
Cognitive Robotics
I.e., How to create “thinking” robots

Prof. Brian Williams and Steve Levine (TA)

Introduction
February 3rd, 2015.

Slide contributions:
Jacob Beal

2/3/2016 Cognitive Robotics-Introduction 1

Today’s Assignments
Problems Sets:
• None! Problem Set #1 out next Monday, due in 1½ weeks .

Readings:
• Today: Williams, B. C., et. al., “Model-based Programming of Fault-

Aware Systems,” AI Magazine, 24, pp. 61-75, 2004.
• Next: Williams, B. C. and Ragno, R. “Conflict-directed A* and its

Role in Model-based Embedded Systems,” Special Issue on Theory
and Applications of Satisfiability Testing, Journal of Discrete Applied
Math, 155, pp. 1562-1595, 2003.

Note:
• Problem sets, readings and lecture slides posted on 16.412J course site.
• Background: open courseware, 16.410/13 Principles of Autonomy and Decision

Making.

2/3/2016 Cognitive Robotics-Introduction 2

• Course in a Nutshell

• Course Structure and Logistics

• Programming Cognitive Robots

• Self-Adaptive and Self-Repairing Systems

• Programs that Monitor State

Outline

3

Coordinating Network Embedded Systems

• We are creating vast networks

of embedded systems that

perform critical functions over

long periods of time.

• These long-lived systems

achieve robustness by

coordinating a complex

network of devices.

• Programming these systems

robustly is becoming an

increasingly daunting task.

2/25/2015 Goal-directed Autonomous Systems and Model-based Programming
4

This image is in the public domain.

Command script

00:00 Go to x1,y1
00:20 Go to x2,y2
00:40 Go to x3,y3
…
04:10 Go to xn,yn

Plant

Commands

2/3/2016 Cognitive Robotics-Introduction 5

Model-based Executive

Observations Commands

“Put out the fires at Locations 1 and 2,
and return to the base in an hour.
Avoid no fly zones. Here is a map,
including reservoirs and gas stations.”

Qualitative State Plan

Plant

[Leaute & Williams, AAAI 05]

2/3/2016 Cognitive Robotics-Introduction 6

Robustness through Collaboration

2/3/2016 Cognitive Robotics-Introduction 7

2/3/2016 Cognitive Robotics-Introduction 8

67��2�	�
��
��������	
������

!)��	��

�����������1����	����

!
�(��

$���	�
% ������
�(���1�����
$	��� ������
>2
8�� �

��
�	������
%��
=	��
�	� '��
3��(��
�(���� ��
!(��������	
���	�

'	��(�	�?
� ����1 ��	
�	
� ���(��

� 	���
�	��

� ����1�	������	

�
�����������	
� �		�
�����������%(������(�

!2�
	

42	������

+/*/+,-0 8���1 ��	
�	
%(������(�
!)��	��
��
3� 	�1���	
�����������

© sources unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

9

https://ocw.mit.edu/help/faq-fair-use/

Programming Cognitive Systems

1. Embedded programming languages
elevated to the goal-level through partial
specification and operations on state (RMPL).

2. Language executives that achieve robustness by
reasoning over constraint-based models and by
bounding risk (Enterprise).

3. Interfaces to support human interaction fluidly
and at the cognitive level (Uhura, Pike …).

This image is in the public domain.

2/3/2016 Goal-directed Autonomous Systems and Model-based Programming 10

• Course in a Nutshell

• Course Structure and Logistics

• Programming Cognitive Robots

• Self-Adaptive and Self-Repairing Systems

• Programs that Monitor State

Outline

2/3/2016 Cognitive Robotics-Introduction 11

Crash Course in Autonomy
I.e., Programming Cognitive Robots

Prof. Brian Williams & Eric Timmons
Erez Karpas, Andrew Wang, Peng Yu, Steve Levine, Pedro Santana, Simon Fang,

Enrique Gonzales, David Wang and Peng Yu.
Introduction
January 12, 2015.

2/3/2016 Cognitive Robotics-Introduction 12

• How to program cognitive robots
in terms of goals, to perform complex tasks.

• Intuitions underlying how robots “reason.”

• Exposure to basic computational concepts.

16:412J: State-of-the-art reasoning methods.

About

2/3/2016 Cognitive Robotics-Introduction 13

Driven by a Grand Challenge

© National Geographic Partners, LLC. All rights reserved. This

content is excluded from our Creative Commons license. For

more information,see https://ocw.mit.edu/help/faq-fair-use/.

© sources unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use/.

2/3/2016 Cognitive Robotics-Introduction 14

https://ocw.mit.edu/help/faq-fair-use/
https://ocw.mit.edu/help/faq-fair-use/

Embedded in simulations and
hardware

Working out-of-the-box with your ‘15 holiday gift

© Parrot SA. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

2/3/2016 Cognitive Robotics-Introduction 15

https://ocw.mit.edu/help/faq-fair-use/

16:412J: Driven by a Grand Challenge

RobOrienteering

© British Orienteering. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

162/3/2016 Cognitive Robotics-Introduction

https://ocw.mit.edu/help/faq-fair-use/

16:412J: Embedded in
simulations and hardware

Works with a lot of elbow grease and a bit of luck

172/3/2016 Cognitive Robotics-Introduction

Traditional
Programming

“Cognitive”
Programming

Reactive
Model-based
Programming

Language
(RMPL)

+ Python

Programs that Monitor State

Programs with Flexible Time

Programs with Goal States

Programs with Continuous State

Programs that Collaborate

Advanced lectures…

Risk-bounded Programming

Grand Challenge

TODAY

END OF
SEMESTER

TI
M

E

2/3/2016 Cognitive Robotics-Introduction 18

• program cognitive robots by specifying goals
and models

• Research, describe, and implement decision-
making algorithms that enable robots to
monitor, plan and coordinate in the real world

• implement complex missions with real robot.

You’ll walk out knowing how to

192/3/2016 Cognitive Robotics-Introduction

Be warned – bleeding edge!

2/3/2016 Cognitive Robotics-Introduction

A clipart of blooded knife removed due to copyright restrictions.

20

COURSE LOGISTICS
Policies, grading, and assignments

2/3/2016 16.412J / 6.834J ï Cognitive Robotics 21

• Stellar website

• Piazza (for course-related discussion)

• Staff email list

Websites & emails

2/3/2016 16.412J / 6.834J ï Cognitive Robotics 22

• Students must attend lectures

– Vital to learning course material

– Plan on attending all lectures

– Expected to do assigned readings before lecture

• Randomly-scheduled 5-minute mini quizzes

– Not difficult / stressful

Lectures & Office Hours

232/3/2016 16.412J / 6.834J ï Cognitive Robotics

• Modeling exercises

• Using existing autonomy tools

• Implementing algorithms (Python)

Assignments: Problem sets

242/3/2016 16.412J / 6.834J ï Cognitive Robotics

• Course culminates in grand challenge!

– Orienteering theme

– Simulation & real hardware

Assignments: Grand Challenge

252/3/2016 16.412J / 6.834J ï Cognitive Robotics

• What it’s like doing research in autonomy

• Teams of 5-6 will:

– Present full 80 minute lecture on researched topic

– Implement topic (Python)

– Release code, API, and tutorial / documentation
for class

• Will be used in grand challenge

Assignments: Advanced Lectures

262/3/2016 16.412J / 6.834J ï Cognitive Robotics

Computers, tablets: for note taking only!

Please do not:

– Check email or facebook, surf web, watch
adorable cat videos 😿, etc.

Research shows it also distracts others nearby

Electronics use policy in lecture

272/3/2016 16.412J / 6.834J ï Cognitive Robotics

Grading

Item Weight

Participation & attendance (mini quizzes) 10%

Problem sets 40%

Advanced lecture & implementation 30%

Grand challenge 20%

* Staff reserves the right to consider other factors & adjust formula

282/3/2016 16.412J / 6.834J ï Cognitive Robotics

• Collaboration allowed, such that you:

– Acknowledge collaborators

– Involved in all aspects of work (no dividing up)

– Write your own solutions

• Advanced lectures & grand challenge

– Working in teams, expect equal contributions

• Course bibles prohibited

Collaboration Policy

292/3/2016 16.412J / 6.834J ï Cognitive Robotics

TA: Steve Levine

4th year Ph.D student in CS (MERS group)
Research:
Intent recognition & adaptation for robots

B.S. from MIT in ‘11, course 6
M.Eng from MIT in ‘12, course 6
9th year (!) at MIT! So old!

302/3/2016 16.412J / 6.834J ï Cognitive Robotics

• Course in a Nutshell

• Logistics

• Programming Cognitive Robots

• Self-Adaptive and Self-Repairing Systems

• Programs that Monitor State

Outline

2/3/2016 Cognitive Robotics-Introduction 31

Programs on State - Firefighting Scenario

base1

lake2

fire2

lake1

fire1

uav1

base2no-fly zone

no-fly zone no-fly zone

2/25/2015 Goal-directed Autonomous Systems and Model-based Programming
32

Firefighting in RMPL:
Traditional Imperative program
class Main{

UAV uav1;

Lake lake1;

Lake lake2;

Fire fire1;

Fire fire2;

...

method run() {

sequence{

uav1.takeoff();

uav1.fly_base1_to_lake1();

uav1.load_water(lake1);

uav1.fly_lake1_to_fire1();

uav1.drop_water_high_altitute(fire1);

uav1.fly_fire1_to_lake1();

uav1.load_water(lake1);

uav1.fly_lake1_to_fire1();

uav1.drop_water_low_altitute(fire1);

uav1.fly_fire1_to_lake2();

uav1.load_water(lake2);

uav1.fly_lake2_to_fire2();

uav1.drop_water_high_altitute(fire2);

uav1.fly_fire2_to_lake2();

uav1.load_water(lake2);

uav1.fly_lake2_to_fire2();

uav1.drop_water_low_altitute(fire2);

uav1.fly_fire2_to_base1();

uav1.land();

}

}}

2/25/2015 Goal-directed Autonomous Systems and Model-based Programming
33

class Main{

UAV uav1;

Lake lake1;

Lake lake2;

Fire fire1;

Fire fire2;

...

method run() {

sequence{

(fire1 == out);

(fire2 == out);

(uav1.flying == no &&

uav1.location == base_1_location);

}

}

}

Firefighting in RMPL: A Program on State

2/25/2015 Goal-directed Autonomous Systems and Model-based Programming
34

class Main{

UAV uav1;

Lake lake1;

Lake lake2;

Fire fire1;

Fire fire2;

...

method run() {

sequence{

(fire1 == out);

(fire2 == out);

(uav1.flying == no &&

uav1.location == base_1_location);

}

}

}

Firefighting in RMPL: Setup & Initial Conditions

Main (){

uav1 = new UAV();

uav1.location= base_1_location;

uav1.flying = no;

uav1.loaded = no;

lake1 = new Lake();

lake1.location = lake_1_location;

lake2 = new Lake();

lake2.location = lake_2_location;

fire1 = new Fire();

fire1.location = fire_1_location;

fire1 = high;

fire2 = new Fire();

fire2.location = fire_2_location;

fire2 = high;

}

352/25/2015 Goal-directed Autonomous Systems and Model-based Programming

class UAV {

Roadmap location;

Boolean flying;

Boolean loaded;

primitive method takeoff()

flying == no => flying == yes;

primitive method land()

flying == yes => flying == no;

primitive method load_water(Lake lakespot)

((flying == yes) && (loaded == no) && (lakespot.location == location)) => loaded == yes;

primitive method drop_water_high_altitude(Fire firespot)

((flying == yes) && (loaded == yes) && (firespot.location == location) && (firespot == high))

=> ((loaded == no) && (firespot == medium));

primitive method drop_water_low_altitude(Fire firespot)

((flying == yes) && (loaded == yes) && (firespot.location == location) && (firespot == medium))

=> ((loaded == no) && (firespot == out));

#MOTION_PRIMITIVES(location, fly, flying==yes)

}

Firefighting in RMPL: Model of Actions

class Lake {

Roadmap location;

}

class Fire{

initial value high;

value medium;

value out;

Roadmap location;

}

362/25/2015 Goal-directed Autonomous Systems and Model-based Programming

class UAV {

Roadmap location;

Boolean flying;

Boolean loaded;

primitive method takeoff()

flying == no => flying == yes;

primitive method land()

flying == yes => flying == no;

primitive method load_water(Lake lakespot)

((flying == yes) && (loaded == no) && (lakespot.location == location)) => loaded == yes;

primitive method drop_water_high_altitude(Fire firespot)

((flying == yes) && (loaded == yes) && (firespot.location == location) && (firespot == high))

=> ((loaded == no) && (firespot == medium));

primitive method drop_water_low_altitude(Fire firespot)

((flying == yes) && (loaded == yes) && (firespot.location == location) && (firespot == medium))

=> ((loaded == no) && (firespot == out));

#MOTION_PRIMITIVES(location, fly, flying==yes)

}

Firefighting in RMPL: Model of Actions

class Lake {

Roadmap location;

}

class Fire{

initial value high;

value medium;

value out;

Roadmap location;

}

2/25/2015 Goal-directed Autonomous Systems and Model-based Programming
37

Simulation Testing: Firefighting Scenario

2/25/2015 Goal-directed Autonomous Systems and Model-based Programming
38

Decision-making algorithm: Activity Planning

fly_base_to_lake

fly_base_to_fire1

fly_base_to_fire2

Solve Relaxed
Planning
Problem

fly_lake_to_fire1

. . .

Goal

load_water

fly_lake_to_fire1

fly_fire2_to_lake

f = g + h

2/25/2015 Goal-directed Autonomous Systems and Model-based Programming
39

• Course in a Nutshell

• Logistics

• Programming Cognitive Robots

• Self-Adaptive and Self-Repairing Systems

• Programs that Monitor State

Outline

2/3/2016 Cognitive Robotics-Introduction 40

“Autonomous” vehicles explore far
away places .. but often end in disaster!

2/3/2016 Cognitive Robotics-Introduction 41

© Woods Hole Oceanographic Institution. All rights reserved. This
content is excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use/.

https://ocw.mit.edu/help/faq-fair-use/

What you should really learn from immune
systems about adversarial design

Jacob Beal

NDIST
December, 2015

Not for release: images shamelessly ganked from web 42

Courtesy of Jacob Beal. Used with permission.

The Immune System
(as noticed by computer scientists)

Blacklist
Blacklist

Whitelist

INSUFFICIENT

Complements
of Jake Beal

(Source: the Human Immune Response System www.uta.edu/chagas/images/immunSys.jpg)
43

http://www.uta.edu/chagas/images/immunSys.jpg

But there’s more to the immune
system…

• Physical barriers

• Inhospitable environments

• Tolerance

• Death

Complements
of Jake Beal

44

Physical Barriers
• Skin, gastrointestinal wall, blood/brain barrier

• Saliva, tears, mucus (nose, lungs, gut, . . .)

• Defense by discarding

Complements
of Jake Beal

45

Inhospitable environments
• Fever: high temperature inhibits bacterial

growth

• Enzymes in saliva, tears, nasal secretions,
perspiration, milk, sperm

• . . .

• Skin is acidic

46

Tolerance

• Follicular mites

• Parasitic worms

• Dead viruses in the genome

• Microbiome

– Gut commensals

– Flora for various cavities

>3000 cryptic drug-like molecule gene clusters!
(Fischbach, Science, 2015)

Natural flora occupy niches and consume resources

Human follicular mite

Complements
of Jake Beal

47

Death

• Cell self-inhibition, suicide

• Reproductive barriers for parasites

Complements
of Jake Beal

48

Model-based Programs Offer Layers of Defense

S
Plant

Obs Cntrl

Model-based
Embedded Programs

S

Continuous
Reactive

Commanding

Continuous
Mode/State
Estimation

Model

Languages that achieve robustness through
decision layers that are:

• Suspicious
•Monitor states and goals.

• Adapt to disturbance
• Adjust timing

• Select contingencies

• State Aware

• Plan to achieve goals states.

• Precise

• Achieve continuous goal states.

• Collaborate
• Executes programs, revise goals and plan
with humans.

• Manage Risk
• Executes programs in uncertain
environments with bounded risk.

49

A single “cognitive system”
language and executive.

User
Kirk

Pike

Sulu

Goals &

models

in RMPL

Control

Commands

Enterprise

Coordinates and monitors tasks

Plans paths

Sketches mission and assigns tasks

Burton

Plans actions

Bones

Diagnoses likely failures

Uhura

Collaboratively resolves goal failures

© source unknown. All rights reserved. This content is

excluded from our Creative Commons license. For more

information, see https://ocw.mit.edu/help/faq-fair-use/.

502/25/2015 Goal-directed Autonomous Systems and Model-based Programming

https://ocw.mit.edu/help/faq-fair-use/

• Course in a Nutshell

• Logistics

• Programming Cognitive Robots

• Self-Adaptive and Self-Repairing Systems

• Programs that Monitor State

Outline

512/3/2016 Cognitive Robotics-Introduction

When things go wrong…

522/9/2015 16.412J / 6.834J - Cognitive Robotics - Execution Monitoring

• Something unexpected things happen

– Not modeled in plan!

– How to react?

• Execution monitoring: detecting when things
go wrong

• Replanning: fixing the problem (later in this
course)

Execution monitoring: detecting problems

532/9/2015 16.412J / 6.834J - Cognitive Robotics - Execution Monitoring

542/3/2016 Cognitive Robotics-Introduction

Volcano eruption!

Base Station

Program sequence of actions in RMPL

method run() {

sequence {

uav.launch();

uav.fly_to_base_station();

uav.pick_up_med_kit();

uav.fly_to_hikers();

uav.drop_off_med_kit();

}

}

Actions have preconditions &
effects like before

552/9/2015 16.412J / 6.834J - Cognitive Robotics - Execution Monitoring

Volcano eruption!

Base Station

Launch Q
Q fly to

Base Station
Q pick up
med kit

Q fly to
hikers

Q give med kit
to climbers

What could possibly go wrong??

562/9/2015 16.412J / 6.834J - Cognitive Robotics - Execution Monitoring

Launch Q
Q fly to

Base Station
Q pick up
med kit

Q fly to
hikers

Q give med kit
to climbers

time

Preconditions & effects of actions

572/9/2015 16.412J / 6.834J - Cognitive Robotics - Execution Monitoring

Q pick up
med kit

time

Preconditions & effects of actions

582/9/2015 16.412J / 6.834J - Cognitive Robotics - Execution Monitoring

Q pick up
med kit

time

Preconditions & effects of actions

Q has med kit!

Q has empty cargo bay

Q near med kit

Q’s cargo bay full

592/9/2015 16.412J / 6.834J - Cognitive Robotics - Execution Monitoring

Q give med kit
to climbers

time

Preconditions & effects of actions

Q has a med kit

Q near climbers

602/9/2015 16.412J / 6.834J - Cognitive Robotics - Execution Monitoring

Launch Q
Q fly to

Base Station
Q pick up
med kit

Q fly to
hikers

Q give supplies
to climbers

time

Preconditions & effects of actions

Q has med kit

612/9/2015 16.412J / 6.834J - Cognitive Robotics - Execution Monitoring

Launch Q
Q fly to

Base Station
Q pick up
med kit

Q fly to
hikers

Q give supplies
to climbers

time

Where do preconditions come from?

Q near climbers

Q has med kit

622/9/2015 16.412J / 6.834J - Cognitive Robotics - Execution Monitoring

Launch Q
Q fly to

Base Station
Q pick up
med kit

Q fly to
hikers

Q give supplies
to climbers

time

Where do preconditions come from?

Q has med kit
Q in the air

Q near climbers

632/9/2015 16.412J / 6.834J - Cognitive Robotics - Execution Monitoring

Launch Q
Q fly to

Base Station
Q pick up
med kit

Q fly to
hikers

Q give supplies
to climbers

time

Where do preconditions come from?

Q has med kit
Q in the air

Q in the air

Q near climbers

642/9/2015 16.412J / 6.834J - Cognitive Robotics - Execution Monitoring

Launch Q
Q fly to

Base Station
Q pick up
med kit

Q fly to
hikers

Q give supplies
to climbers

time

Where do preconditions come from?

Q has med kit
Q in the air

Q near med kitQ in the air

Q near climbers

652/9/2015 16.412J / 6.834J - Cognitive Robotics - Execution Monitoring

Launch Q
Q fly to

Base Station
Q pick up
med kit

Q fly to
hikers

Q give supplies
to climbers

time

Where do preconditions come from?

Q has med kit
Q in the air

Q has empty cargo bay

Q near med kitQ in the air

Q near climbers

662/9/2015 16.412J / 6.834J - Cognitive Robotics - Execution Monitoring

Causal link: one action produces something
needed by a later action

These are called “causal links”

Launch Q
Q fly to

Base Station
Q pick up
med kit

Q fly to
hikers

Q give supplies
to climbers

time

Q has med kit

672/9/2015 16.412J / 6.834J - Cognitive Robotics - Execution Monitoring

What happens if something goes wrong?

Launch Q
Q fly to

Base Station
Q pick up
med kit

Q fly to
hikers

Q give supplies
to climbers

time

Q has med kit

X
Q drops med kit!

682/9/2015 16.412J / 6.834J - Cognitive Robotics - Execution Monitoring

What happens if something goes wrong?

Launch Q
Q fly to

Base Station
Q pick up
med kit

Q fly to
hikers

Q give supplies
to climbers

time

Q has med kit

X
Q drops med kit!

692/9/2015 16.412J / 6.834J - Cognitive Robotics - Execution Monitoring

If condition is violated during causal link, signal failure.

Causal links allow execution monitoring

Launch Q
Q fly to

Base Station
Q pick up
med kit

Q fly to
hikers

Q give supplies
to climbers

time

Q has med kit

X
Q drops med kit!

702/9/2015 16.412J / 6.834J - Cognitive Robotics - Execution Monitoring

• Causal links tell you what needs to hold, and
when

• Tells you what’s relevant to the plan

• Can be used offline, for error checking

Causal links for execution monitoring

712/9/2015 16.412J / 6.834J - Cognitive Robotics - Execution Monitoring

We need:

1. Sensing.

2. Action model.

3. Plan.

How do we do execution monitoring?

722/9/2015 16.412J / 6.834J - Cognitive Robotics - Execution Monitoring

1. Sensing

“Q has medical kit”

732/9/2015 16.412J / 6.834J - Cognitive Robotics - Execution Monitoring

Q pick up
med kit

time

2. Action model

Q has med kit!

Q has empty cargo bay

Q near med kit

Q’s cargo bay full

742/9/2015 16.412J / 6.834J - Cognitive Robotics - Execution Monitoring

Launch Q
Q fly to

Base Station
Q pick up
med kit

Q fly to
hikers

Q give med kit
to climbers

time

3. Plan

752/9/2015 16.412J / 6.834J - Cognitive Robotics - Execution Monitoring

Offline:

• Use plan & action model to extract causal
links

Online:

• Continuously sense monitor those causal links

How do we do execution monitoring?

762/9/2015 16.412J / 6.834J - Cognitive Robotics - Execution Monitoring

• Need to monitor the plan when executing

• Causal links:

– What needs to be true, and when

– Offline (checking) and online (monitoring)

Key takeaways

772/9/2015 16.412J / 6.834J - Cognitive Robotics - Execution Monitoring

A single “cognitive system”
language and executive.

User
Kirk

Pike

Sulu

Goals &

models

in RMPL

Control

Commands

Enterprise

Coordinates and monitors tasks

Plans paths

Sketches mission and assigns tasks

Burton

Plans actions

Bones

Diagnoses likely failures

Uhura

Collaboratively resolves goal failures

78

© source unknown. All rights reserved. This content is

excluded from our Creative Commons license. For more

information, see https://ocw.mit.edu/help/faq-fair-use/.

2/25/2015 Goal-directed Autonomous Systems and Model-based Programming

https://ocw.mit.edu/help/faq-fair-use/

Extraction (non-temporal, totally-ordered plan - offline):

for each action in plan:

for each precondition p of action:

a_p = latest action in plan with effect p

Add causal link: a_p to action over p

Monitoring (online):

while True:

cls = currently active causal links (based on actions)

state = measure state with sensors

for each causal link cl in cls:

p = predicate associated with cl

if not(p in state):

Trigger execution monitoring exception!

Causal link extraction algorithm

792/9/2015 16.412J / 6.834J - Cognitive Robotics - Execution Monitoring

MIT OpenCourseWare
https://ocw.mit.edu

16.412J / 6.834J Cognitive Robotics
Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu/

	Untitled

