
Massachusetts Institute of Technology
16.412J/6.834J - Cognitive Robotics
Spring 2016

Iterative Risk Allocation
A Gentle Introduction by Ben Ayton and Steve Levine

Introduction

Iterative Risk Allocation (IRA) is a method of solving Robust Model Predictive Control (RMPC)
problems with a joint chance constraint. In this context, this means a Model Predictive Control
problem with a specified maximum risk of constraint violation.

Start

Goal

Safety margin

Walls

Start

Goal

Walls

Safety margin

Figure 1: This racecar example can be framed as an RMPC.

Figure 1 shows an example of an RMPC with a racecar. Our goal is to find a set of control
inputs (steering commands for the racecar) that will achieve our goal (crossing the finish line)
with the greatest possible utility (fastest possible time). However, there is uncertainty in this
situation; our vehicle has noisy dynamics. If we steer our vehicle in a certain direction, it may
end up actually going in a slightly different direction due to tire wear, road conditions, etc. We
must avoid driving off the road, in which case we crash and lose the race. However, we wish to
be robust to our uncertainty and achieve our goals anyway (hence the word robust in RMPC).
We quantify what we mean by “robust” with a chance constraint, which intuitively describes
a maximum acceptable probability of failure (in this case, driving off the road and crashing).
Suppose we wish to get to the finish line as quickly as possible, but are willing to accept a 0.1%
chance that our racecar may crash; this is a chance constraint. Note that there is often a direct
tradeoff between risk and reward. In the left image, the racecar takes a longer path because
it uses its risk inefficiently (and hence has lower utilty). At right, the rarecar daringly takes
a shorter path close to the corner - thus using most of its risk at once but also having higher
utility.

IRA solves an RMPC this by allocating the total risk (denoted Δ) between all individual

1

� � �

constraints (each is allowed to take risk up to δi) and allowing a solution to be found under
that risk allocation. Once a solution is found, it detects where risk is being used effectively, and
reallocates it to those constraints from where it is not being used. The problem is iteratively
solved this way until the risk allocations converge.

In the racecar Figure 1, the risk allocation is visualized in the safety margin. Higher risk
allocations are associated with “cutting it closer” to the edge of the track, since a slight slip
up there is more risky than when in the middle of the road. Imagine discretizing the racecar’s
trajectory to five or so timepoints. You could associate each timepoint i with a maximum risk δi
that is allowed to be taken at that timestep. At left in the diagram, the risk may be distributed
equally amongst all the δi. However, by allocating risk differently (at right), the racecar could
reach the goal faster, but still take the same total risk Δ. The racecar would like to take the
most risk where it would be the most beneficial to its utility; in this case, that occurs near the
corner.

Note that IRA itself does not specify how a RMPC problem is solved once its risk has been
specified. In principle, IRA can be used with any optimal solver.

Basic Idea: Allocating Your Risk to Different Constraints

We’ll get to the full specification of a RMPC problem in a bit, but for now, we will simply say
that it requires assignment to a finite set of deterministic control variables U = {u0, ..., uT −1}
that optimizes some objective function and satisfies a set of constraints.

The control variables determine the distributions of a finite set of potentially random state
variables X = {x0, ..., xT }. Note that all control and state variables are vector quanti
ties. Each of the constraints may be deterministic, acting on either the deterministic variables
or a deterministic function of random variables (such as their mean), or the constraints can
be probabilistic, which we will refer to as chance constraints. We restrict our attention to
RMPC problems where the chance constraints are limited to a single joint chance constraint.
(Note that IRA can be applied to multiple joint chance constraints with few extensions, but we
will not cover the details here.)

Let us denote the set of N individual constraints, which together compose a joint chance con
straint, as {C1, ..., CN }. For abbreviation, we write the probability that Ci is true as P (Ci)
and the probability that it is false as P (Ci). Specification of a joint chance constraint means
specifying a single risk Δ that indicates the maximum probability that any constraint Ci is
violated,

N

P Ci < Δ
i=1

(the notation means the “or” or disjunction of a bunch of things, and means the “and” or
conjunction of a bunch of things).

Put another way, if the probability of at least one of the constraints being violated is < Δ, then
the probability that all of the constraints are satisfied is ≥ 1 − Δ:

2

�� � � �

�� �

� �

�

� �

N N6
P Ci < Δ ⇐⇒ P Ci ≥ 1 − Δ.

i=1 i=1

The approach is to appeal to a basic principle of joint distributions,

P C1 ∨ C2 ≤ P (C1) + P (C2).

It follows that if we have N constraints, we split the total risk into N risk allocations
{δ1, ..., δN }, and specify N individual chance constraints which satisfy

P (Ci) < δi ⇐⇒ P (Ci) ≥ 1 − δi

N

δi ≤ Δ,
i=1

then we have satisfied the joint chance constraint, because

N N N

P Ci ≤ P (Ci) < δi ≤ Δ.
i=1 i=1 i=1

We have now formulated a RMPC problem from one with a single, joint chance constraint over
all of the constraints, to another with only individual chance constraints. The solution to this
new problem satisfies the joint chance constraint RMPC, and is, in most cases, easier to solve. NNote that this is method of allocating risk may be conservative, even if i=1 δi = Δ is satisfied
exactly. But normally it will be advantageous to use all the risk we are allowed.

Basic Idea - Iterative Risk Allocation

For now, let’s postpone the discussion of how we solve the RMPC with individual chance
constraints above, and assume we have some method of doing so. The solution will specify the
values of P (Ci) (perhaps indirectly, but they will be computable).

Intuitively, if P (C̄i) is much less than δi, we have allocated more risk to the constraint Ci than
we may need, because there is some available that the solution has not used. This constraint
is “inactive.” We could take some risk away and define a δij < δi such that P (C̄i) ≤ δj is still i
satisfied and it would not affect the solution.

Similarly, if P (C̄j) is very close to δj , almost all of the allocated risk is being used for that
constraint. It’s an “active” constraint. If we allocate more risk to that constraint with a larger
δjj > δj , there may be a better solution that makes use of that risk. Intuitively, this is because
our constraint that P (C̄j) < δj may be “limiting” our solution, in that it’s what could be

3

(∨) ()

(∨)

� �

preventing us from achieving a higher utilty. This is a key idea of IRA! By taking a little
more risk at this constraint, maybe we could improve our solution utility (and cross the finish
line sooner, for example). Even if not, we certainly will not make the solution any worse by
allocating more risk to such a constraint.

Thus, the key idea of IRA is to re-allocate risk from constraints that don’t need
it (are inactive), and give it to those constraints that may be able to use it (are
active), in an attempt to improve our utility. We keep iteratively doing this (hence
the name, IRA).

We define some tolerance η, and then distinguish between active and inactive constraints:

Active: |P (Ci) − 1 + δi| ≤ η

Inactive: |P (Ci) − 1 + δi| > η.

At each iteration, IRA takes some risk from all the inactive constraints. Then, it divides that
collected risk uniformly between the active constraints, and adds it to those active constraints.
That’s it! The innovation in IRA comes from how we can intelligently decide how much risk to
take from the inactive constraints. To do that, we need to look in more detail at the form of
constraint we expect.

Working with Linear Chance Constraints

We consider all our chance constraints to be expressible as thresholds on linear combinations of
our state variables. This means that we define some vector hi and some scalar gi such that

Ci = True ⇐⇒ hT
i xi ≤ gi

⇒ P (Ci) ≥ 1 − δi ⇐⇒ P hT
i xi ≤ gi ≥ 1 − δi.

We focus on this form of constraint because it is simple, but simultaneously powerful and
expressive. xi can be composed of any subset of elements of X arranged in a single vector, so
any linear combination of state variables can be considered. However, in most cases, xi will be
one element of X, meaning the constraint applies to the state at a single timestep. Many types
of constraints can be encoded as linear constraints, and the representation can be naturally
encoded in a linear program, which can be used to solve the RMPC problem. Multiple limits
on hT

i xi can be encoded through multiple constraints, each with their own individual risk.

Note that the product hT
i xi is a scalar random variable, which has its own cumulative distri

bution function. In some cases, it turns out to be more convenient to work with hT
i xi − hT x̄i,

where x̄i is the mean of xi. Note that hi
T xi − hT x̄i is also a scalar random variable, with zeroi

mean and the same variance as hT
i xi.

4

i

()

� �

� � � �

� �

� �

We denote the cumulative distribution function of hT
i xi − hT x̄i by cdfi (·). By definition: i

P hi
T xi − hi

T x̄i ≤ a = cdfi (a) ,

from which we can immediately write

P hT
i xi ≤ gi = cdfi gi − hT x̄i .i

The above is an expression for the probability a constraint is satisfied, which must be
compared to the allocated risk to determine if a constraint is active or inactive. The above
implies

P (Ci) ≥ 1 − δi ⇐⇒ δi ≥ 1 − cdfi gi − hT x̄i .i

The significance of this result is that we have derived a lower bound on the acceptable values of
the risk allocation, δi,min, through a deterministic and known function of deterministic variables.
For any inactive constraint, we may reduce δi to no less than this value. In other words, we
reformulate the test for whether a constraint is active or inactive as:

δi,min = 1 − cdfi gi − hi
T x̄i

Active: |δi − δi,min| ≤ η

Inactive: |δi − δi,min| > η.

It is important to understand that the value of x̄i is solved for in the RMPC problem. Therefore,
the lower bound is not a global bound for the problem, but a lower bound for the acceptable
risk allocation for a given solution. So long as δi ≥ δi,min ∀ i, the current solution is valid, but
if it is violated for any i, a new but worse solution may still exist.

RMPC Formulation with Gaussian State Variables

We consider a discrete-time linear time-invariant problem posed over T + 1 timesteps {0, ..., T },
where the system is subject to a conjunction of N chance constraints. The state at timestep
k + 1 is a linear combination of the state and control variables at timestep k, plus a zero-
mean Gaussian noise with known covariance. The control variables at each timestep are limited
between a minimum and maximum. The initial state is specified, also as a Gaussian random
variable, and we attempt to minimize the expectation of some function of the state and control
variables. In total, we have

5

()

() ()

()

()

� �

min E[J(X, U)]
s.t. xk+1 = Axk + Buk + wk

x̄min ≤ x̄k ≤ x̄max

umin ≤ uk ≤ umax

wk ∼ N (0, Σw)
x0 ∼ N (x̄0, Σx,0)

N6
P hT

i xi ≤ gi ≥ 1 − Δ
i=1

plus other deterministic constraints.

Note that the above is a stochastic optimization - it involved random variables and their dis
tributions. What we will show shortly is that, given a risk allocation for each of the individual
chance constraints, we can convert this stochastic optimization into a deterministic optimization
- something like a linear program, or a MILP, that will allow us to solve for an optimal solution
easily under that risk allocation.

The approach here is to build a linear program that considers only the means of the state
variables and the control variables, which can be solved for under a given risk allocation. In

¯this way, the linear program only considers deterministic variables. We define X = {x̄0, ..., x̄T },
¯and assume we can formulate the objective function using X instead of X,

E[J(X, U)] = J(X̄, U).

We also note the following two identities, from the properties of Gaussian random variables:

x̄k+1 = Ax̄k + Buk

Σx,k+1 = AΣx,kA
T +Σw.

The above result is very helpful! It says that the covariance Σx,k does not depend at all on the
control values uk that we’ll ultimately be optimizing over. In fact, we can compute all Σx,k at
the start because we know Σx,0, Σw, and A. Furthermore, although we can’t guarantee what
exactly will happen to xk because of the random noise, we can note that its mean x̄k is directly
influenced by the control inputs uk.

We use the previously detailed expansion to decompose the joint chance constraint involving
Δ into individual chance constraints of the form Pr(hT

i xi ≤ gi) ≥ 1 − δi. We also express the
distribution of hT

i xi − hT x̄i asi

hT
i xi − hT x̄i ∼ N (0, hi

T Σx,ihi),i

6

()

� �

� �

which means we can express cdfi as the cumulative distribution function of a Gaussian with zero
mean and variance hT

i Σx,ihi. But how can we represent the cumulative distribution function
of a Gaussian? It turns out we can do so with the erf function. For a Gaussian with mean µ
and variance σ2, its cumulative distribution function is

1 1 a − µ

cdf(a) = + erf √
2 2 σ 2

(note that the erf function can be readily evaluated, just like other functions like cos).

So, since hT
i xi − hT x̄i ∼ N (0, hi

T Σx,ihi), we can write its cdf as i

⎛ ⎞
1 1 a

cdfi(a) = + erf ⎝ ⎠ .
2 2 2hT Σx,ihii

Earlier, we saw that the probability Pr(hT
i xi ≤ gi) = cdfi gi − hT x̄i . If we plug this result i

in the above cdfi for a Gaussian by substituting a, we can compute the probability that a
linear constraint is satisfied when the state is Gaussian: ⎛ ⎞

1 1 ⎝ gi − hT x̄i ⎠iPr(hT
i xi ≤ gi) = + erf

2 2 2hT Σx,ihii

Previously, we considered the statement δi ≥ 1 − cdfi gi − hT x̄i as a lower bound on δi toi
make a solution with x̄i satisfy P (Ci) ≥ 1 − δi. But we can also view this as a constraint k

that must be placed on x̄i so that P (Ci) ≥ 1 − δi is satisfied for a fixed value of δi. This is k

valid, because risk can be treated as fixed for a given RMPC problem once it has been allocated
within IRA. We can therefore define a set of linear constraints on x̄i such that all risk bounds
are satisfied:

⎛ ⎞
1 1 ⎝ gi − hT x̄i ⎠δi ≥ − erf i
2 2 2hT Σx,ihii

⇒ hT

i x̄i ≤ gi − 2hT
i Σx,ihierf

−1(1 − 2δi).

This is a key result! We have “determinized” our chance constraint. We have taken
an individual chance constraint, specified in the form Pr(hT

i xi ≤ gi) ≥ 1 − δi and involving the
random variable xi, and converted it to a regular, linear constraint only involving its mean x̄i
(remember that δi is constant, so that long, scary-looking expression is also just a constant).
We can determinize all our individual chance constraints in this way, under a constant risk
allocation, and transform our problem into a linear program involving x̄i.
The equation above has a nice intuitive interpretation. 2hT Σx,ihierf

−1(1 − 2δi) is a positive i

function that pushes hT x̄i further from gi, so that hT is less likely to cross the boundary. i i xi

7

()

()

In this way, 2hT Σx,ihierf

−1(1 − 2δi) acts as a “forbidden region” that grows with larger Σx,ii
and with smaller δi. So as the uncertainty in xi increases, and the risk allocated to a constraint
decreases, the mean must be further from the boundary to ensure that that the constraint is
satisfied.

The above explains the behavior of the racecar example at the beginning of this document.
Note that at the corner, the safety region / forbidden region is smaller - it is tighter around
that area. That’s because IRA is allocating more of it’s total risk there, causing the boundary
to be pushed away just a little bit.

To summarize, the constraint RMPC problem can then be framed as the following linear pro
gram for a given risk allocation. This is the “determinized” version of the problem; it
is no longer stochastic, as all of the probabilistic / chance constraints have been
converted to linear constraints (as all δi are constant). All the constraints below are
linear, because all δi are specified once inside IRA, and all Σx,k are computable before the
problem is solved using known constants A and Σw:

8

√

min J(X̄, U)
s.t. x̄k+1 = Ax̄k + Buk

x̄min ≤ x̄k ≤ x̄max

umin ≤ uk ≤ umax

Σx,k+1 = AΣx,kA
T +Σw

N6
hT 2hT
i x̄i ≤ gi − i Σx,ihierf

−1(1 − 2δi)
i=1

plus other deterministic constraints.

We’re now prepared to walk through the IRA algorithm in full! Let’s take a look.

The IRA Algorithm

The IRA algorithm is presented below. But first, we present a simpler version in English:

1. Initialize our risk allocation uniformly

2. Determinize the problem and solve using a sub-solver

3. Find which individual chance constraints are active

4. Reallocate risk:

(a) Remove some risk from any inactive chance constraint δ’s
(b) Add unused risk to active chance constraints δ’s

5. Go back to 2

The more detailed IRA algorithm is presented below. The algorithm also makes use of a
convergence tolerance E on the objective function, and a free parameter 0 < α < 1. J̄∗ refers to
the utility value for the optimized problem.

Line 1 allocates the total risk Δ uniformly between all constraints. We then enter the do-while
J̄∗loop, which continues until the objective value converges. Line 5 takes the RMPC problem

and our risk allocations δi and constructs the determinized version of the problem that is a
normal (and not probabilistic) optimization (the δi’s are constants in this version). Line 6
solves this determinized version, and retrieves the objective value. Line 7 partitions each of the
chance constraints into two sets: an active set of constraints (those that are active), and an
inactive set. We note the number of active constraints in Line 8.

Lines 9 through 11 end the algorithm if all constraints are active or all constraints are inactive,
because in those cases there is nothing to allocate risk from or to respectively. Lines 12 through
14 reassign the risk allocated to all inactive constraints such that the new allocation is less than

9

√

� �

�

its previous value but greater than δi,min, which is the lower bound for the solution found in
line 4 to still be valid.

This allows the δresidual on line 15 to increase, which is roughly the “unused” risk that can be
re-allocated to the active constraints, which happens uniformly on lines 16-18.

Algorithm 1: The IRA Algorithm
1	 δi ← Δ/N for all i
J̄∗ 2 ←∞

3 do
4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

J̄∗ ¯
prev ← J∗

Determinize the problem given all the δi
¯Solve the determinized version and get the new J∗

Partition the chance constraints into two sets, Cactive and Cinactive
Nactive ← |Cactive|
if Nactive = 0 or Nactive = N then

Break
end
forall the constraints i in Cinactive do

δi ← αδi + (1 − α) 1 − cdfi(gi − hT ¯i xi)
end
δresidual = Δ − N

i=0 δi
forall the constraints i in Cactive do

δi ← δi + δresidual/Nactive
end

J∗ − J̄∗ 19 while | ¯ | > E prev

And that’s it! In the remainder of this document, we’ll present how IRA can be used with
disjunctive constraints, which is useful in many circumstances but won’t be tested in the problem
set.

Disjunctive Constraints

Note! While this section is cool, it is not required to do the problem set.

We frequently encounter disjunctions of constraints, one of which must hold. We consider that
the constraint Ci is actually a disjunction of M constraints, each of which act on the same
vector xi,

M

Ci = Ci,j .
j=1

In this case, we could write the joint chance constraint as

10

()
∑

∨

�

�

�

�

�
�

⎛ ⎞
N M6

P ⎝ Ci,j ⎠ ≥ 1 − Δ.
i=1 j=1

As before, we create an individual chance constraint for each conjunction, producing

⎛ ⎞
M

P ⎝ Ci,j ⎠ ≥ 1 − δi.
j=1

Now, we use a principle of disjunctive distributions,

⎛ ⎞
M ⎝P Ci,j ⎠ ≥ P (Ci,j) ∀ j ∈ {1, ..., M}.
j=1

Using this principle, we can satisfy the disjunctive constraint by encoding a disjunction of
individual constraints, each with the same risk:

M

[P (Ci,j) ≥ 1 − δi] .
j=1

So long as one of these constraints is satisfied, the joint constraint will also be satisfied. If
multiple are satisfied, the risk has been allocated conservatively. This encoding can be achieved
in a mixed integer linear program. Through the use of binary variables, we can state that at
least one constraint must be satisfied. For the Gaussian RMPC problem considered above, we
encode:

⎛ ⎞
N M6

P ⎝ hT ⎠ ≥ 1 − Δ i,j xi ≤ gi,j
i=1 j=1

N M 6
⇒ hT 2hT Σx,ihi,j erf

−1(1 − 2δi) .i,j x̄i ≤ gi,j − i,j
i=1 j=1

References

Ono, Masahiro, and Brian C. Williams. “Iterative risk allocation: A new approach to robust
model predictive control with a joint chance constraint.” Decision and Control, 2008. CDC
2008. 47th IEEE Conference on. IEEE, 2008.

Ono, Masahiro. “Robust, goal-directed plan execution with bounded risk.” Diss. Massachusetts
Institute of Technology, 2012.

11

∨

∨

∨

∨

∨
∨ √

MIT OpenCourseWare
https://ocw.mit.edu

16.412J / 6.834J Cognitive Robotics
Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

