Semantic Localization

Matthew Deyo, Michael Traub, Anying Li, Nicole Glabinski, David Stingley, Roxana Mata

Overview

1. Motivation for Semantic Localization
2. Particle Filters
3. Semantic Localization Implementation

Motivation

Orienteering Grand Challenge

What would you do?

- You're dropped in the wild
- You have a compass
- You have a map

Orienteering Relocation Tips

Tips from orienteering experts!:

- "Relocate: everyone gets disoriented from time to time."
- "Stop, locate your last known location on the map, think about what you've seen and what direction you were moving, and how far you have gone."
- "Look around you for any feature large or unique enough to be mapped."

OrienteeringMaps

apen ground rough open ground woodiand: run woodand: slow run woodand: walk fight undergrowth
dirt path indistinct path fence, gats high fence
high wal
seat, cray water uncrossable marsh marsh. seasonal marsh stream, bridge index contour
contour
form line
earthwal broken ground lenal pit cepression

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

What do we want in our map?

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

	Robot	Human
Encodes	distances, surfaces	rooms, objects, relationships
Memory	dense	sparse
Useful for	motion planning	activity planning

Semantic Information

"Signs and symbols that contain meaningful concepts for humans"

Semantic Information: Why is it important?

Human-robot interaction
Function-driven navigation and planning
Performance and memory optimization
Cheaper hardware

Semantic Localization

The problem of localizing based on semantic information

For the Grand Challenge, we have a map with labeled objects and their coordinates

How can we localize based on what objects we see?

Overview

1. Motivation for Semantic Localization
2. Particle Filters
3. Semantic Localization Implementation

Localization

Simple question: Where am I?
Not so simple answer
The answer depends on the map used

Metric Localization

If you want quantitative pose description:
You need metric map for localization
X, Y, Z coordinates in space
Angles for orientation

Metric Localization

Quantitative pose descriptions

Review of Localization

- Localization problem statement

Suppose that the control u_{t} is applied to the robot and, after moving, the robot obtains a random observation z_{t+1}. Given a prior belief over x_{t} and the map Y, what is the posterior belief of $\mathrm{x}_{\mathrm{t}+1}$ after taking takes $\mathrm{z}_{\mathrm{t}+1}$ and u_{t} into account?

- When we translate the localization question into probabilistic terms, we aim to find the distribution

$$
\begin{aligned}
& p\left(x_{t+1} \mid x_{t}, z_{t+1}, u_{t}, Y\right) \\
& \text { position at position observation command map } \\
& \text { time } \mathrm{t}+1 \text { at time } \mathrm{t} \text { at time } \mathrm{t}+1 \text { variable at time } \mathrm{t}
\end{aligned}
$$

Review of Localization

- The Bayesian expansion of this posterior decomposes into

$$
p\left(z_{t+1} \mid x_{t+1}\right) p\left(x_{t+1} \mid x_{t}, u_{t}\right) p(x)
$$

Observation Actuation model Belief noise model
representation

- Our representation of the map limits what models we can use:
- Topological map: actuation model to be transition probabilities
- Laser scan observations: noise model over \mathscr{R}^{n}
- Object detection observations: noise model over sets, or boolean variables

Particle Filters

- Representing our posterior over poses can be difficult

$$
p\left(z_{t+1} \mid x_{t+1}\right) p\left(x_{t+1} \mid x_{t}, u_{t}\right)(p(x))
$$

- Kalman filter $\rightarrow p(x)$ is a Gaussian
- Particle filter $\rightarrow \mathrm{p}(\mathrm{x})$ is approximated by a set of points

Localization demo

Particle Filter

Sequential Importance Sampling Technique
Algorithm Steps:
0. Sample (using Initial Belief)

1. Update Weights
2. Resample
3. Propagate

Particle Filter-Example

Focus on problem with only one dimension

Aircraft

- Constant altitude
- Unknown x location
- Noisy forward velocity

Sensor

- Measures distance to ground below
- Noisy measurements

- Known mapping of x location to ground altitude

Goal: Determining unknown state - our location

Particle Filter- Example

Particle Filter

Algorithm Steps:
0. Sample (using Initial Belief)

If completely unknown initial state $>\mathrm{N}$ samples from uniform distribution

1. Update Weights
2. Resample
3. Propagate

Initial Sampling with Unknown State

Particle Filter

Algorithm Steps:
0. Sample (using Initial Belief)

If completely unknown initial state -> N samples from uniform distribution

1. Update Weights

Compare observations to expectations of each particle
2. Resample
3. Propagate

Measured value from our noisy sensor

Expected height values of each particle

Likelhood that particle explains measurement

Particle weights based on likelihood

Particle Filter

Algorithm Steps:
0. Sample (using Initial Belief)

If completely unknown initial state $->\mathrm{N}$ samples from uniform distribution

1. Update Weights

Compare observations to expectations of each particle
2. Resample

Create N new samples based on weight distribution calculated
3. Propagate

Resample from measurement distribution

Resample from measurement distribution

Particle Filter

Algorithm Steps:
0. Sample (using Initial Belief)

If completely unknown initial state $->\mathrm{N}$ samples from uniform distribution

1. Update Weights

Compare observations to expectations of each particle
2. Resample

Create N new samples based on weight distribution calculated
3. Propagate

Use dynamics model or inputs to propagate particles Take into account uncertainty with new weight calculations

Dynamics Model

Delta t between sensor measurements

Need to propagate particles in time

Dynamics Model

Delta t between sensor measurements

Need to propagate particles in time

Dynamics Model

New weights based on probability of particle transition

How likely was it for the plane to move that far in delta t?

Particle Filter

Algorithm Steps:
0. Sample (using Initial Belief)

If completely unknown initial state -> N samples from uniform distribution

1. Update Weights

Compare observations to expectations of each particle
2. Resample

Create N new samples based on weight distribution calculated
3. Propagate

Use dynamics model or inputs to propagate particles
Take into account uncertainty with new weight calculations
Repeat Steps 1 - 3

Keep filtering

Using new measurements and propagating through time
Time Step 2

Keep fillering

Using new measurements and propagating through time
Time Step 3

Keep filtering

Using new measurements and propagating through time
Time Step 4

Keep filtering

Using new measurements and propagating through time
Time Step 5

Keep filtering

Using new measurements and propagating through time
Time Step 6

Keep filtering

Using new measurements and propagating through time
Time Step 7

Keep filtering

Using new measurements and propagating through time
Time Step 8

Localization demo

Overview

1. Motivation for Semantic Localization
2. Particle Filters
3. Semantic Localization Implementation

Implementation

$$
p\left(z_{t+1} \mid x_{t+1}\right) p\left(x_{t+1} \mid x_{t}, u_{t}\right) p(x)
$$

Continuously Solve for most probable x
Thats our location

Psuedo Code

While the robot is moving
Make observations

$$
\begin{gathered}
Z_{t+1} \\
P(x)
\end{gathered}
$$

Generate a probable location
Update that location based on actuation

$$
P\left(x_{t+1} / x_{t}, u_{t}\right)
$$

Simulate the observations at that location
$\geq P\left(z_{t+1} / x_{t+1}\right)$
Update our location estimates based on comparison

Observation model selection

We need $_{t}$ o define \mathbf{z} (our observation)
A_{L} abeled Laser Scan
A_{S} cene with Objects at Locations

$$
\mathrm{A}_{\mathrm{S}} \text { et of } \mathrm{O} \text { bjects }
$$

Field-of-view with laser scanner

Legend
mailbox
tree
house

Object-Point Assumption

Legend
mailbox
tree
house

Field-of-view with point objects

Legend
mailbox
tree
house

Check each point for intersection with FOV

Field-of-view with polygon objects

Legend
mailbox
tree
house

New observation type means new error types

Depending on what we characterize the observation as, there are different opportunities to get it wrong

Observation
Potential Errors
Distance \& Bearing

Object Class

Sets of Objects

Noise, Sensor Limitations

Classification Error

Equality under Permutations

$$
P\left(z_{t+1} / x_{t+1}\right) \quad \Longrightarrow \quad P(Z / Y(x), x)
$$

$Z=$ Set of Observed Objects

$$
\{\text { House, Mailbox }\}
$$

$Y(x)=$ Set of Expected Objects for a given position
$X=$ Position

Example

Trees \& Mailboxes

$$
Z=\{\text { Tree, Tree, Mailbox }\}
$$

$$
Y=?
$$

What Do We Need To Consider?

Did we classify our observations correctly?
Did we observe everything in our FoV?
Did we interpret nothing as something?

Diu we inteipiet two things as ont thing?
Key Assumption 1: Each observation corresponds to exactly 1 object

Did we classify correctly?

Assume: We see everything in our FoV
Assume: We never see something that doesn't exist

$$
\begin{gathered}
\text { Solve } \\
P(Z \mid Y(x), x)
\end{gathered}
$$

$$
Y=?
$$

Did we classify correctly?

Assume: We see everything in our FoV
Assume: We never see something that doesn't exist

$$
Z=\{\square \omega \omega\} \quad Y=\left\{\begin{array}{c}
\{\omega \omega \omega\} \\
\{\omega \square \square \omega\}
\end{array}\right.
$$

$$
\underline{P i}=\{Z \Rightarrow Y\}
$$

Did we classify correctly?

Assume: We see everything in our FoV
Assume: We never see something that doesn't exist
This can keep expanding in relevant terms depending on the structure that detects objects

$$
P\left(z_{i} / y_{i}, x\right)=P\left(c / y^{\text {class }}\right) P\left(s / c, y^{\text {class }}\right) P(b / y, x)
$$

How often do we miss classify

If classifications have a score, is that score statistically likely

If we know the bearing we are viewing the object, does that effect classification?

Did we classify correctly?

Assume: We see everything in our FoV
Assume: We never see something that doesn't exist

$$
P(Z \mid Y(x), x)=\sum^{n} \prod_{10}^{n} P\left(Z_{i, p i} \mid y_{i}, x\right)
$$

Did we see everything?

Assume. We see everything inour FoV Assume: We never see something that doesn't exist

$$
\begin{aligned}
& Z=\left\{\begin{array}{lll}
\square & \omega & \omega
\end{array}\right\} \\
& \mathrm{Y}=\begin{array}{c}
\left\{\square \square \omega_{\mathrm{m}}\right\} \\
\{\square \Rightarrow \square
\end{array}
\end{aligned}
$$

Did we see everything?

Assume: We never see something that doesn't exist

What if we see nothing

$$
P(\varnothing / Y(x), x)
$$

Did we see everything?

Assume: We never see something that doesn't exist

$$
P(\varnothing / Y(x), x)=\prod_{\mathrm{i}=0}^{|Y(x)|}\left(1-P\left(y_{i} / x\right)\right)
$$

Key Assumption 2: An object is observed with some probability $P\left(y_{i} / x\right)$, and not with probability $1-P\left(y_{i} / x\right)$
Key Assumption 3: For a given position x and map, any two object detections are independent

$$
Y=?
$$

Did we see nothing as something？

> Assume. We see everything in our Fov Assume: We never see something that doesi't exist

$$
\begin{aligned}
& \mathrm{Z}=\left\{\begin{array}{lll}
\square & \text { \% } & 3
\end{array}\right\} \\
& \mathrm{Y}= \\
& \text { [-ロー・ }
\end{aligned}
$$

Did we see nothing as something?

What if there is nothing

$$
P(Z \mid \varnothing, x)
$$

Did we see nothing as something?

$$
P(Z \mid \emptyset, x)=e^{\lambda} \prod^{|z|}(\lambda \times K(z))
$$

Key Assumption 4: Noise is poisson distributed in time according to λ and spatially according to $K(z)$

Did we see nothing as something?

So what is $K(z)$?

Putting it all together

Solve

$$
P(Z \mid Y(X), X)
$$

$$
0
$$

Putting it all together

Solve

$$
P(Z \mid Y(x), x)
$$

Let

$$
|Z|=|Y|-n+o
$$

Where n is missed detections and o is false detections

Putting it all together

Solve

$$
P(Z \mid Y(x), x)
$$

$P(Z \mid Y(x), x)=$
Pi now maps both actual and false detections
$\sum \prod_{i=0}^{\mathrm{pi}} P\left(z_{i, p i}^{|Y|} / y_{i}, x\right)^{*} P\left(y_{i} / x\right)$
$* \prod^{\mathrm{n}}\left(1-P\left(y_{i} \mid x\right)\right) * e^{\lambda} \prod^{\circ}\left(\lambda * K\left(z_{p i}\right)\right)$

Semantic Localization Video

Why?

Humans can't walk into a room and reproduce an exact map, but we can store the most important aspects of the room and reason about what they're used for.

Robots can store a pixel-perfect map of a room, but have no intuitive understanding.
This means we're better at actually doing tasks with the environment.
How can we make robots localize and think more like humans?

Conclusion

1. Motivation for Semantic Localization
2. Particle Filters
3. Semantic Localization Implementation

References

F. Gustafsson, "Particle Filter Theory and Practice with Positioning Applications", IEEE A\&E Systems Magazine Vol. 25, No. 7, July 2010
O. Cappe, S. Godsill and E. Moulines, "An overview of existing methods and recent advances in sequential Monte Carlo", IEEE Proceedings, Vol. 95 No. 5 pp. 899-924 2007
N. Atanasov, M. Zhu, K. Daniilidis, and G. Pappas, "Localization from Semantic Observations via the Matrix Permanent ", The International Journal of Robotics Research, vol. 35 no. 1-3, pp.73-99, January 2016
http://www.us.orienteering.org/orienteers/training/getting-started
Various YouTube videos embedded in slides

Appendix: Our Semantic Map Definition

- We will use a labeled object map dl which is a set of labeled N objects $<\mathrm{P}_{\mathrm{i}}, \mathrm{c}_{\mathrm{i}}>$ for $\mathrm{i}=1 . . . \mathrm{N}$
- P_{i} is an ordered list of vertices $<\mathrm{x}, \mathrm{y}>$ of the polygon boundary

Legend mailbox
tree
house

- c_{i} is the class of the object, e.g. tree
- Our robot pose x_{t} will be a position and orientation $<\mathrm{x}, \mathrm{y}, \theta>$
- The actuation model can be any continuous dynamical probability model
- Must define the observation noise model

MIT OpenCourseWare
https://ocw.mit.edu

16.412J / 6.834J Cognitive Robotics

Spring 2016

For information about citing these materials or our Terms of Use, visit:|https://ocw.mit.edu/terms.

