Goal Regression Planning, Constraint Automata and Causal Graphs

Contributions:

Dan Weld Seung Chung Erez Karpas David Wang

Prof Brian Williams MIT CSAIL

16.412J/6.834J Cognitive Robotics

Leap Day - February 29th, 2016

courtesy of JPL

This image is in the public domain.

After lecture you will know how to...

- Generate plans by working backwards from goals.
- Generate least commitment, partial order plans.
- Encode actions with indirect effects as concurrent automata with constraints (CCA).
- Analyze action dependence using causal graphs.
- Generate plans with out search, for CCA that have tree structured causal graphs.
- Use causal graph planning as a heuristic to HFS.

Assignments

Today:

- D. Weld, "An introduction to least commitment planning," Al Magazine 15(4):27-61, 1994.
- B. Williams and P. Nayak, "A reactive planner for a model-based executive," IJCAI, 1997.

Next:

• D. Wang and B. Williams, "tBurton: A Divide and Conquer Temporal Planner," AAAI, 2015.

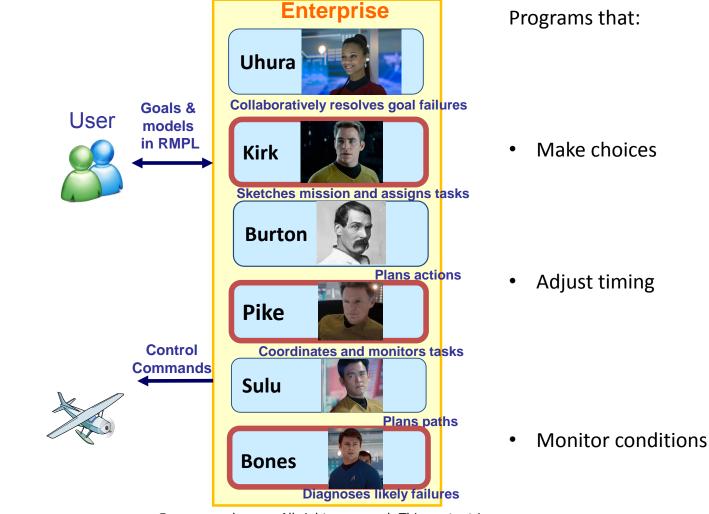
Homework:

- PSet #3 PDDL Modeling, out today, due Wed, March 9th.
- Advanced Lecture Pset #1, out today, due Fri, March 4th.

Outline

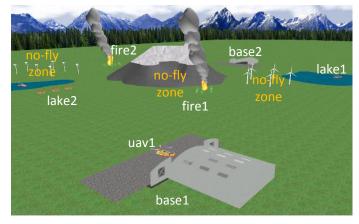
- Review: programs on state
- Planning as goal regression (SNLP)
- Goal regression planning with causal graphs (Burton)
- Appendix: HFS planning with the causal graph heuristic (Fast Downward)

A single "cognitive system" MERS language and executive.



© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

In a State-Space Program, **MERS** Activity Planning Maps Desired States to Actions



Main (){

uav1 = new UAV();

uav1.flying = no;

uav1.loaded = no;

lake1 = new Lake();

lake2 = new Lake();

fire1 = new Fire();

fire2 = new Fire();

fire1 = high;

fire2 = high;

uav1.location= base 1 location;

lake1.location = lake 1 location;

lake2.location = lake 2 location;

fire1.location = fire_1_location;

fire2.location = fire 2 location;

UAV uav1; Lake lake1; Lake lake2; Fire fire1;

Fire fire2;

• • •

method run()

sequence {

(fire1 == out);

(fire2 == out);

```
(uav1.flying == no &&
  uav1.location == base_1_location);
```

class UAV

Roadmap location; Boolean flying; Boolean loaded;

primitive method takeoff()

flying == no => flying == yes;

primitive method land()

flying == yes => flying == no;

primitive method load_water(Lake lakespot)

((flying == yes) && (loaded == no) && (lakespot.location == location)) => loaded == yes;

primitive method drop_water_high_altiture(Fire firespot)

((flying == yes) && (loaded == yes) && (firespot.location == location) && (firespot == high)) => ((loaded == no) && (firespot == medium));

primitive method drop_water_low_altiture(Fire firespot)

((flying == yes) && (loaded == yes)

- && (firespot.location == location) && (firespot == medium))
- => ((loaded == no) && (firespot == out));

#MOTION_PRIMITIVES(location, fly, flying==yes)

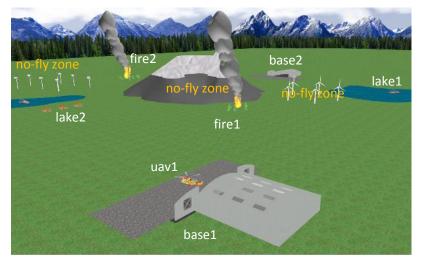
2/29/2016

} } }

Goal Regression and Causal Graph Planning

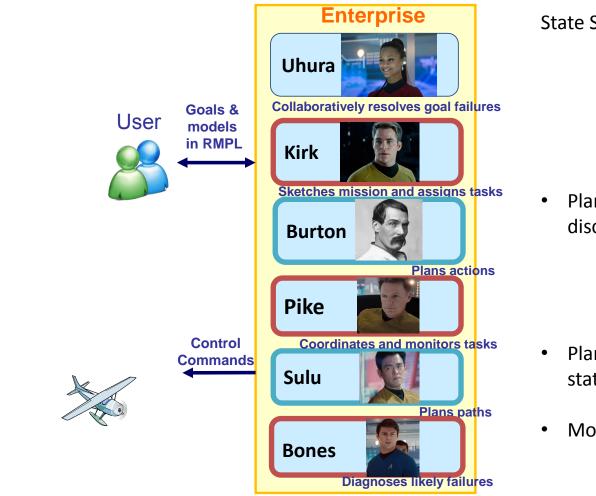
Planning maps desired states to actions

Roadmap Path Planning



"Classical" Action Planning

A single "cognitive system" language and executive.



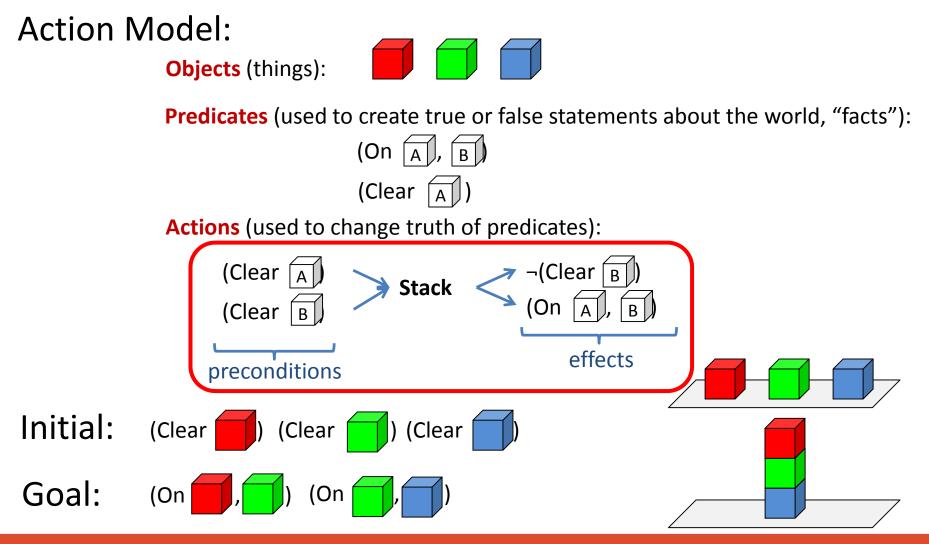
State Space Programs that:

 Plan to achieve discrete states.

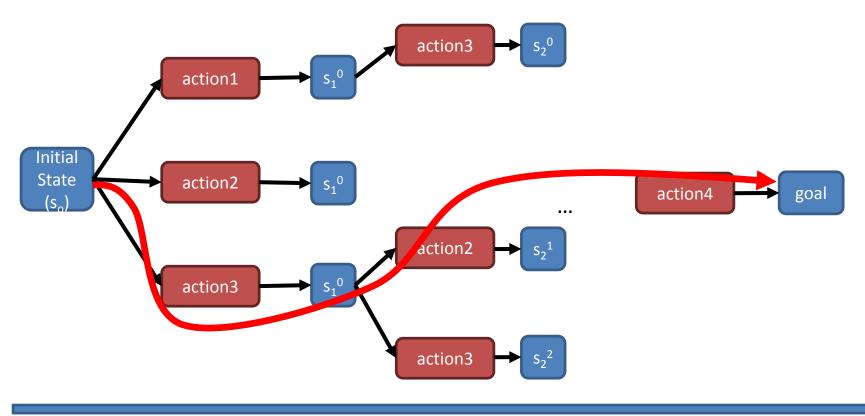
- Plan to achieve continuous states.
- Monitor continuous states.

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Last Week: "Classic" Activity **MERS** Planning Representation (STRIPS/PDDL)

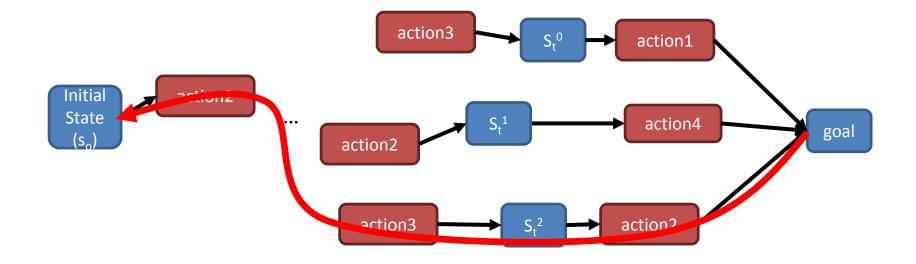


Last Week: Forward Search



Time

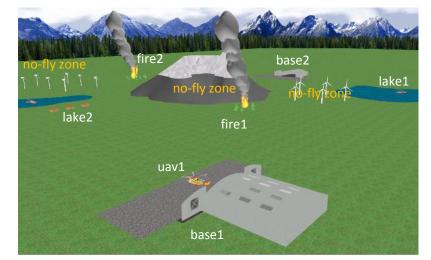
This Week: Goal-Regression Search



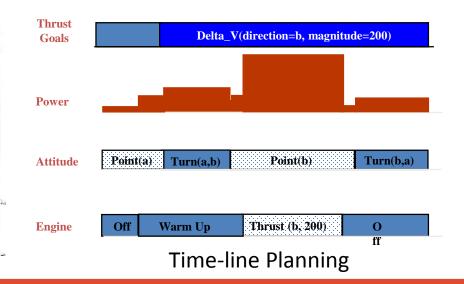
Time

This Week: Planning to Control Complex Devices

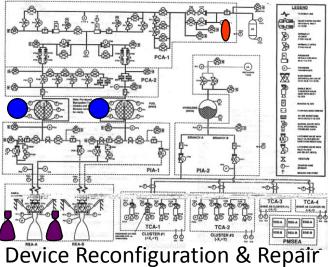
Roadmap Path Planning



"Classical" Action Planning

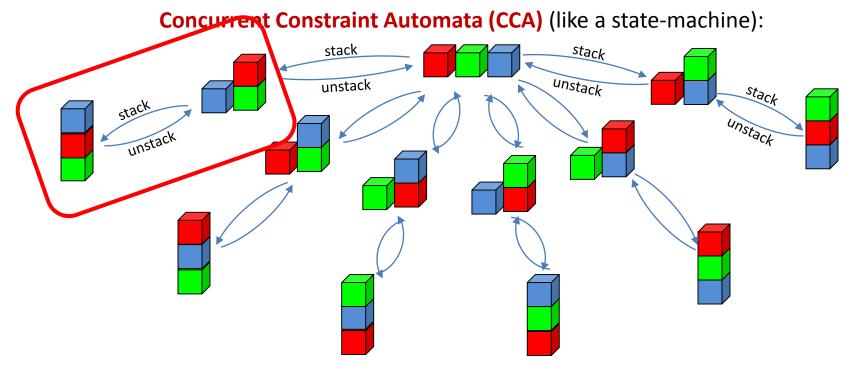


This image is in the public domain.



This Week: Automata Representation

Action Model:



Note: This is a very simple example, there are usually many automata, and guards on the transitions.

Goal:

Initial:

We will use CCA to support indirect effects, concurrency and metric time .

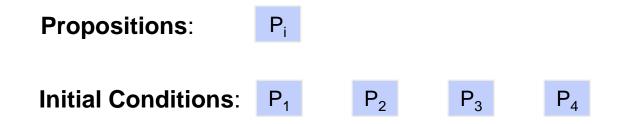
Algorithms exist to map between the two representations.

Goal Regression and Causal Graph Planning

Outline

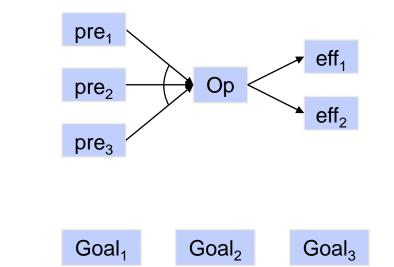
- Review: programs on state
- Planning as goal regression (SNLP/UCPOP)
 - Partial Order Planning Overview
 - Partial Order Planning Problem
 - Partial Order Plan Generation
- Goal regression planning with causal graphs (Burton)
- Appendix: HFS planning with the causal graph heuristic (Fast Downward)

Classical Planning Problem

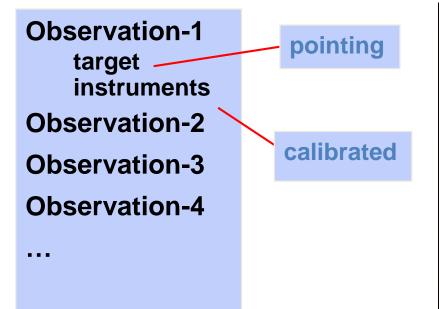


Operators:

Goals:



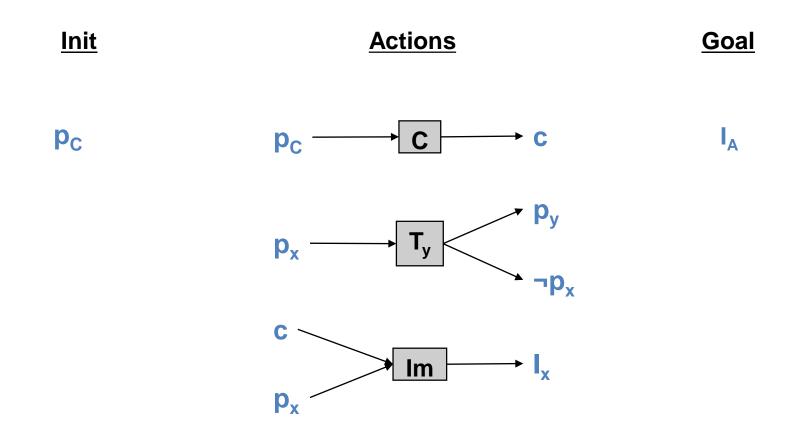
Simple Spacecraft Problem



This image is in the public domain.

Propositions:Target Pointed To, Camera Calibrated?, Has Image?Operators:Calibrate, Turn to Y, and Take Image.

Example



Propositions:Target Pointed To, Camera Calibrated?, Has Image?Operators:Calibrate, Turn to Y, and Take Image.

2/29/2016

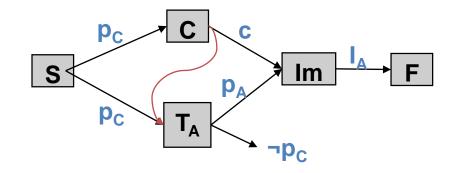
Actions in the Planning Domain MERS Description Language (PDDL)

(:action TakeImage :parameters (?target, ?instr) :precondition (and (Status ?instr Calibrated) (Pointing ?target)) :effect (Image ?target))

(:action Calibrate :parameters (?instrument) :precondition (and (Status ?instr On) (Calibration-Target ?target), (Pointing ?target) :effect (and (not (Status ?inst On)) (Status ?instr Calibrated)))

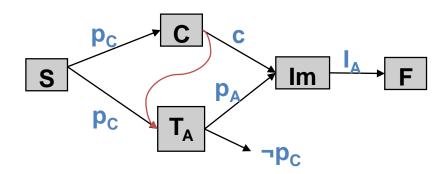
By convention, parameters start with "?", as in ?var.

Partial Order Plan



2/29/2016

Planning from Goals: Partial Order Causal Link Planning (SNLP, UCPOP) Im



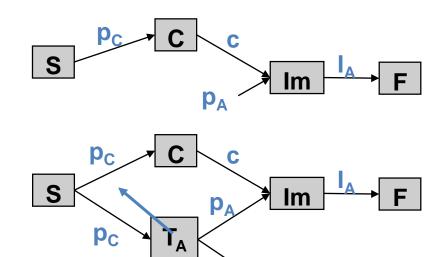
1. Select an open condition;

Add a new instance;

3. Resolve threats.

2. Choose an op that can achieve it:

Link to an existing instance or



¬p_C

p_A

p_C

2/29/2016

Planning as Goal Regression

- Partial Planning Overview
- Partial Order Planning Problem
 - Problem Encoding
 - Partial Order Plans
 - Plan Correctness
- Partial Order Plan Generation

Example Problem

Initial State: At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

Goal: Have(Milk) At(Home) Have(Ban.) Have(Drill)

Operators:



Initial and Goal States Encoded as Operators

Start

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

Why encode as operators?

Don't need to introduce (partial) states as separate objects.

Keeps theory minimal.

Have(Milk) At(Home) Have(Ban.) Have(Drill)

Finish

2/29/2016

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

<u>At(Home)</u>

At(HWS) Sells(HWS,Drill) Buy(Drill

> At(HWS) Go(SM)

At(SM), Sells(SM,Milk)

At(SM), Sells(SM,Ban.)

Buy(Milk)

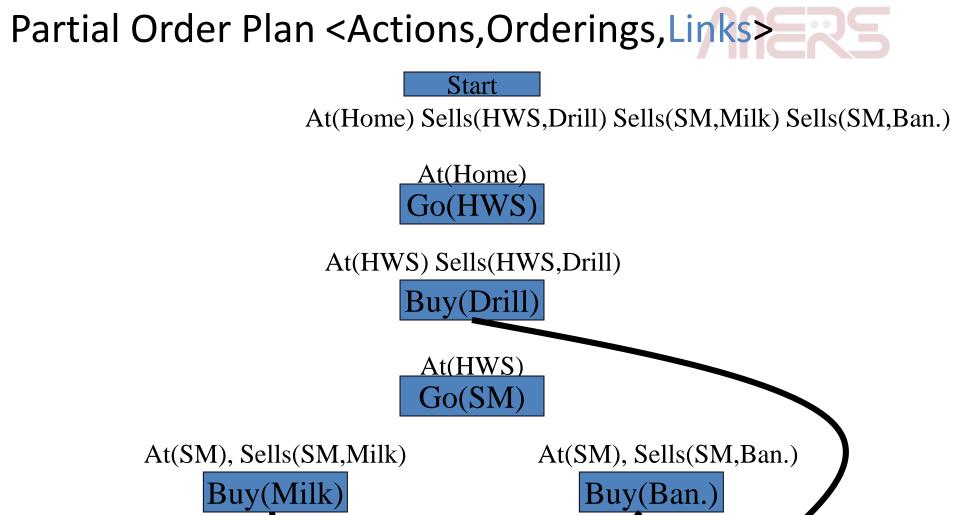
Buy(Ban.)

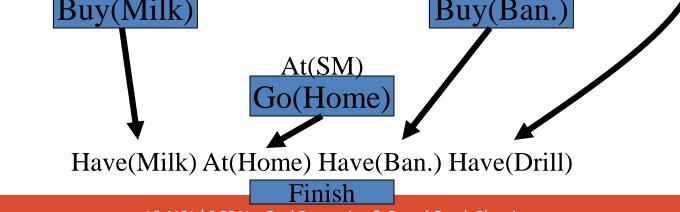
At(SM) Home

Have(Milk) At(Home) Have(Ban.) Have(Drill)

Finish

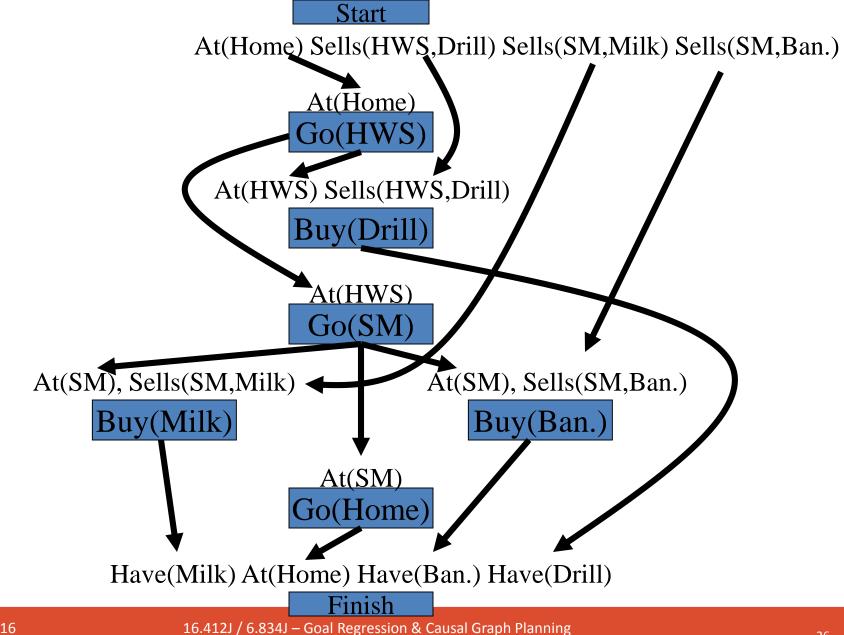
2/29/2016



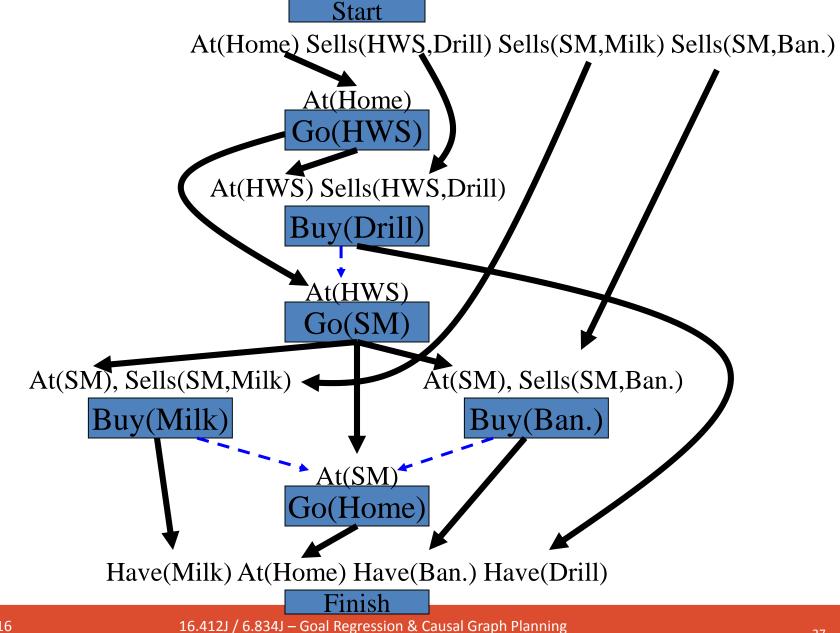


2/29/2016

Partial Order Plan < Actions, Orderings, Links>



Partial Order Plan < Actions, Orderings, Links>

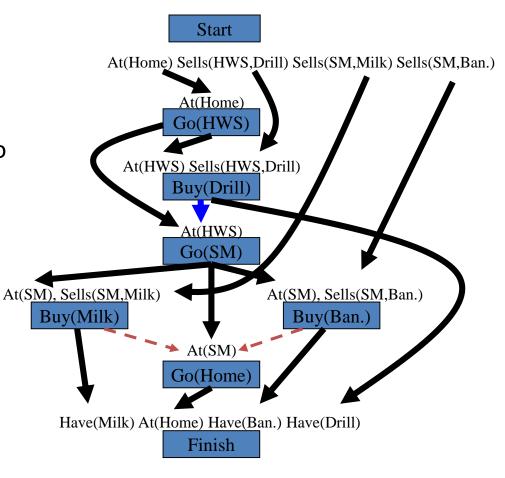


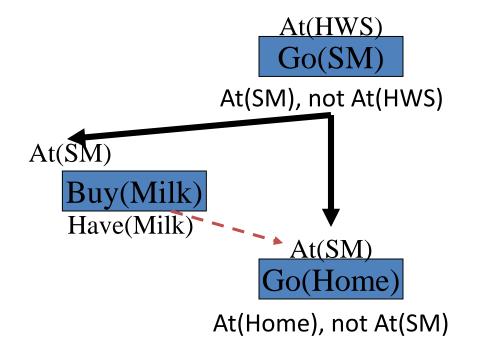
Planning as Goal Regression

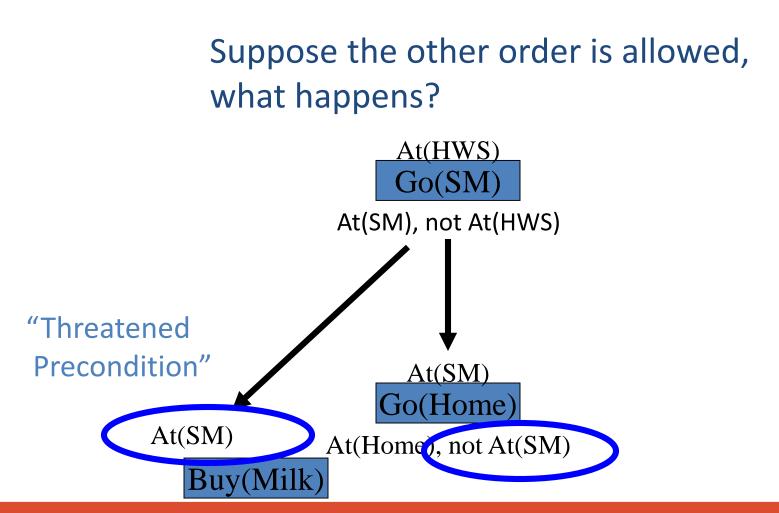
- Partial Planning Overview
- Partial Order Planning Problem
 - Problem Encoding
 - Partial Order Plans
 - Plan Correctness
- Partial Order Plan Generation

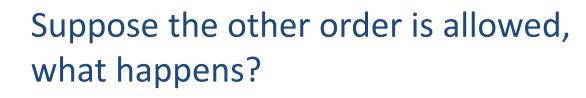
What Constitutes a Correct Plan?

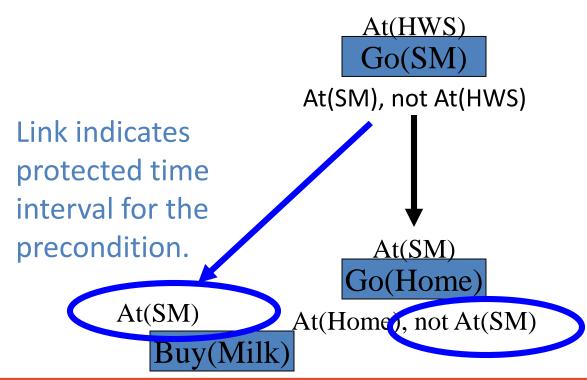
- Complete Plan
 - Achieves all Goals
 - Achieves all preconditions ...
 - No actions intervene to undo a needed precondition
- Consistent Plan
 - There exists an execution
 sequence that is consistent
 with the ordering



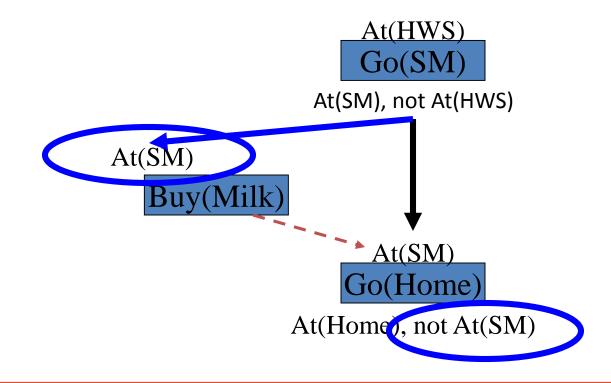








The ordering resolves the threat.



Solution: A Complete and Consistent Plan

Complete Plan

IFF every precondition of every step is achieved.

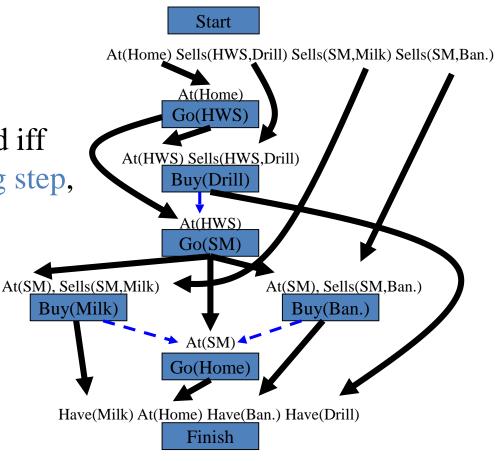
A step's precondition is achieved iff

- its the effect of some preceding step,
- no intervening step can undo it.

Consistent Plan

IFF there is no contradiction in the ordering constraint.

- i.e., never $s_i < s_j$ and $s_j < s_i$, or
- the causal links + orderings are loop free.



Planning as Goal Regression

- Partial Planning Overview
- Partial Order Planning Problem
- Partial Order Plan Generation
 - Derivation from Completeness and Consistency
 - Backward Chaining
 - Threat Resolution
 - The POP algorithm

MERS Partial Order Planning Algorithm

The algorithm falls out of Consistency and Completeness

Completeness:

- Must achieve all preconditions
 - → Backward chain from goals to initial state, by inserting actions and causal links.
- Must avoid intervening actions that threaten
 - → After each action is inserted, find any action that threatens its effects, and impose ordering to resolve.

Consistent:

- Ordering must be consistent
 - → After each causal link and ordering is inserted, check for loops.

Planning as Goal Regression

- Partial Planning Overview
- Partial Order Planning Problem
- Partial Order Plan Generation
 - Derivation from Completeness and Consistency
 - Backward Chaining
 - Threat Resolution
 - The POP algorithm

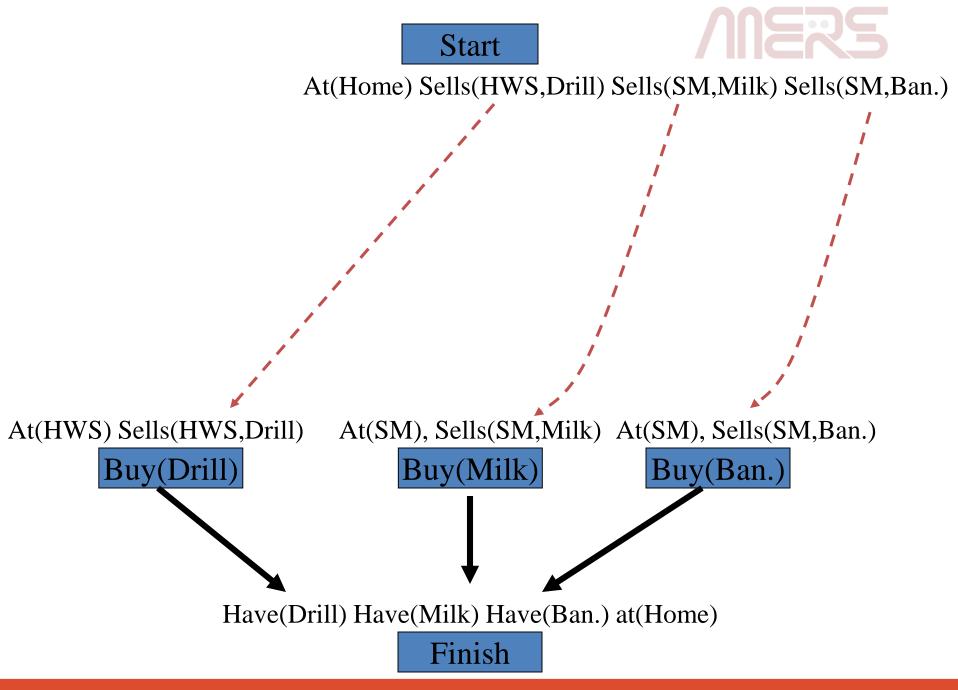
Start

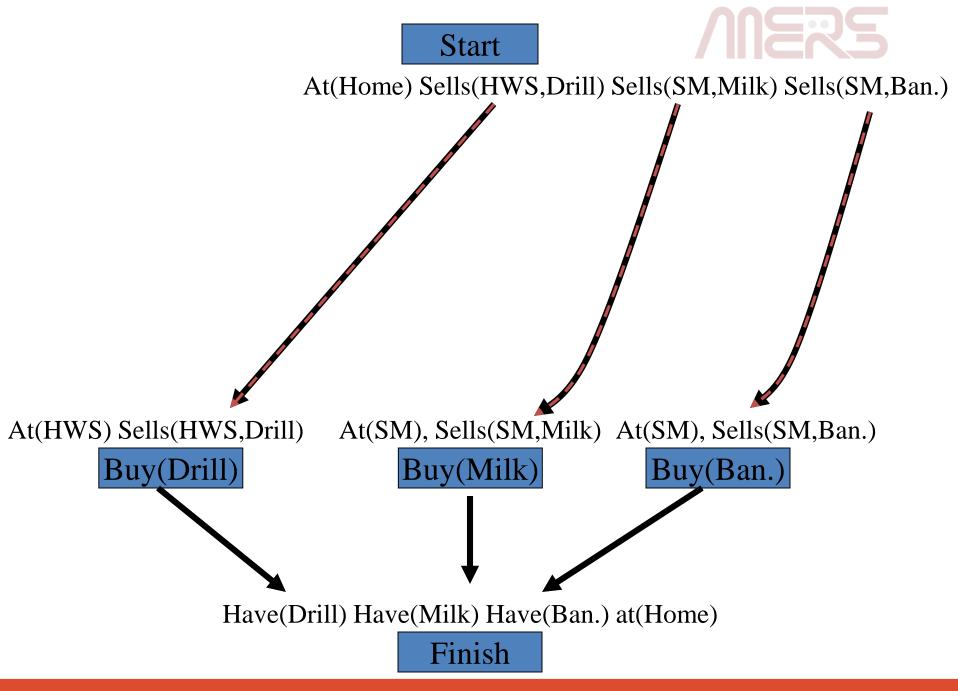
At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

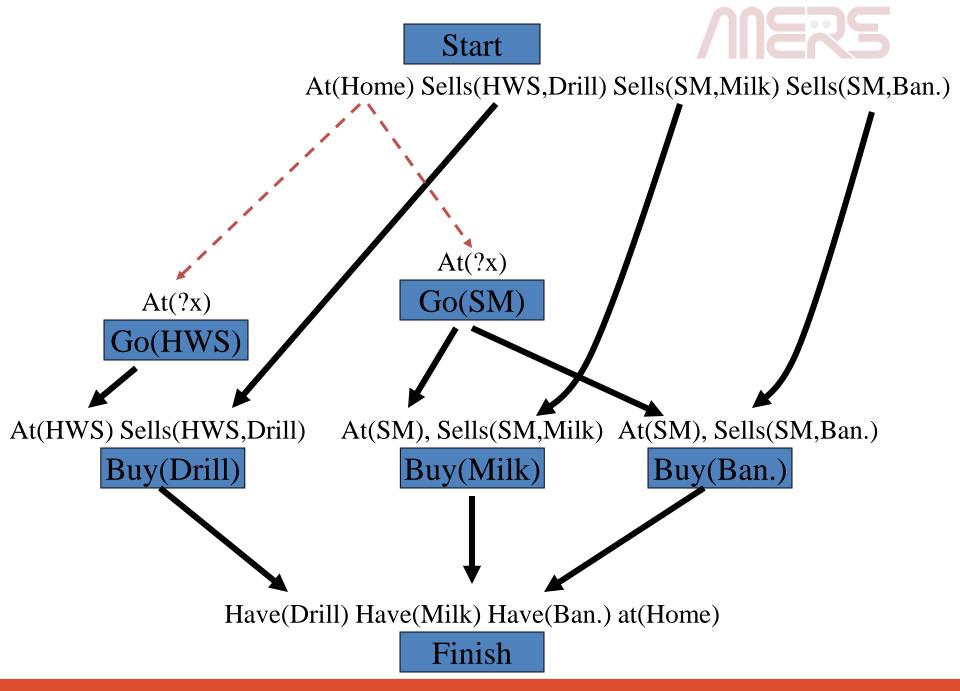
Have(Drill) Have(Milk) Have(Ban.) at(Home)

Finish

2/29/2016



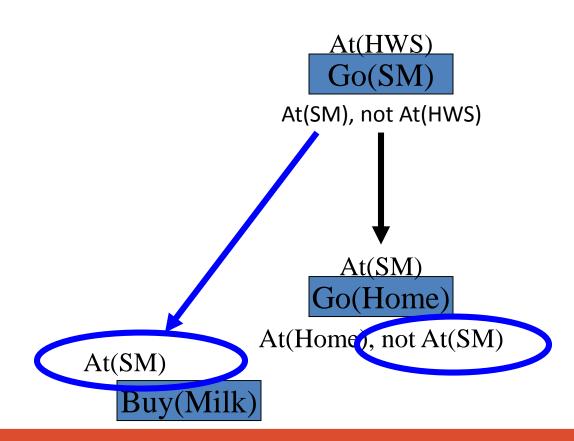




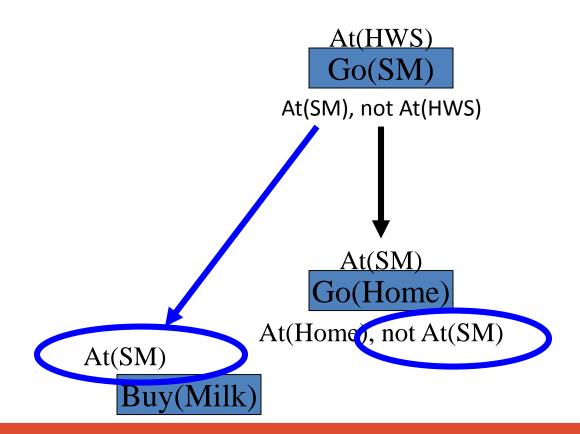
Planning as Goal Regression

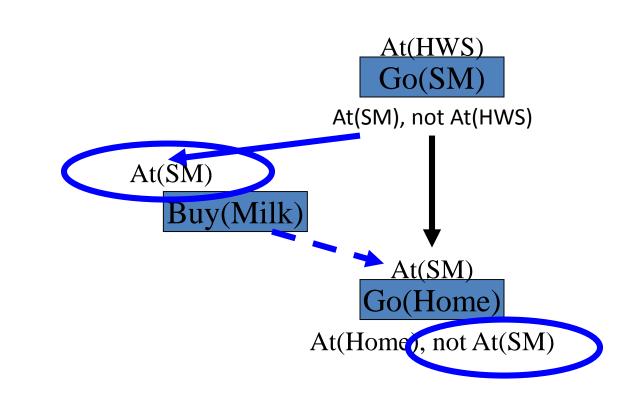
- Partial Planning Overview
- Partial Order Planning Problem
- Partial Order Plan Generation
 - Derivation from Completeness and Consistency
 - Backward Chaining
 - Threat Resolution
 - The POP algorithm

After adding a causal link/action, MERS find threat with any existing action/link



To remove threats...



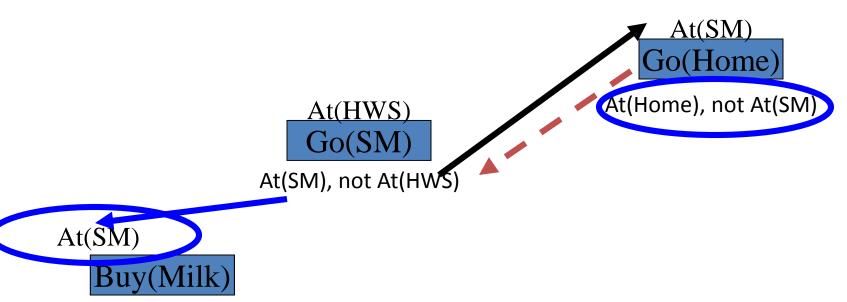


To remove threats... promote the threat or...

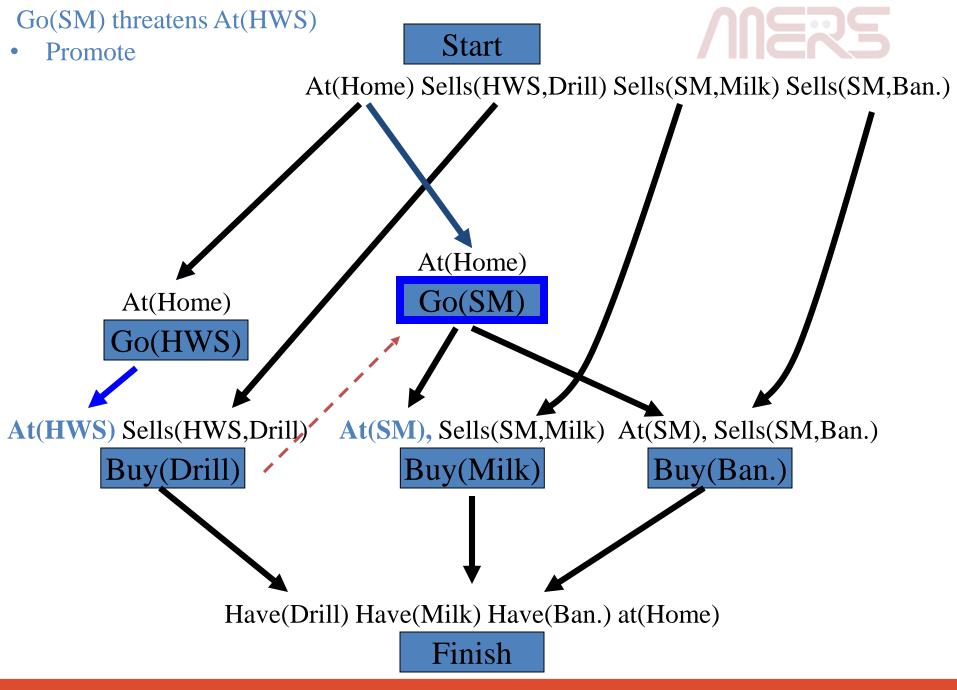
2/29/2016

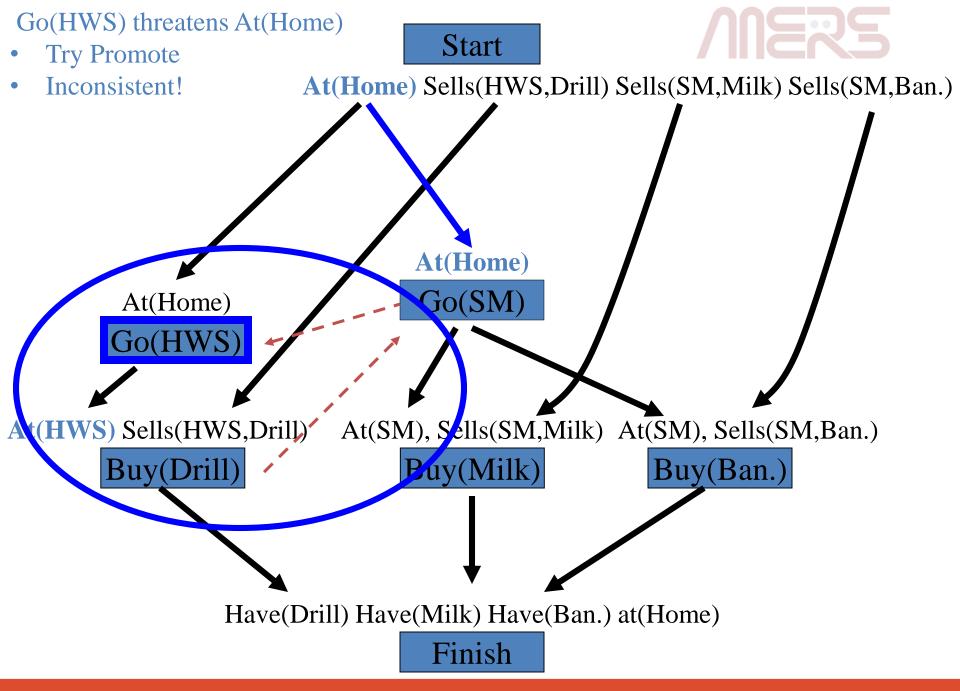
To remove threats...

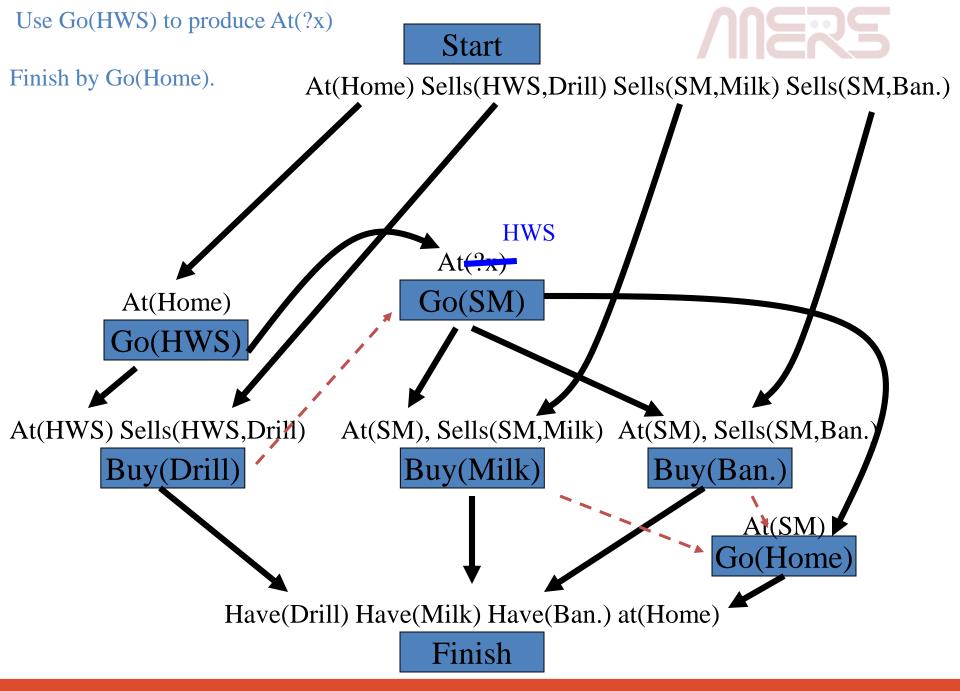
promote the threat or demote the threat



- But only allow demotion/promotion if schedulable
 - consistent = loop free
 - no action precedes initial state







2/29/2016

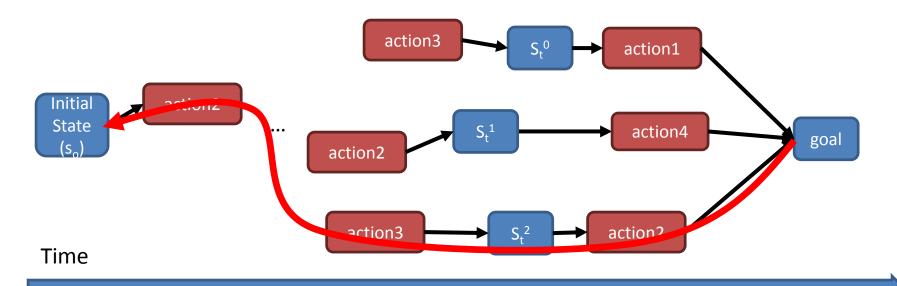
POP(<A,O,L>, agenda, actions)

- **1. Termination**: If agenda is empty, return plan <A,O,L>.
- Goal Selection: Select and remove open condition
 <p, a_{need} > from agenda.
- Action Selection: Choose new or existing action a_{add} that can precede a_{need} and whose effects include p. Link and order actions.
- **4.** Update Agenda: If a_{add} is new, add its preconditions to agenda.
- 5. Threat Detection: For every action a_{threat} that might threaten some causal link from $a_{produce}$ to $a_{consume}$, choose a consistent ordering:
 - a) Demote: Add a_{threat} < a_{produce}
 - b) Promote: Add a_{consume} < a_{threat}
- 6. Recurse: on modified plan and agenda

Choose is nondeterministic

Select is deterministic

Lets Start with Goal-Regression Search



Why can Goal Regression be slow?

- Multiple actions can achieve goals.
- Many possible (sub-)goal orderings.
- Dead-ends can be discovered late.

We try a real-world example next!

What assumptions are implied MERS by the STRIPS representation?

TakeImage (?target, ?instr): Pre: Status(?instr, Calibrated), Pointing(?target) Eff: Image(?target)

Calibrate (?instrument):

- Pre: Status(?instr, On), Calibration-Target(?target), Pointing(?target)
- Eff: ¬Status(?inst, On), Status(?instr, Calibrated)

Turn (?target):

Pre: Pointing(?direction), ?direction ≠ ?target

Eff: ¬Pointing(?direction), Pointing(?target) **STRIPS** Assumptions:

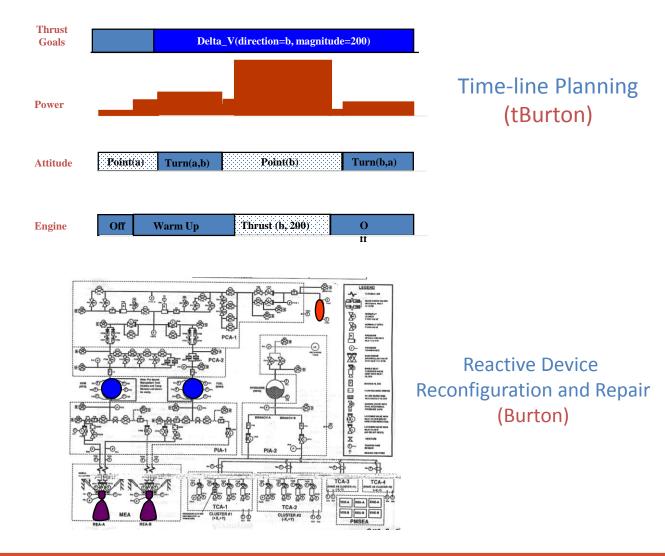
- Atomic time,
- Agent is omniscient (no sensing necessary),
- Agent is sole cause of change,
- Actions have deterministic effects, and
- No indirect effects.
- One action at a time.
- No metric time.
- No goals over time.

Outline

- Review: programs on state
- Planning as goal regression (SNLP/UCPOP)
- Goal regression planning with causal graphs (Burton)
- Appendix: HFS planning with the causal graph heuristic (Fast Downward)

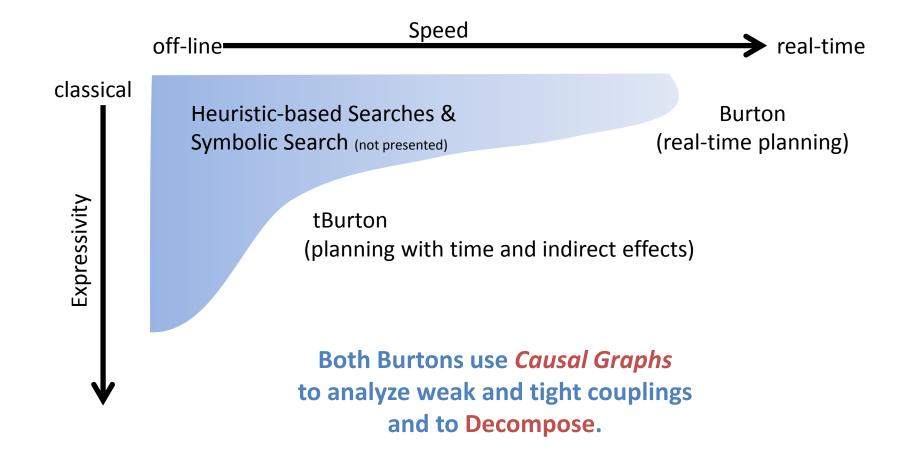
DS1 Revisited: Planning to

This image is in the public domain.

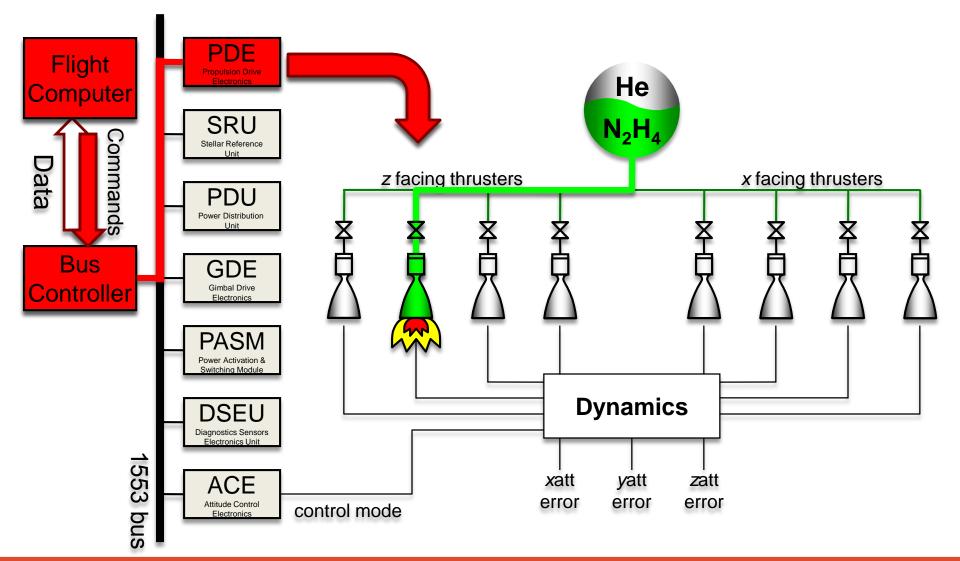


Goal Regression and Causal Graph Planning

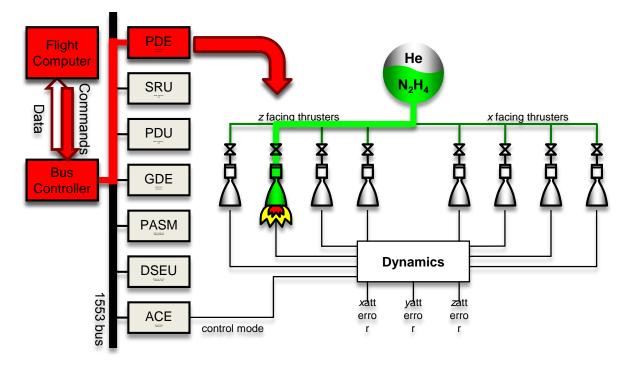
Domain Independent Planning 1275 in the Real-World



Planning with Indirect Effects: **MER** DS 1 Attitude Control System Example



Why is Controlling an Engineered Device Easier than a Puzzle?



6	2	8
	3	5
4	7	1

- 1. Actions are reversible.
- 2. Devices hold state.
- 3. Causes and effects form a tree.

- 1. Actions are reversible.
- 2. Devices hold state.
- 3. Causes and effects form tight cycles.

Outline

- Review: programs on state
- Planning as goal regression (SNLP/UCPOP)
- Goal regression planning with causal graphs (Burton)
 - Constraint automata planning problem
 - Causal graphs
 - Using causal graphs to order goals
 - Computing policies for selecting actions
 - Appendix: Planning for cyclic causal graphs
- Appendix: HFS planning with the causal graph heuristic (Fast Downward)

Concurrent Constraint Automata

• Variables and Domains:

dcmd_i

State: driver in {on, off, resettable, failed}, valve in {open, closed, stuck-open, stuck-closed}.

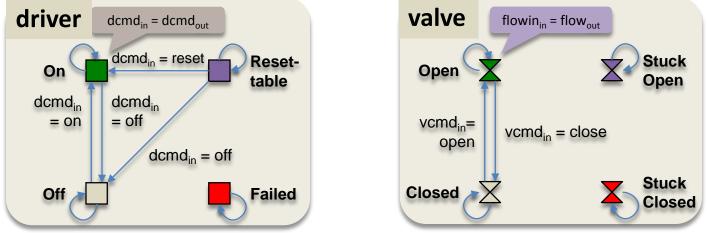
OWout

dcmd_{out} = vcmd_{in}

- Control: dcmd_{in} in {idle, on, off, reset, open, close}
- Dependent: flow_{in}, flow_{out} in {pos, neg, zero}
 dcmd_{out}, vcmd_{in} in Domain{dcmd_{in}}
- Initial assignment: {driver = on, valve = closed}
- Goal assignment: {driver = off, valve = open}

Concurrent Constraint Automata

• Constraint automata (one per state variable):



dcmd_{out} = vcmd_{in}

flow_{out}

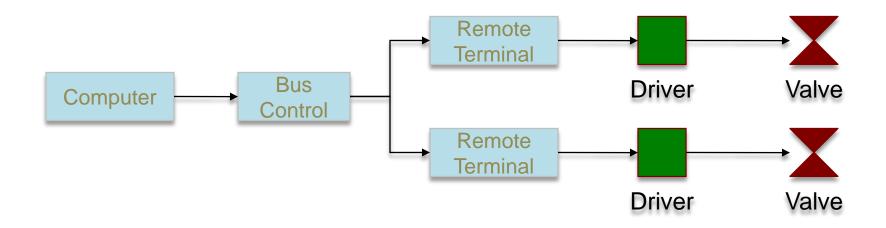
- Assume: transitions independently controlled, each location can idle.
- State constraints: {dcmd_{out} = vcmd_{in}}

dcmd_{in}

Outline

- Review: programs on state
- Planning as goal regression (SNLP/UCPOP)
- Goal regression planning with causal graphs (Burton)
 - Constraint automata planning problem
 - Causal graphs
 - Using causal graphs to order goals
 - Computing policies for selecting actions
 - Appendix: Planning for cyclic causal graphs
- Appendix: HFS planning with the causal graph heuristic (Fast Downward)

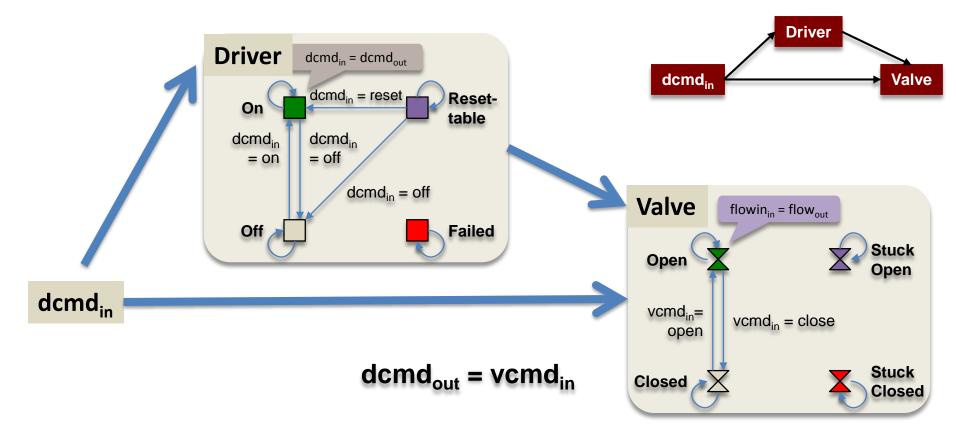
Observation: **MERS** Engineered systems are largely loop free.



Causal Graph *G* of concurrent automata S:

MERS

- Vertices are control and state variables of automata.
- Edge from v_i to v_i if v_i's transition is conditioned on v_i.



Outline

- Review: programs on state
- Planning as goal regression (SNLP/UCPOP)
- Goal regression planning with causal graphs (Burton)
 - Constraint automata planning problem
 - Causal graphs
 - Using causal graphs to order goals
 - Computing policies for selecting actions
 - Appendix: Planning for cyclic causal graphs
- Appendix: HFS planning with the causal graph heuristic (Fast Downward)

Idea: use causal graph analysis **MERS** to eliminate ALL forms of search (Burton)

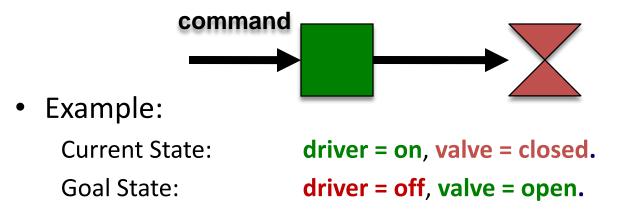
POP(<A,O,L>, agenda, actions):

- **1. Termination**: If agenda is empty, return plan <A,O,L>.
- Goal Selection: Select and remove open condition
 <p, a_{need} > from agenda.
- Action Selection: Choose new or existing action a_{add} that can precede a_{need} and whose effects include p. Link and order actions.
- 4. Update Agenda: If a_{add} is new, add its preconditions to agenda.
- 5. Threat Detection: For every action a_{threat} that might threaten some causal link from a_{produce} to a_{consume}, choose a consistent ordering:
 - a) **Demote**: Add a_{threat} < a_{produce}
 - **b) Promote**: Add a_{consume} < a_{threat}
- 6. **Recurse:** on modified plan and agenda

Burton [Williams & Nayak, IJCAI 1997]

Why do goal orderings matter?

1. An achieved goal can be clobbered by a subsequent goal.



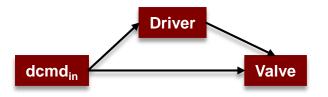
Achieving (driver = off), followed by (valve = open)
 clobbers (driver = off).

Achieve valve goal before driver goal. Effect Cause

Goal Ordering for Causal Graph *Planning*

Require: The CCA causal graph to be acyclic.

Causal Graph

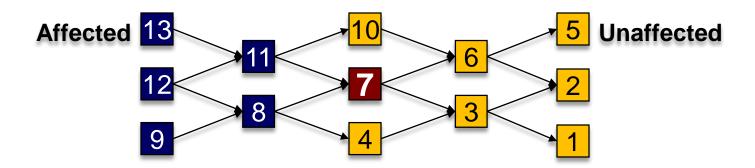


Idea: Achieve conjunctive goals upstream within the causal graph, from "effects" to "causes"

```
(i.e., children to parents).
```

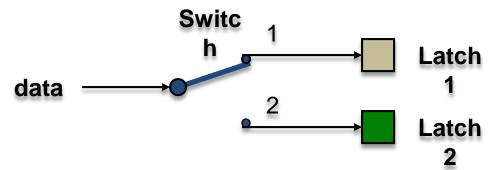

Property: Safe to **achieve** goals in an **upstream order**

- The only variables used to set some variable v_7 is its ancestors.
- Variable v_7 can be changed without affecting its descendants.



- Exploits: Each transitions independently controlled, each location can idle.
- Simple check:
 - 1. Number the causal graph depth-first from leaves.
 - Child has lower number than parents
 - 2. Achieve goals in the order of increasing depth-first number.

2. Two goals can compete for the same variable associated with their sub-goals.

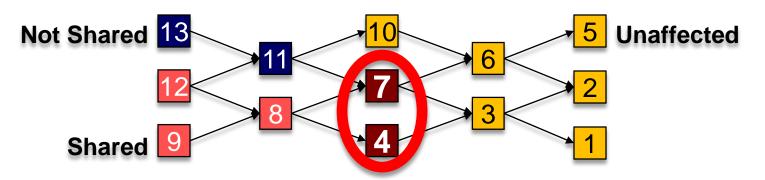


- Example: Latch Data at Latches 1 and 2
 - If Latch1 and Latch2 goals achieved at same time, Latch1 and Latch2 compete for Switch position.

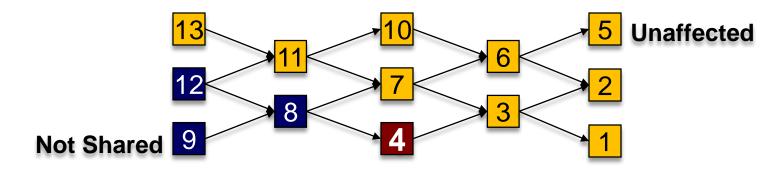
Solve one goal completely before the other (serially).

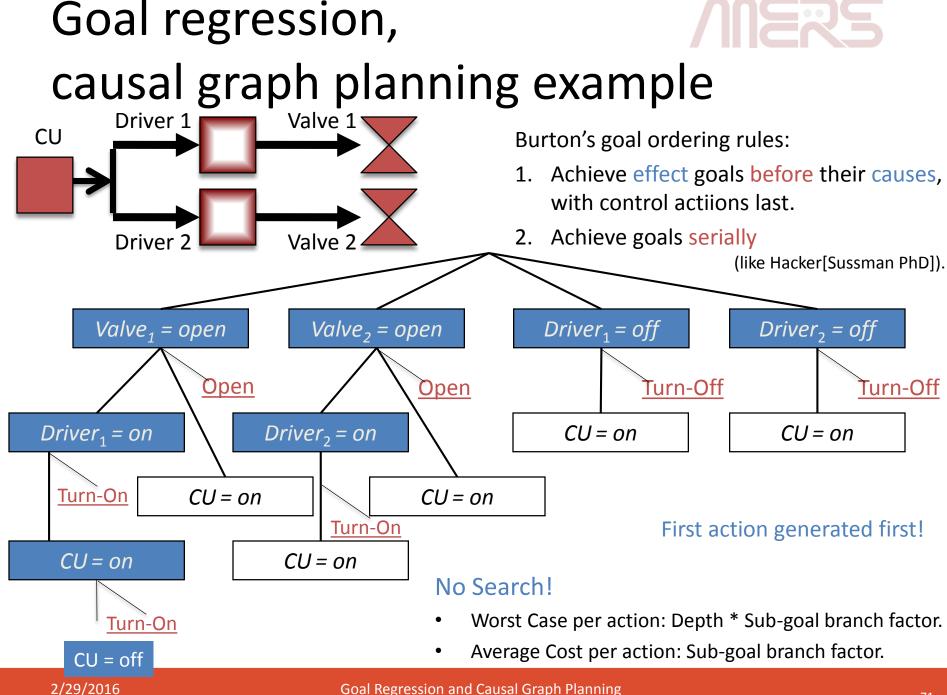
Property: Safe to achieve one goal **before** starting next sibling (serialization).

• Sibling goals v_7 and v_4 may both need shared ancestors.

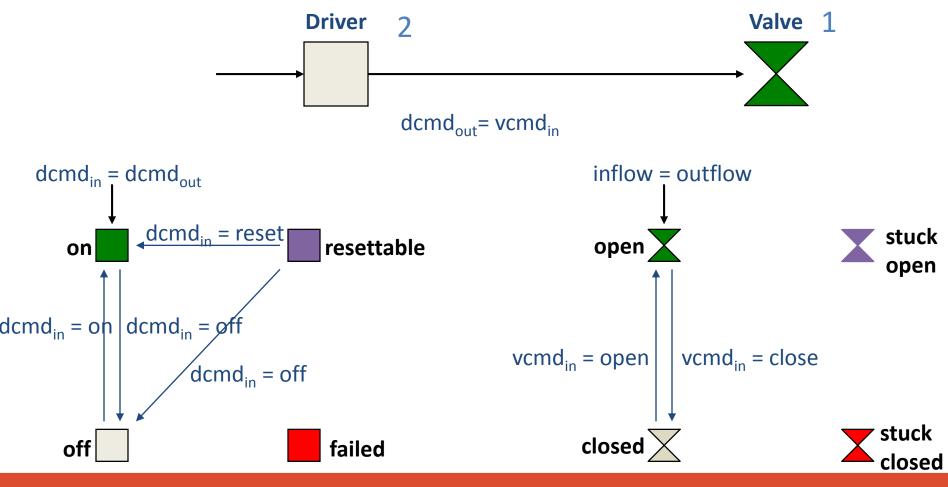


• Competition gone once sibling goal v_7 is satisfied.





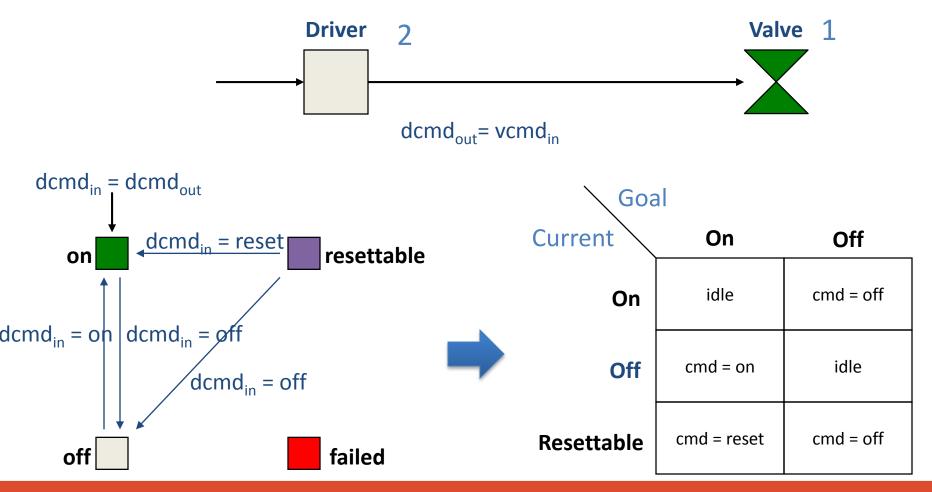
To select actions reactively, convert constraint automata to lookup policies



Goal Regression and Causal Graph Planning

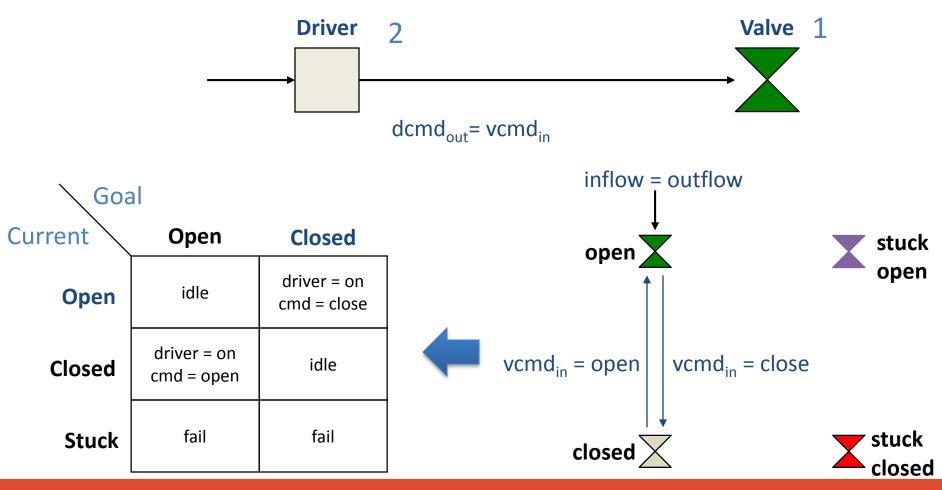
To select actions reactively, convert constraint automata to lookup policies

Algorithm: Instance of APSP



To select actions reactively,

convert constraint automata to lookup policies



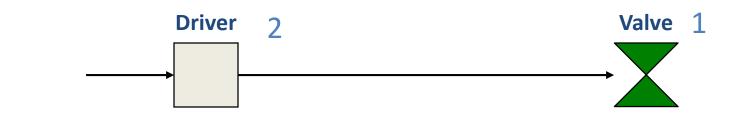
2/29/2016

Goal Regression and Causal Graph Planning

Goal: Driver = off, Valve = closed

Algorithm: see [williams and nayak, IJCAI97]

Current: Driver = off, Valve = open

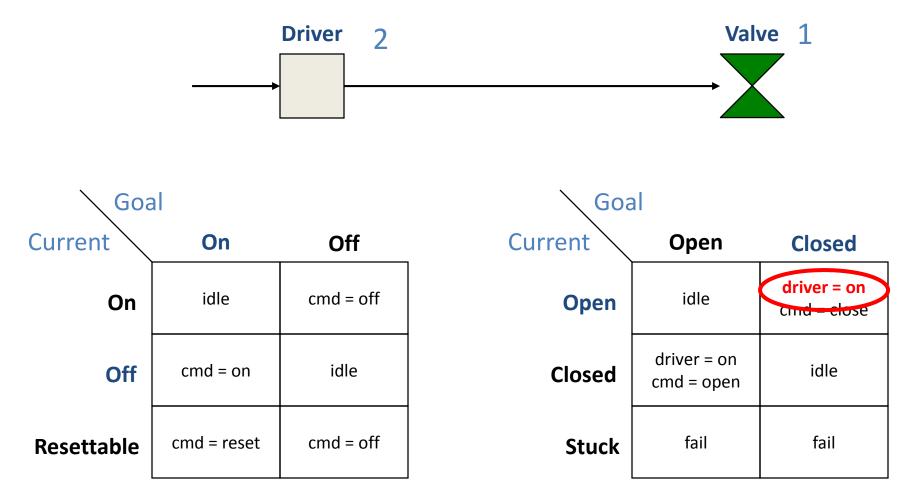


Goal			Goal			
Current	On	Off	Current	Open	Closed	
On	idle	cmd = off	Open	idle	driver = on cmd = close	
Off	cmd = on	idle	Closed	driver = on cmd = open	idle	
Resettable	cmd = reset	cmd = off	Stuck	fail	fail	

Goal: Driver = off, Valve = closed

Algorithm: see [williams and nayak, IJCAI97]

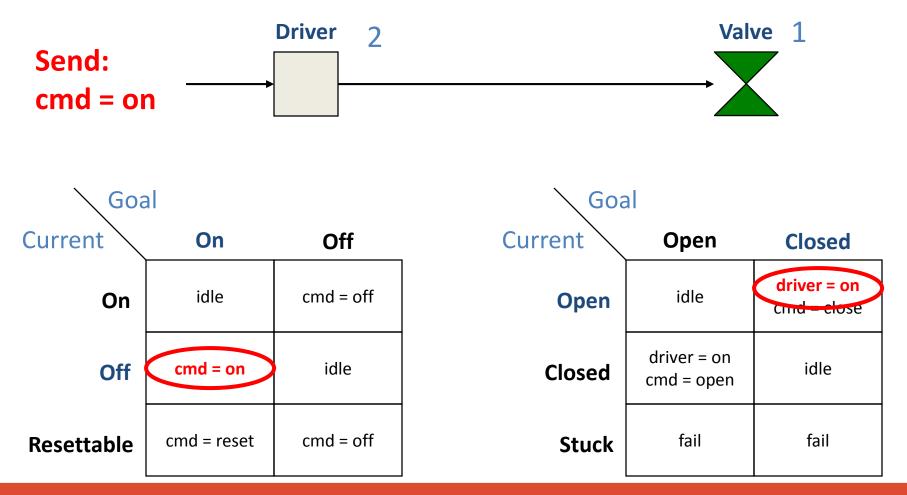
Current: Driver = off, Valve = open

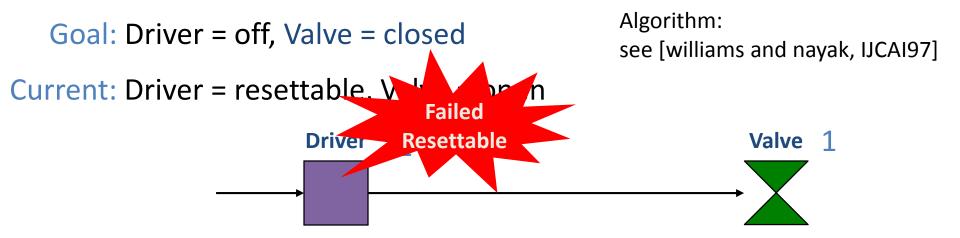


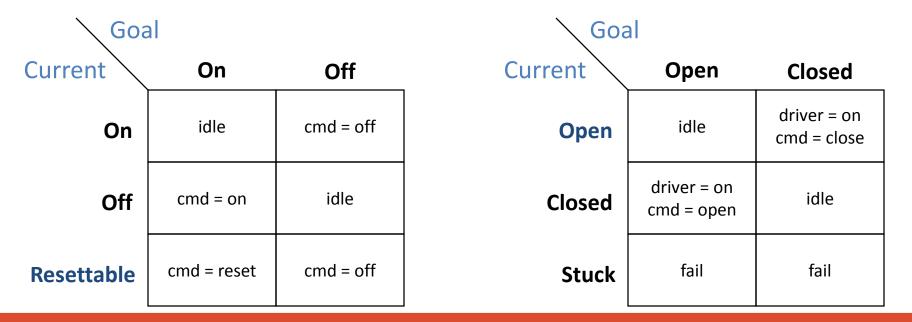
Goal: Driver = off, Valve = closed

Algorithm: see [williams and nayak, IJCAI97]

Current: Driver = off, Valve = open



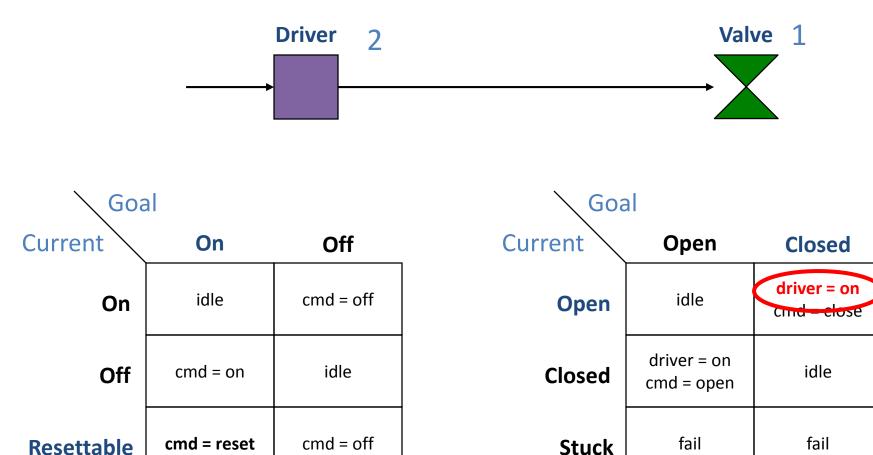




Goal: Driver = off, Valve = closed

Algorithm: see [williams and nayak, IJCAI97]

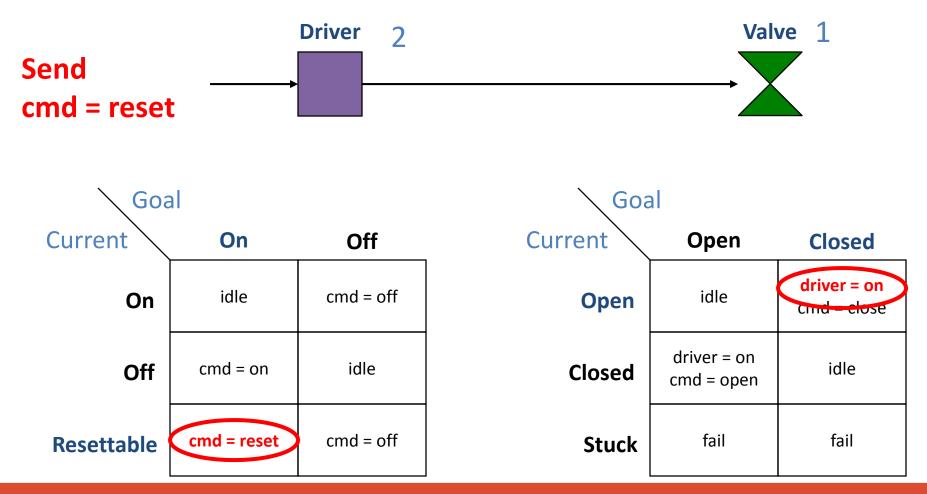
Current: Driver = resettable, Valve = open



Goal: Driver = off, Valve = closed

Algorithm: see [williams and nayak, IJCAI97]

Current: Driver = resettable, Valve = open



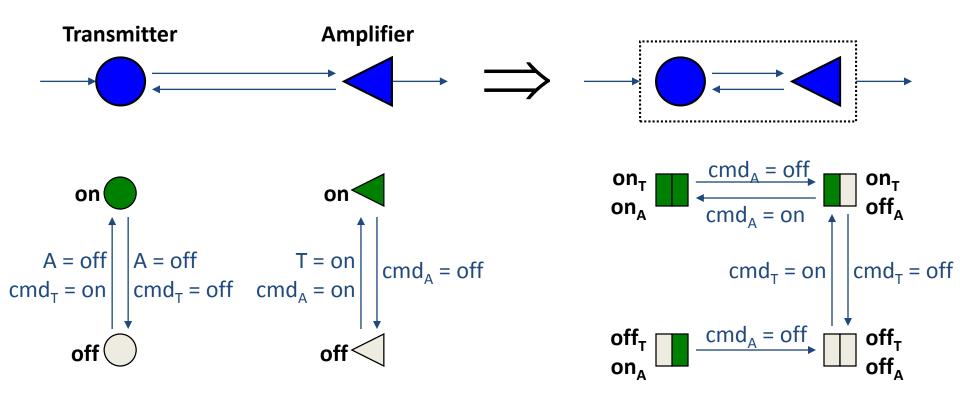
What if the causal graph G contains cycles? Antenna **K-band** Amplifier Bus **Transmitter** Computer Control Antenna **K-band** Amplifier **Transmitter**

Problem: Plan is no longer serializable.

Solution:

- Isolate the cyclic components (compute Strongly Connected Components).
- compose each cycle into a single component.
- New causal graph G' is acyclic.
- Goals of G' are serializable.

Action Policy for Composed Components

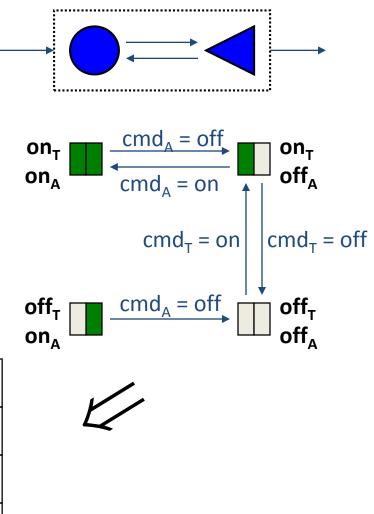


Goal

Action Policy for Composed Components

- Problem: Composition grows exponential in space usage.
- Solution: Use BDD encoding. [Chung and Williams, Self-adaptive SW 03]

Gua	Goal					
Current	On _T , On _A	On _T , Off _A	$\mathbf{Off}_{T}, \mathbf{Off}_{A}$	Off _⊤ , On _A		
On _T , On _A	idle	cmd _A = off	cmd _A = off	fail		
On _T , Off _A	cmd _A = on	idle	cmd _T = off	fail		
Off_{T}, Off_{A}	cmd _T = on	cmd _T = on	idle	fail		
Off _T , On _A	fail	fail	cmd _A = off	idle		



Outline

- Review: programs on state
- Planning as goal regression (SNLP/UCPOP)
- Goal regression planning with causal graphs (Burton)
- Appendix: HFS planning with the causal graph heuristic (Fast Downward)

Causal Graph Heuristic for PDDL

 Recall: The *Fast Forward (FF) Heuristic* is computed over a *Relaxed Planning Graph*.

- Likewise: The *Causal Graph (CG) Heuristic* is computed over a *Causal Graph*.
 - Map PDDL to concurrent automata, and extract causal graph (called domain transition graph (DTG).

Problem Reformulation

Original Representation: STRIPS or PDDL

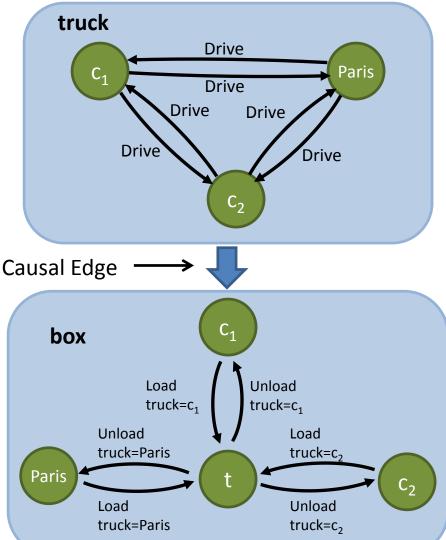
- Init
 - TruckIn(t, c_2)
 - BoxIn(b,c₁)
- Goal
 - BoxIn(b, Paris)
- Operators, e.g.
 - Drive(t, $c_{1,} c_2$)
 - Pre: TruckIn(c₁)
 - Add: TruckIn(c₂)
 - Del: TruckIn(c₁)

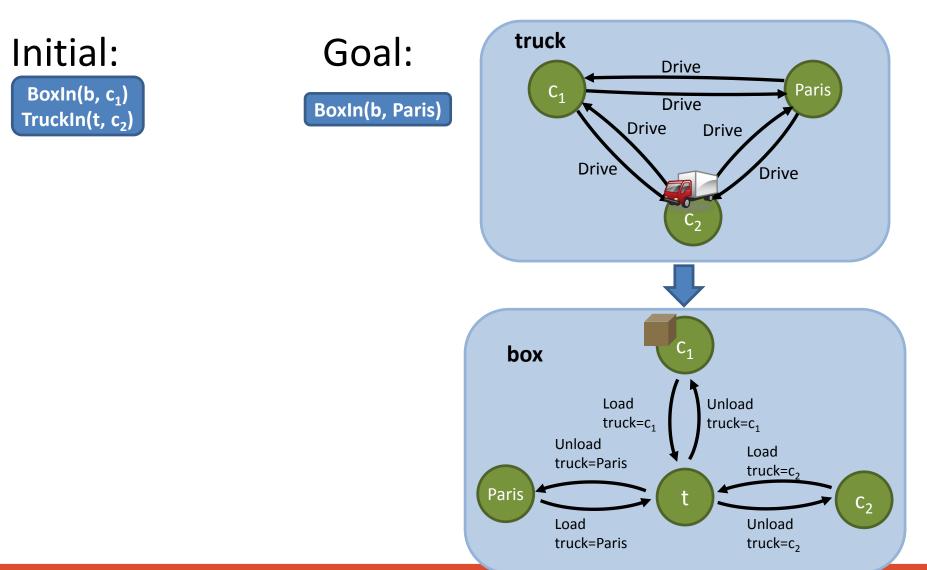
New Representation: Multi-valued Planning Task

- Variables:
 - truck := $\{c_{1}, c_{2}, Paris\}$
 - box := {onTruck, c₁, c₂, Paris}
- Init
 - truck = c_2
 - box = c_1
- Goal
 - box = Paris
- Operators, e.g.
 - Drive(t, c_{1} , c_{2})
 - Pre: truck = c_1
 - Post: truck = c_2

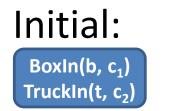
Domain Transition Graphs (DTG)

- One DTG per variable.
- Edges represent possible transitions (actions) and are guarded by preconditions
- A causal edge between the DTG represents that the "box" DTG has preconditions that depend on the "truck" DTG.



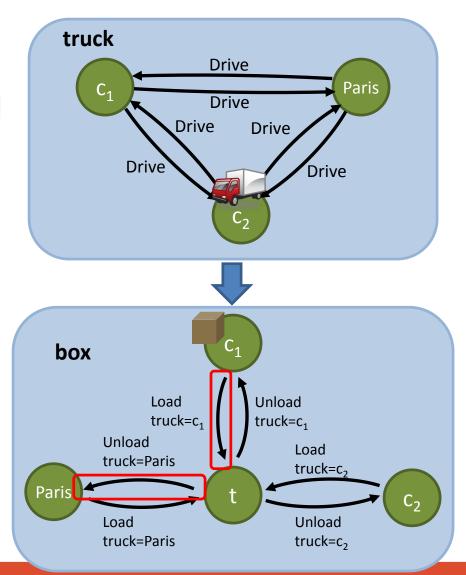


Goal Regression and Causal Graph Planning



Goal: BoxIn(b, Paris)

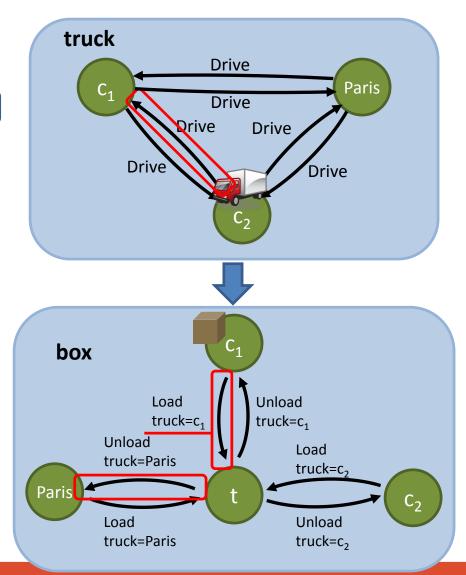
of transitions to get the box to Paris: 2



BoxIn(b, c₁) TruckIn(t, c₂) Goal: BoxIn(b, Paris)

of transitions to get the box to Paris: 2

of transitions to get the truck to c_1 : 1

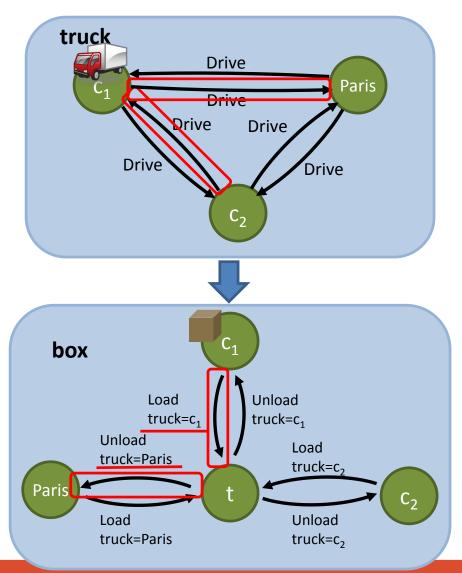


Initial: BoxIn(b, c₁) TruckIn(t, c₂) Goal: BoxIn(b, Paris)

of transitions to get the box to Paris: 2

of transitions to get the truck to c_1 : 1

of transitions to get the truck to Paris: 1



Initial: BoxIn(b, c₁) TruckIn(t, c₂) Goal: BoxIn(b, Paris)

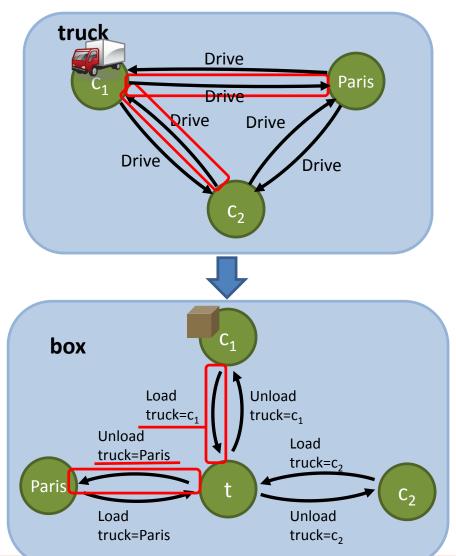
of transitions to get the box to Paris: 2

of transitions to get the truck to c_1 : 1

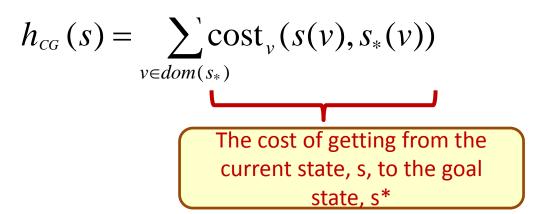
of transitions to get the truck to Paris: 1

Sum the transitions to get the heuristic value for the initial state...

$$h_{CG} = 4$$



Causal Graph Heuristic



Idea: Sum the domain transition costs to get to the goal.

- 1. Identify each variable involved in the goal.
- 2. Recurse from child to parent in the causal graph.
 - For each variable, sum the cost of along the shortest path to change the current value to the goal value.
 - If changing that variable's value has preconditions, also add the cost of changing its parent variable.

Causal Graph Heuristic Notes

- Can not handle cyclic causal graphs
 Relax some links until the graph is acyclic
- Calculation performed differently in practice
 Modified Dijkstra algorithm
- Each cost calculation can over estimate.
 - Not admissible
 - Assumes no helpful interactions between subgoals

Breaking Cycles

- Break action with multiple effects into multiple unary effect actions
- If there are still cycles, ignore some preconditions of actions

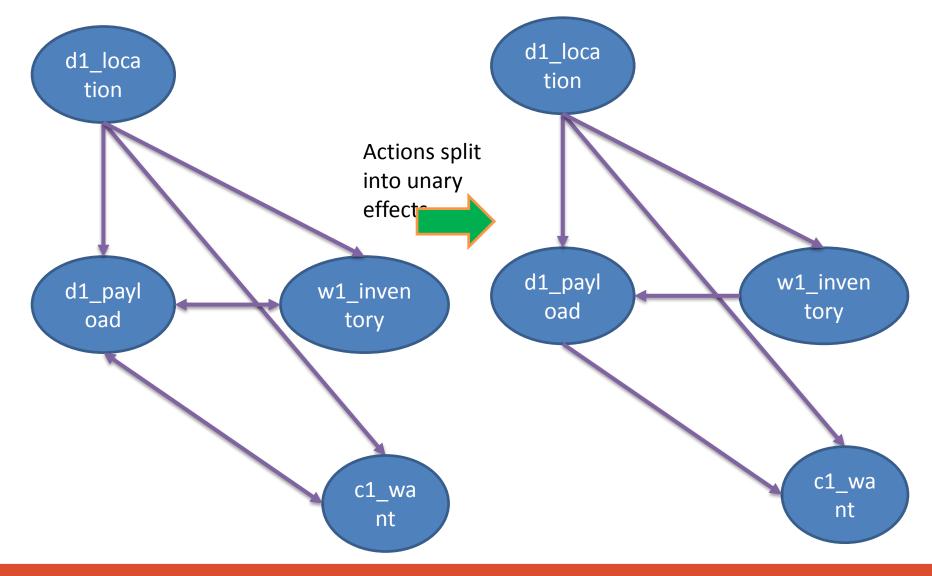
Pickup(d1, cream, w1,5)

```
Pre: d1_location=w1,
w1_cream=5
Eff: w1_cream=4,
d1_payload=cream
```


Pickup1(d1, cream, w1,5)

- Pre: d1_location=w1,
- w1_cream=5
- Eff: d1_payload=cream
- Pickup2(d1, cream, w1,5)
 Pre: d1_location=w1,
 w1_cream=5
 Eff: w1_cream=4

Breaking Cycles



Causal Graph Heuristic Summary

- Graph capture dependence between variables
- Requires re-achieving conditions
- Multi-valued formulation reveals structure
- h_{CEA} heuristic extends to cyclic graphs
- Performs extremely well on classical problems

Heuristic Families

There are many other heuristics, we've only covered two...

Туре	Relaxation	Heuristics	Estimates
Relaxed planning graph	Ignore deletes	h _{max} , h _{add} , h _{ff} , h _{cs,} h _m , ADHG	h+ (cost of relaxed plan)
Causal Graph	Limited interactions	h ^{CG} h ^{cea}	h+ (cost of relaxed plan)
Projection Abstractions	Projection	h _{PDB} , h _{STAN} , h _{FORK}	h (cost of optimal)

Key Ideas

- Heuristic forward search is one of the fastest current planning techniques
- Domain independent heuristic design still problematic
- Fast Forward Heuristic
 - Solve a relaxed problem in a Planning Graph
- Causal Graph Heuristic
 - Consider problem's structure in a Causal Graph

MIT OpenCourseWare https://ocw.mit.edu

16.412J / 6.834J Cognitive Robotics Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.