12
s\ 5
start W

9/23/15

Brian Williams, Fall 15

113

A trace of A search execution

o
[y
+
>

oQ
>
-+
N

w

S8,

start

—
Q.
(9}
5]
"
~
\‘
(651
=
N
N}
=) N|w
o

e

9/23/15 Brian Williams, Fall 15

114

A trace of A* search execution

s

| path [g| h | f | NN
5 [0l] 6] SPRSSY
2
start—»‘i
‘ path ‘g h|f 2.\
| (c,a,s) |[4]1]|5 A 4.2/@\
(d,a,s) |61 |7 2/ \0J
b,s) | 5|38 2
(s
NE

.

start —

9/23/15

3
|path|g|h|f| 2@\)
Q:| (a,s) |22 4 @ @
(b,sy | 5]3]8) 5
(s ®
start 6/
‘ path g|h|f %
Q: (dya,s) |6|1]7 2 4 . NEA)
' (b, s) 5138 2/ \0J
(d,c,a,s) | 7|18 2
(s
NG

.

start —

Brian Williams, Fall 15

A trace of A* search execution

2

‘ path ‘g‘h ‘ f‘ 2/!
Q (g,d,a,s) | 808 ANNTIAEN
(b,s) |5[3]8 @ U
(d,c,a,s) | 7|1]8 5 5
startﬁ > %

9/23/15 Brian Williams, Fall 15

116

Appendices

Bounding
Variants
More about Informed Search.

Dynamic Programming.

Dynamic programming

e Search algorithms work towards the goal.
Hence the need for the heuristic A(v).

 What if we work backwards from the goal?
h(G)=0, and A(v) becomes available when needed.

* Bellman’s dynamic programming principle:
h*(u) = (UT/;QE (w((u,v))+ h*(v)].

— Shortest paths computed from smaller shortest paths.

9/23/15 Brian Williams, Fall 15

DP example

?C“@ W
BN

\

S b
SR
ESC I G

Comparison of A* and DP

A*
» Search towards the goal,
guided by a heuristic.

« Fast 1f the heuristic 1s good.

* Find the optimal path from
the start node to the goal
node.

* Provide open-loop control.

Dynamic programming

Work backwards from the
goal.

Slower.

Find the optimal path from
every node to the goal node.

Provide closed-loop
feedback control.

9/23/15 Brian Williams, Fall 15

120

MIT OpenCourseWare
https://ocw.mit.edu

16.412J / 6.834J Cognitive Robotics
Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

