
courtesy of JPL

Creating Programs on State:
Through Activity Planning

David Wang
MIT CSAIL

mers.csail.mit.edu

February 22nd, 2016

Contributions:
 Brian Williams
 Maria Fox

1

http://mers.csail.mit.edu/

The Firefighting Scenario

base1

lake2

fire2

lake1

fire1

uav1

base2 no-fly zone

no-fly zone no-fly zone

Objective: Put out all the fires using UAV1, avoid no-fly zones.

22/22/2016 Activity Planning

The Firefighting Scenario
Objective: Put out all the fires using UAV1, avoid no-fly zones.

32/22/2016 Activity Planning

Traditional Solution:

class UAV {
 Roadmap location;
 Boolean flying;
 Boolean loaded;

 primitive method takeoff()
 flying == no => flying == yes;

 primitive method land()
 flying == yes => flying == no;

 primitive method load_water(Lake lakespot)
 ((flying == yes) && (loaded == no)
 && (lakespot.location == location)) => loaded == yes;

 primitive method drop_water_high_altiture(Fire firespot)
 ((flying == yes) && (loaded == yes)
 && (firespot.location == location) && (firespot == high))
 => ((loaded == no) && (firespot == medium));

 primitive method drop_water_low_altiture(Fire firespot)
 ((flying == yes) && (loaded == yes)
 && (firespot.location == location) && (firespot == medium))
 => ((loaded == no) && (firespot == out));

 #MOTION_PRIMITIVES(location, fly, flying==yes)
}

class Main{
 UAV uav1;
 Lake lake1;
 Lake lake2;
 Fire fire1;
 Fire fire2;
 // constructor
 Main (){
 uav1 = new UAV();
 uav1.location= base_1_location;
 uav1.flying = no;
 uav1.loaded = no;

 lake1 = new Lake();
 lake1.location = lake_1_location;

 lake2 = new Lake();
 lake2.location = lake_2_location;

 fire1 = new Fire();
 fire1.location = fire_1_location;
 fire1 = high;

 fire2 = new Fire();
 fire2.location = fire_2_location;
 fire2 = high;
 }

 // “main” method

 method run() {

 sequence{

 uav1.takeoff();

 uav1.fly(base_1_location,lake_2_location);

 uav1.load_water(lake2);

 uav1.fly(lake_2_location,fire_2_location);

 uav1.drop_water_high_altitude(fire2);

 … <13 additional activities> …

 uav1.land();

 }

 }
}

Specify each activity (the usual programmatic way)

These are the actions
the UAV can take.

A program that specifies the exact
sequence of activities.

42/22/2016 Activity Planning

State-based Solution:

class UAV {
 Roadmap location;
 Boolean flying;
 Boolean loaded;

 primitive method takeoff()
 flying == no => flying == yes;

 primitive method land()
 flying == yes => flying == no;

 primitive method load_water(Lake lakespot)
 ((flying == yes) && (loaded == no)
 && (lakespot.location == location)) => loaded == yes;

 primitive method drop_water_high_altiture(Fire firespot)
 ((flying == yes) && (loaded == yes)
 && (firespot.location == location) && (firespot == high))
 => ((loaded == no) && (firespot == medium));

 primitive method drop_water_low_altiture(Fire firespot)
 ((flying == yes) && (loaded == yes)
 && (firespot.location == location) && (firespot == medium))
 => ((loaded == no) && (firespot == out));

 #MOTION_PRIMITIVES(location, fly, flying==yes)
}

class Main{
 UAV uav1;
 Lake lake1;
 Lake lake2;
 Fire fire1;
 Fire fire2;
 // constructor
 Main (){
 uav1 = new UAV();
 uav1.location= base_1_location;
 uav1.flying = no;
 uav1.loaded = no;

 lake1 = new Lake();
 lake1.location = lake_1_location;

 lake2 = new Lake();
 lake2.location = lake_2_location;

 fire1 = new Fire();
 fire1.location = fire_1_location;
 fire1 = high;

 fire2 = new Fire();
 fire2.location = fire_2_location;
 fire2 = high;
 }

 // “main” method

 method run() {

 sequence{

 (fire1 == out);

 (fire2 == out);

 (uav1.flying == no &&

 uav1.location == base_1_location);

 }

 }
}

Specify the desired states, let the computer plan the activities.

These are the actions
the UAV can take.

A program that specifies
the desired states.

52/22/2016 Activity Planning

Activity Planning
initial state:

goals:

operators:

plan:

© MIT. All rights reserved. This content
is excluded from our Creative Commons
license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/.

62/22/2016 Activity Planning

https://ocw.mit.edu/help/faq-fair-use/

class UAV {
 Roadmap location;
 Boolean flying;
 Boolean loaded;

 primitive method takeoff()
 flying == no => flying == yes;

 primitive method land()
 flying == yes => flying == no;

 primitive method load_water(Lake lakespot)
 ((flying == yes) && (loaded == no)
 && (lakespot.location == location)) => loaded == yes;

 primitive method drop_water_high_altiture(Fire firespot)
 ((flying == yes) && (loaded == yes)
 && (firespot.location == location) && (firespot == high))
 => ((loaded == no) && (firespot == medium));

 primitive method drop_water_low_altiture(Fire firespot)
 ((flying == yes) && (loaded == yes)
 && (firespot.location == location) && (firespot == medium))
 => ((loaded == no) && (firespot == out));

 #MOTION_PRIMITIVES(location, fly, flying==yes)
}

Activity Planning Maps Desired States to Actions

class Main{
 UAV uav1;
 Lake lake1;
 Lake lake2;
 Fire fire1;
 Fire fire2;
 // constructor
 Main (){
 uav1 = new UAV();
 uav1.location= base_1_location;
 uav1.flying = no;
 uav1.loaded = no;

 lake1 = new Lake();
 lake1.location = lake_1_location;

 lake2 = new Lake();
 lake2.location = lake_2_location;

 fire1 = new Fire();
 fire1.location = fire_1_location;
 fire1 = high;

 fire2 = new Fire();
 fire2.location = fire_2_location;
 fire2 = high;
 }

 // “main” method

 method run() {

 sequence{

 (fire1 == out);

 (fire2 == out);

 (uav1.flying == no &&

 uav1.location == base_1_location);

 }

 }

}

Actions (aka Operators)

Goal[s]

Initial State

 // “main” method
 method run() {
 sequence{
 uav1.takeoff();
 uav1.fly(base_1_location,lake_2_location);
 uav1.load_water(lake2);
 uav1.fly(lake_2_location,fire_2_location);
 uav1.drop_water_high_altitude(fire2);
 … <13 additional activities> …
 uav1.land();
 }
 }
}

Activity
Planner

Plan

72/22/2016 Activity Planning

Outline

• Programming on State with Activity Planning
• Classic Planning Problem
• Planning as Heuristic Forward Search (Fast Forward Planner)

– Enforced Hill Climbing
– Fast Forward Heuristic

• Planning with Time (Crikey 3 Planner)

– Temporal Planning Problem
– Temporal Relaxed Plan Graph

82/22/2016 Activity Planning

Plan Representation
Many ways of expressing planning problems.

All include:

Inputs:
• initial state – a set of facts about the world

• goal – subset of facts that must appear in the goal state.

• actions – a set of named precondition and effect pairs.

Outputs:
• plan – a schedule of actions (i.e. a sequence or list of actions).

92/22/2016 Activity Planning

(Clear) B

“Classic” Representation (PDDL)
Action Model:

Stack

Objects (things):

Predicates (used to create true or false statements about the world, “facts”):

Actions (used to change truth of predicates):

(On ,) A B

(Clear) A

(Clear) A

(On ,) A B

¬(Clear) B

preconditions effects

(On ,) (On ,)

(Clear) (Clear) (Clear) Initial:

Goal:
102/22/2016 Activity Planning

“Classic” Planning Actions

(Clear) B
Stack

Actions (used to change truth of predicates):

(Clear) A

(On ,) A B

¬(Clear) B

preconditions effects

“Delete” Effects – statements that must NOT be true.

“Add” Effects – statements that must be true.

Preconditions – a conjunction of statements that must be true
 before the action is applied.

Effects – a conjunction of statements that must be true
 after the action is applied.

112/22/2016 Activity Planning

Automata Representation
Action/model:

Concurrent Constraint Automata (like a state-machine):

Initial:
Goal:

Note: This is a very simple example, there are usually many
automata, and guards on the transitions.

Algorithms exist to map between the two representations.

122/22/2016 Activity Planning

For a Path Planner:

State Space = a map

What is the difference between
Path and Activity Planning?

10
5

5

7
12

2
3

1
4

Operator = a weighted edge

Kendall
subway

5

State = a location

Kendall
subway

(identified by name)
The start and end states uniquely identify

where this operator can be applied.

13

Formulating Activity Planning as Search
Search needs a State Space, constructed from States and Operators:

State Space = states
reachable given the
available actions.

Operator = an action
Bake cake

State = a set of facts
• I’m hungry
• I want cake
• I have flour
• I have sugar

(identified by the set of statements)

• I have flour
• I have sugar
• I have milk
• I have eggs

• I have cake
• I do NOT have flour.
• I do NOT have sugar.
• I do NOT have milk.
• I do NOT have eggs.

Precondition:
Statements that must be a
subset of the starting state.

Effect:
Statements that will be

true in ending state.

• have flour
• have eggs
• hungry
• want cake
• locked bike

• have flour
• have eggs
• hungry
• want cake
• unlocked bike

Unlock Bike

Shopping Run

Steal Picnic
Basket • have flour

• have eggs
• have sugar
• have milk
• hungry
• want cake
• locked bike

• have flour
• have eggs
• have sugar
• have milk
• hungry
• want cake
• unlocked bike

Eat Cake • have cake
• hungry
• want cake
• locked bike

Bake Cake

Bake Cake

• full
• locked bike

• have cake
• hungry
• want cake
• unlocked bike

Eat Cake

• full
• unlocked bike

Lock Bike

142/22/2016 Activity Planning

Activity Planning as Search

Actions = { Unlock Bike, Lock Bike, Shopping Run,
 Steal Picnic Basket, Bake Cake, Eat Cake }

• have flour
• have eggs
• hungry
• want cake
• locked bike

Unlock Bike
Shopping Run

Steal Picnic
Basket Bake Cake

Bake Cake

• Providing a “map” will all possible actions is too large and time-consuming.
• Instead, we provide a set of actions...

Lock Bike

Unlock
Bike Lock

Bike

Bake Cake

Unlock
Bike

Lock
Bike

Shopping Run

Steal Picnic
Basket Shopping

Run

…

 and expect the planner to build the “map” as needed.

152/22/2016 Activity Planning

How Hard is Activity Planning?
The “map” is usually not provided in activity planning, but we can imagine
how hard the planning problem is relative to depth first search.

Note: We talked about the runtime complexity of the algorithm, but we can also talk about the complexity of the problem itself. The
“Single Source Single Destination Shortest Path Problem” is Linear(#Edges+#Vertices). The
“Plan Existence Problem” (aka planning) is PSpace(#Actions).

Complexity of Depth First Search: O(bd)

Planning Problem with:
• 10 actions
• 10 statements = 1024 possible states (not necessarily all reachable)

Scenario 1: Lets assume our expected plan is 10 actions long

if b = 10 actions, d = 10 states
bd = 10,000,000,000

Scenario 2: A few actions are applied over and over again in different orders,
 visiting all possible states.

if b = 10 actions, d = 1024 states
bd > atoms in the universe (3.0 x 10²³)

16

Activity Planning Search Strategies
The order we search for actions matters a lot . . .

– Forward search – start at beginning;
‘simulate’ forward, with all states grounded.

• Heuristic Forward Search* (Enforced Hill Climbing)

– Goal-regression search – start with goals; ask
“what actions are needed to achieve each goal?”

– Constraint Satisfaction – encode as constraint
problem; solver exploits tightest constraints.

* Very popular right now.

172/22/2016 Activity Planning

Forward Search

Initial
State
(so)

action1

action2

action3

s1
0

s1
1

s1
2

goal

action3

action2

action3

… action4

Time

s2
0

s2
1

s2
2

182/22/2016 Activity Planning

Goal-Regression Search

Initial
State
(so)

action2

goal

action3

action3

… action4

Time

St
1

action2

action1

St
2

St
0

action2

192/22/2016 Activity Planning

Outline

• Programming on State with Activity Planning
• Classic Planning Problem
• Planning as Heuristic Forward Search (Fast Forward Planner)

– Enforced Hill Climbing Search
– Fast Forward Heuristic

• Planning with Time (Crikey 3 Planner)

– Temporal Planning Problem
– Temporal Relaxed Plan Graph

202/22/2016 Activity Planning

Enforced Hill-Climbing Search
(i.e., greedy with-out backup)

Start with the initial state.
If the state is not the goal:
1. Identify applicable actions.
2. Obtain heuristic estimate of the value of

the next state for each action considered.
3. Select action that transitions to a state with
 better heuristic value than the current state.
4. Move to the better state.
5. Append action to plan head and repeat.
(Never backtrack over any choice.)

s, h(s)
Time Used by FF (Hoffmann, IJCAI, 2000) , FastDownward (Helmert, JAIR, 2006) and many others.

Legend:

2

Basic Enforced Hill-Climbing Algorithm

212/22/2016 Activity Planning

Enforced Hill-Climbing Search
(i.e., greedy with-out backup)

Start with the initial state.
If the state is not the goal:
1. Identify applicable actions.
2. Obtain heuristic estimate of the value of

the next state for each action considered.
3. Select action that transitions to a state with
 better heuristic value than the current state.
4. Move to the better state.
5. Append action to plan head and repeat.
(Never backtrack over any choice.)

s, h(s)
Time Used by FF (Hoffmann, IJCAI, 2000) , FastDownward (Helmert, JAIR, 2006) and many others.

Legend:

2
a1

a2

a3

…

Basic Enforced Hill-Climbing Algorithm

222/22/2016 Activity Planning

Enforced Hill-Climbing Search
(i.e., greedy with-out backup)

Start with the initial state.
If the state is not the goal:
1. Identify applicable actions.
2. Obtain heuristic estimate of the value of

the next state for each action considered.
3. Select action that transitions to a state with
 better heuristic value than the current state.
4. Move to the better state.
5. Append action to plan head and repeat.
(Never backtrack over any choice.)

s, h(s)
Time Used by FF (Hoffmann, IJCAI, 2000) , FastDownward (Helmert, JAIR, 2006) and many others.

Legend:
…

2 1
2

3
a1

a2

a3

…

Basic Enforced Hill-Climbing Algorithm

232/22/2016 Activity Planning

Enforced Hill-Climbing Search
(i.e., greedy with-out backup)

Start with the initial state.
If the state is not the goal:
1. Identify applicable actions.
2. Obtain heuristic estimate of the value of

the next state for each action considered.
3. Select action that transitions to a state with
 better heuristic value than the current state.
4. Move to the better state.
5. Append action to plan head and repeat.
(Never backtrack over any choice.)

s, h(s)
Time Used by FF (Hoffmann, IJCAI, 2000) , FastDownward (Helmert, JAIR, 2006) and many others.

Legend:
…

2 1
2

3
a1

a2

a3

…

Basic Enforced Hill-Climbing Algorithm

242/22/2016 Activity Planning

Enforced Hill-Climbing Search
(i.e., greedy with-out backup)

Start with the initial state.
If the state is not the goal:
1. Identify applicable actions.
2. Obtain heuristic estimate of the value of

the next state for each action considered.
3. Select action that transitions to a state with
 better heuristic value than the current state.
4. Move to the better state.
5. Append action to plan head and repeat.
(Never backtrack over any choice.)

s, h(s)
Time Used by FF (Hoffmann, IJCAI, 2000) , FastDownward (Helmert, JAIR, 2006) and many others.

Legend:
…

2 1
2

3
a1

a2

a3

…

Basic Enforced Hill-Climbing Algorithm

252/22/2016 Activity Planning

Enforced Hill-Climbing Search
(i.e., greedy with-out backup)

Start with the initial state.
If the state is not the goal:
1. Identify applicable actions.
2. Obtain heuristic estimate of the value of

the next state for each action considered.
3. Select action that transitions to a state with
 better heuristic value than the current state.
4. Move to the better state.
5. Append action to plan head and repeat.
(Never backtrack over any choice.)

s, h(s)
Time Used by FF (Hoffmann, IJCAI, 2000) , FastDownward (Helmert, JAIR, 2006) and many others.

Legend:
…

2 1
2

3
a1

a2

a3

…

Basic Enforced Hill-Climbing Algorithm

…

2
0

a5

a6

…

262/22/2016 Activity Planning

Enforced Hill-Climbing Search
(i.e., greedy with-out backup)

Start with the initial state.
If the state is not the goal:
1. Identify applicable actions.
2. Obtain heuristic estimate of the value of

the next state for each action considered.
3. Select action that transitions to a state with
 better heuristic value than the current state.
4. Move to the better state.
5. Append action to plan head and repeat.
(Never backtrack over any choice.)

s, h(s)
Time Used by FF (Hoffmann, IJCAI, 2000) , FastDownward (Helmert, JAIR, 2006) and many others.

Legend:

…
…

2 1
2

2

3
0

a1

a2

a3

…

a5

a6

…

Basic Enforced Hill-Climbing Algorithm

Resulting Plan: {a2, a6}

Done!

Search finishes when the
current state contains the
goal. The actions along the
path form the plan.

272/22/2016 Activity Planning

Enforced Hill-Climbing (EHC) Pseudo Code

open_list = [initial_state];
best_heuristic = heuristic value of initial_state;
while open_list not empty do

current_state = pop state from head of open_list;
successors = the list of states reachable from current_state;
while successors is not empty do

next_state = remove a state from successors;
h = heuristic value of next_state;
if next_state is a goal state then

return next_state;
end if
if h better than best_heuristic then

clear successors;
clear open_list;
best_heuristic = h;

end if
place next_state at back of open_list;

end while
end while
Recover Plan (i.e. by using and walking backwards over parent pointers)

The basic Enforced Hill-Climbing algorithm, shown before,
is conceptually easy to understand but hides interesting details.

If there are no successor states
with better heuristic value, EHC
expands the current state in a
breadth first manner.

EHC uses a queue
to remember
states to expand.

The queue is cleared when a
better state is found,
effectively enforcing the
search to only consider the
successors of the best state.

282/22/2016 Activity Planning

Planning as Enforced Hill-Climbing (cont.)
• Success depends on an informative heuristic.

– Fast Forward uses Delete-Relaxation heuristic, which is informative
for a large class of bench mark planning domains.

• Strategy is suboptimal.
– Heuristic may over estimate.

• Strategy is incomplete.
– Never backtracking means some parts of the

search space are lost.

• If Enforced Hill-Climbing fails (ends without reaching a goal state),
the Fast Forward planner switches to best-first search.
– (e. g., Greedy search with Backup or A* search).

292/22/2016 Activity Planning

Where does this Heuristic come from?

• Numerous heuristics have emerged over 15 years.

• Many heuristics solve an easier, relaxed, problem by:

– Ignoring information or constraints.
– Being optimistic.

• The FF heuristic applies the previous fastest
planner, Graph Plan, to a relaxed problem.

302/22/2016 Activity Planning

Fast Forward Heuristic, hff(s)
• Observation:

– Actions complicate planning by “deleting” the progress made by other actions.
– If actions can never undo effects, planning is simple.

• Idea: Delete Relaxation

– Ignore “delete” effects of actions.
– Generate simplified plan using relaxed actions.
– The heuristic counts the actions in that simplified plan.

B. Nebel, The FF Planning System: Fast Plan Generation Through Heuristic Search, in: Journal of Artificial
Intelligence Research, Volume 14, 2001, Pages 253 - 302.

• Example: The Farmer, Fox Goose and grain
• A farmer must use a boat to move a fox, goose, and bag of grain across a river

two-at-a-time.
• If left alone, the fox will eat the goose and the goose will eat the bag of grain.
• What is the plan?

• For the relaxed heuristic: ignore eating each other.

312/22/2016 Activity Planning

Simple Planning Problem

c2

c1 Paris

Action Preconditions Add Effects Delete Effects

Load(b, t, c) BoxIn(b, c), TruckIn(t, c) BoxOn(b, t) BoxIn(b, c)

Unload(b, t, c) BoxOn(b, t), TruckIn(t, c) BoxIn(b, c) BoxOn(b, t)

Drive(t, c, c’) TruckIn(t, c) TruckIn(t, c’) TruckIn(t, c)

Actions:

32

Simple Planning Problem
Problem: “Get the box to Paris”

Atom Value

BoxIn(b, c1) True

BoxIn(b, c2) False

BoxIn(b, Paris) False

BoxOn(b, t) True

TruckIn(t, c1) False

TruckIn(t, c2) True

TruckIn(t, Paris) False

Atom Value

BoxIn(b, c1) *

BoxIn(b, c2) *

BoxIn(b, Paris) True

BoxOn(b, t) *

TruckIn(t, c1) *

TruckIn(t, c2) *

TruckIn(t, Paris) *

* Indicates unassigned (don’t care)

c2

c1 Paris

Initial: Goal:

332/22/2016 Activity Planning

Getting to Paris the Correct Way

Action Preconditions Add Effects Delete Effects

Load(b, t, c) BoxIn(b, c), TruckIn(t, c) BoxOn(b, t) BoxIn(b, c)

Unload(b, t, c) BoxOn(b, t), TruckIn(t, c) BoxIn(b, c) BoxOn(b, t)

Drive(t, c, c’) TruckIn(t, c) TruckIn(t, c’) TruckIn(t, c)

Original Actions:

BoxIn(b, c1)
TruckIn(t, c2)

BoxIn(b, c1)
TruckIn(t, c1)

BoxOn(b, t)
TruckIn(t, c1)

BoxIn(b, Paris)
TruckIn(t, Paris)

Drive(t, c2, c1) Load(b, t, c1) Drive(t,c1,Paris)

BoxOn(b, t)
TruckIn(t, Paris)

Unload(b, t, Paris)

Initial: Goal:

c1

c2

Paris c1

c2

Paris c1

c2

Paris c1

c2

Paris c1

c2

Paris

342/22/2016 Activity Planning

Getting to Paris the Relaxed Way
Simple Idea: Ignore Delete Effects

Action Preconditions Add Effects Delete Effects

Load(b, t, c) BoxIn(b, c), TruckIn(t, c) BoxOn(b, t) BoxIn(b, c)

Unload(b, t, c) BoxOn(b, t), TruckIn(t, c) BoxIn(b, c) BoxOn(b, t)

Drive(t, c, c’) TruckIn(t, c) TruckIn(t, c’) TruckIn(t, c)

Relaxed Actions:

BoxIn(b, c1)
TruckIn(t, c2)

BoxIn(b, c1)
TruckIn(t, c1)
TruckIn(t, c2)

BoxIn(b, c1)
BoxOn(b, t)

TruckIn(t, c1)
TruckIn(t, c2)

BoxIn(b, c1)
BoxOn(b, t)

BoxIn(b,Paris)
TruckIn(t, c1)
TruckIn(t, c2)

TruckIn(t,Paris)

Drive(t, c2, c1) Load(b, t, c1) Drive(t,c1,Paris)

BoxIn(b, c1)
BoxOn(b, t)

TruckIn(t, c1)
TruckIn(t, c2)

TruckIn(t,Paris)

Unload(b, t, Paris)

Initial: Goal:

c1

c2

Paris c1

c2

Paris c1

c2

Paris c1

c2

Paris c1

c2

Paris

352/22/2016 Activity Planning

The Fast Forward Heuristic, in Practice
Enforced Hill Climbing: searches for the correct plan…

BoxIn(b, c1)
TruckIn(t, c2) BoxIn(b,Paris)

Initial: Goal:

For each possible next state,

while the Fast Forward Heuristic:
searches for the relaxed plan…

…

BoxIn(b, c1)
TruckIn(t, c1) Drive(t, c2, c1)

BoxIn(b, c1)
TruckIn(t, Paris)

Drive(t, c2, Paris)

?

?

362/22/2016 Activity Planning

The Fast Forward Heuristic, in Practice
Enforced Hill Climbing searches for the correct plan…

BoxIn(b, c1)
TruckIn(t, c2) BoxIn(b,Paris)

Initial: Goal:

For each possible next state,

while the Fast Forward Heuristic
searches for the relaxed plan…

…

BoxIn(b, c1)
TruckIn(t, c1) Drive(t, c2, c1)

BoxIn(b, c1)
TruckIn(t, Paris)

Drive(t, c2, Paris)

?

?

BoxIn(b, c1)
TruckIn(t, c1)

BoxIn(b,Paris)

How do we efficiently find this relaxed plan?
Solution: Use a Relaxed Plan Graph

372/22/2016 Activity Planning

1. Create Relaxed Plan Graph
that Encodes All Plans

2/22/2016 Activity Planning

BoxIn(b, c1)

TruckIn(t, c1)

38

Fact 1

Write down
initial facts

Write down
initial facts

1. Create Relaxed Plan Graph
that Encodes All Plans

BoxIn(b, c1)

TruckIn(t, c1)

Noop

Load(b, t, c1)

Noop

Drive(t, c1, c2)

Drive(t, c1, Paris)

Fact 1 Action 1

Write down all
actions we can take

392/22/2016 Activity Planning

Write down
initial facts

1. Create Relaxed Plan Graph
that Encodes All Plans

Write down all
actions we can take

BoxIn(b, c1)

TruckIn(t, c1)

Noop

Load(b, t, c1)

Noop

Drive(t, c1, c2)

Drive(t, c1, Paris)

BoxIn(b, c1)

BoxOn(b, t)

TruckIn(t, c1)

TruckIn(t, c2)

TruckIn(t, Paris)

Fact 1 Action 1

Fact 2 Fact 3 Action 2

Write down all
facts that follow

402/22/2016 Activity Planning

Repeat until all
goals appear.

1. Create Relaxed Plan Graph
that Encodes All Plans

…
For clarity, no-ops are not explicitly shown in the activity layer, but the facts are carried forward from one layer to the next.

BoxIn(b, c1)

TruckIn(t, c1)

Noop

Load(b, t, c1)

Noop

Drive(t, c1, c2)

Drive(t, c1, Paris)

BoxIn(b, c1)

BoxOn(b, t)

TruckIn(t, c1)

TruckIn(t, c2)

TruckIn(t, Paris)

Fact 1 Action 1

BoxIn(b, c1)

BoxIn(b, c2)

BoxIn(b, Paris)

BoxOn(b, t)

TruckIn(t, c1)

TruckIn(t, c2)

TruckIn(t, Paris)

Load(b, t, c1)

Unload(b, t, c1)

Unload(b, t, c2)

Unload(b, t, Paris)

Drive(t, c1, c2)

Drive(t, c1, Paris)

…

Fact 2 Fact 3 Action 2

Write down
initial facts

Write down all
actions we can take

Write down all
facts that follow

412/22/2016 Activity Planning

2. Extract Relaxed Plan

Find the set of actions for the relaxed plan by searching backward in the planning graph.

BoxIn(b, c1)

TruckIn(t, c1)

Noop

Load(b, t, c1)

Noop

Drive(t, c1, c2)

Drive(t, c1, Paris)

BoxIn(b, c1)

BoxOn(b, t)

TruckIn(t, c1)

TruckIn(t, c2)

TruckIn(t, Paris)

Fact 1 Action 1

BoxIn(b, c1)

BoxIn(b, c2)

BoxIn(b, Paris)

BoxOn(b, t)

TruckIn(t, c1)

TruckIn(t, c2)

TruckIn(t, Paris)

Load(b, t, c1)

Unload(b, t, c1)

Unload(b, t, c2)

Unload(b, t, Paris)

Drive(t, c1, c2)

Drive(t, c1, Paris)

…

Fact 2 Fact 3 Action 2

Recursively select actions
that achieve goals

422/22/2016 Activity Planning

Fast Forward Heuristic
Simple Idea: Search, while maintaining a relaxed plan graph (ignore delete effects),

hff(s) = the number of actions in the relaxed plan until the goal first appears.

BoxIn(b, c1)
TruckIn(t, c2)

BoxIn(b, c1)
TruckIn(t, c1)

BoxIn(b,Paris)

Initial: Goal:

Relaxed Plan Graph:

Drive(t, c2, c1)

BoxIn(b, c1)
TruckIn(t, c1)

Load(b, t, c1)

Drive(t, c1, c2)

Drive(t, c1, Paris)

BoxIn(b, c1)
BoxOn(b, t)

TruckIn(t, c1)
TruckIn(t, c2)
TruckIn(t, Paris)

BoxIn(b, c1)
BoxIn(b, c2)
BoxIn(b, Paris)
BoxOn(b, t)

TruckIn(t, c1)
TruckIn(t, c2)
TruckIn(t, Paris)

…

hff(s)=?

Load(b, t, c1)

Drive(t, c2, c1)

Drive(t, c2, Paris)
Drive(t, c1, c2)

Drive(t, Paris, c2)
Drive(t, c1, Paris)
Drive(t, Paris, c1)

Unload(b, t, c1)
Unload(b, t, c2)
Unload(b, t, Paris)

3

BoxIn(b, c1)
TruckIn(t, Paris)

Drive(t, c2, Paris) hff(s)=?

432/22/2016 Activity Planning

Fast Forward Heuristic
Simple Idea: Search, while maintaining a relaxed plan graph (ignore delete effects),

hff(s) = the number of actions in the relaxed plan until the goal first appears.

Relaxed Plan Graph:

BoxIn(b, c1)
TruckIn(t, c2)

BoxIn(b, c1)
TruckIn(t, c1)

BoxIn(b,Paris)

Initial: Goal:
Drive(t, c2, c1)

BoxIn(b, c1)
TruckIn(t, Paris)

Drive(t, c2, Paris)
…

hff(s)= 3

hff(s)=?

BoxIn(b, c1)
TruckIn(t, Paris)

Drive(t, Paris, c2)
Drive(t, Paris, c1)

BoxIn(b, c1)
TruckIn(t, c1)
TruckIn(t, c2)

TruckIn(t, Paris)

BoxIn(b, c1)
BoxOn(b, t)

TruckIn(t, c1)
TruckIn(t, c2)
TruckIn(t, Paris)

BoxIn(b, c1)
BoxIn(b, c2)

BoxIn(b, Paris)
BoxOn(b, t)

TruckIn(t, c1)
TruckIn(t, c2)

TruckIn(t, Paris)

Load(b, t, c1)

Drive(t, c2, c1)

Drive(t, c2, Paris)
Drive(t, c1, c2)

Drive(t, Paris, c2)
Drive(t, c1, Paris)
Drive(t, Paris, c1)

Unload(b, t, c1)
Unload(b, t, c2)

Unload(b, t, Paris)

Load(b, t, c1)

Drive(t, c2, c1)

Drive(t, c2, Paris)
Drive(t, c1, c2)

Drive(t, Paris, c2)
Drive(t, c1, Paris)
Drive(t, Paris, c1)

Unload(b, t, c1)
Unload(b, t, c2)

Unload(b, t, Paris)

3

In this simple example, both actions appear equally good.
442/22/2016 Activity Planning

Fast Forward Heuristic Summary

• Solve a simpler planning problem to aid the
harder planning problem.

• # of actions in the relaxed plan found in a relaxed
planning graph is the heuristic.

• Ignoring constraints makes it fast.

• Extendable beyond classical domains
– Enhance plan graph with more constraint propagation
– Similar extensions exist for temporal problems

45

Real-World Planning Problems

• Classical – discretized world, finite domains, single agent of change.
• Numeric – domain allows continuous values

 x, y position
• Temporal – actions take time, goals can have deadlines

 walking will take 5-10 minutes, I need to be there in 1 hour.
• Resources – a quantity that can be consumed or regulated (type of numeric domain)

 fuel, battery, CPU usage
• Optimality – do we minimize or maximize a particular value

 number of actions, time spent, fuel used, utility
• Preferences – express soft goals, preferred actions, or action ordering.
 “I would like to visit my friends on the way to grandmothers house.”
• Stochastic – actions can have uncertain effects, uncertain durations.

 driving will have a 99% of success of reaching your destination, but a 1% chance of an accident.
• Multi-agent – planning for multiple coordinating agents, or against an adversary.

 multiple UAVs, or planning against cyber-attack.

Simple (classic) planning is hard!
but, still lacks many real-world features …

462/22/2016 Activity Planning

Outline

• Programming on State with Activity Planning
• Classic Planning Problem
• Planning as Heuristic Forward Search (Fast Forward Planner)

– Enforced Hill Climbing
– Fast Forward Heuristic

• Planning with Time (Crikey 3 Planner)

– Temporal Planning Problem
– Temporal Relaxed Plan Graph

472/22/2016 Activity Planning

Classical [, Instantaneous] Action

Instantaneous Action, IA = C,A,D
Precondition, C
Effects:
• Add Effect, A
• Delete Effect, D

Time

IA

Add Effect
Delete Effect

Precondition

Time is discretized into “layers”, an action applies
instantaneously at a particular layer index.

Layer 0

482/22/2016 Activity Planning

PDDL Durative Action
Duration: [lb, ub]
Conditions:
• At Start Condition, CS
• Overall Condition, CO
• At End Condition, CE

Time

At End Delete Effect
At End Add Effect

At Start Condition

Overall Condition

At End Condition

At Start Delete Effect
At Start Add Effect

Effects:
• At Start Add Effect, AS
• At Start Delete Effect, DS
• At End Add Effect, AE
• At End Delete Effect, DE

tstart tend
lb ≤ tend – tstart ≤ ub

A Durative Action consists of:
• two instantaneous (aka “snap”) actions, and
• a condition that must hold during its execution,
but must be applied atomically (all or nothing).

Durative Action, DA= CS,CO,CE,AS,AE,DS,DE, 𝒍𝒍,𝒖𝒍

492/22/2016 Activity Planning

Temporal Planning

Combination of Planning & Scheduling

• Planning – Deciding what to do.

• Scheduling – Deciding when to do it.

502/22/2016 Activity Planning

Strategies for Planning with
Durative Actions

• Compression
• Convert the Durative Action to Instantaneous Actions

• 𝐶 = 𝐶𝑆 ∪ 𝐶𝐸 ∪ 𝐶𝑂 \𝐴𝑆 - union of conditions
• 𝐴 = 𝐴𝑆\𝐷𝐸 ∪ 𝐴𝐸 - union of add effects
• 𝐷 = 𝐷𝑆\𝐴𝐸 ∪ 𝐷𝐸 - union of delete effects

• Plan using classical planner, expand and schedule at the end.
• Pro: Allows the use of classical planners
• Cons: Not as expressive

• Snap Actions
• Convert the Durative Action to two Instantaneous Actions
• Modify the Search the Enforce the Duration and Overall Condition
• Pro: Builds on planning strategies developed for classical planners.
• Cons: doubled number of actions

• Automata
• We’ll talk about this next week.

Note: There are many approaches and variations on those listed.

Crikey3 [Coles et al.]

512/22/2016 Activity Planning

Complications in Temporal Planning:
Required Concurrency

Case 1. Action[s] Must Contain Another:

Required Concurrency – a property of the temporal planning problem, when
 two actions must temporally overlap in any working plan.
Therefore: Conditions/Effects must be considered at the same time as Duration.

Operate Mine
AS=Mine Open DE= ¬Mine Open

Dig
CO=Mine Open

Case 2. “Deadlines” force Actions to co-occur:

Time

Player1 Act1 Player1 Act2 Player1 Act3

Player2 Act1 Player2 Act2

Amazing Race
DE= ¬RaceIsOn

Initial State:
RaceIsOn

522/22/2016 Activity Planning

State Space of Crikey 3

A Coles, M Fox, D Long, A Smith. Planning with Problems Requiring Temporal Coordination.

Classical Planner State = Set of Facts

Crikey3 State = 𝐹,𝐸,𝑇
• F – Set of Facts
• E – Set of Start Events in the form 𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑆, 𝑖,𝑚𝑖𝑚,𝑚𝑆𝑚

• the action that has started
• index indicating the ordering of events, and
• the duration of the original durative action.

• T – Set of Temporal Constraints (A Simple Temporal Network)

532/22/2016 Activity Planning

Recall: Enforced Hill-Climbing Search

Start with the initial state.
If the state is not the goal:
1. Identify applicable actions.
2. Obtain heuristic estimate of the value of

the next state for each action considered.
3. Select action that transitions to a state with
 better heuristic value than the current state.
4. Move to the better state.
5. Append action to plan head and repeat.
(Never backtrack over any choice.)

Basic Enforced Hill-Climbing Algorithm
Formally, we call this a
“successor” function.

Crikey 3 uses the same basic Enforced Hill-Climbing algorithm,
but with a more complex “successor” function than what we’ve seen so far.

542/22/2016 Activity Planning

Crikey 3’s Successor Function
Big Ideas

Input: Current State, S = 𝐹,𝐸,𝑇
Output: Set of Successor States, S’ = 𝐹𝐹,𝐸𝐹,𝑇𝐹

Recall: Crikey splits a durative action into two “snap” [instantaneous] actions:
a start action and an end action.

The successor states can be found by applying all applicable start actions and end
actions to the current state. (As in the classical case, this involves checking
whether the preconditions of the snap action exist in F, and then applying its
effects to create the successor F’, but there is also some bookkeeping for E and T)
• Applying the start action is trivial.
• Applying an end action is more complicated. We must make sure the

corresponding start action has already been executed, the durative action
from which the end action was created has an overall condition that is
consistent with all other actions being executed, and the temporal constraints
are consistent.

552/22/2016 Activity Planning

Crikey 3’s Successor Function
Input: Current State, S = 𝐹,𝐸,𝑇
Output: Set of Successor States, S’ = 𝐹𝐹,𝐸𝐹,𝑇𝐹

• For each start action that could be applied to S, create S’ s.t.

• F’ = add/delete effects of start action from F.
• E’ = E ∪ 𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑆, 𝑖,𝑚𝑖𝑚,𝑚𝑆𝑚 .

• For each end action that could be applied to S
• For each start action event, e ∈ 𝐸, that the end action closes,

create S’ s.t.
• F’ = add/delete effects of end action from F.
• E’ = E \ e
• T’ = T ∪ (e.min ≤ time(EndAct) – time(e.i) ≤ e.max)

• Include S’ in the successor states if:
• the overall condition of action is consistent with the

started actions in E,
• T’ is temporally consistent

 562/22/2016 Activity Planning

Temporal Relaxed Planning Graph (TRPG)
Big Ideas

Input: Current State, S = 𝐹,𝐸,𝑇
Output: R = a relaxed planning graph

In the Classical Plan Graph: fact and action layers are indexed by integers.
In the TRPG: layers are indexed by “real” time, starting with

the current state S at t=0.

We still build the plan graph in a “forward” in time, but how do we know
when we should add a new pair of fact and action layers?
• Look at the lower-bound times of all started actions. Add a layer when the

earliest action could end.
• If the earliest end time is 0, advance time by some small amount of time,

ɛ, just to make sure layers don’t overlap.

572/22/2016 Activity Planning

Temporal Relaxed Planning Graph (TRPG)
Note: We will keep track of:
• A fact “layer”, indexed by continuous time, start with facts F.
• current time index, starts at 0
• The earliest time an action can end for each start action event in E.

Build the TRPG
Input: Current State, S = 𝐹,𝐸,𝑇
Output: R = a relaxed planning graph
• For each possible action.

• If the action has started in E, set its earliest end to 0.
• Else set it to infinity.

• While t < inf
• Create a new fact layer indexed at t + ɛ, with all the facts of the previous

layer.
• Add effects of all end actions whose preconditions are met to the fact layer.
• Add effects of all start actions whose preconditions are met to the fact layer,

and update the earliest end time of any new actions.
• If the fact layer has more facts, increment by t by ɛ

• Otherwise, if all start actions have ended by now, return all fact layers.
• If there are still start actions running, t = earliest of the end times.

 582/22/2016 Activity Planning

Questions?

592/22/2016 Activity Planning

Appendix

602/22/2016 Activity Planning

Children (hopefully) not considered

Children considered immediately

Fast Forward Heuristic – Details
Limiting Children Evaluation

• Nodes typically
have many children

• h(s) might be slow
to compute

• h(s) may suggest
“helpful” children
to try first

61

Fast Forward Heuristic – Details
Helpful Actions

BoxIn(b, c1)
TruckIn(t, c2)

BoxIn(b, c1)
TruckIn(t, c1)

BoxIn(t,Paris)

Initial: Goal:
Drive(t, c2, c1)

BoxIn(b, c1)
TruckIn(t, c2)

Drive(t, c2, c1)
BoxIn(b, c1)

TruckIn(t, c1)
TruckIn(t, c2)

Load(b, t, c1)
Drive(t, c2, c1)

Drive(t, c2, Paris)
Drive(t, c1, c2)

Drive(t, c1, Paris)

BoxIn(b, c1)
BoxIn(b, t)

TruckIn(t, c1)
TruckIn(t, c2)
TruckIn(t, Paris)

BoxIn(b, c1)
BoxIn(b, c2)
BoxIn(b, Paris)
BoxIn(b, t)

TruckIn(t, c1)
TruckIn(t, c2)
TruckIn(t, Paris)

Load(b, t, c1)

Drive(t, c2, c1)

Drive(t, c2, Paris)
Drive(t, c1, c2)

Drive(t, Paris, c2)
Drive(t, c1, Paris)
Drive(t, Paris, c1)

Unload(b, t, c1)

BoxIn(b, c1)
TruckIn(b, Paris)

Drive(t, c2, Paris) 3 …

Load(b, t, c1)

Problem: Evaluating the heuristic for all possible actions takes time!
Solution: Start with actions on the helpful actions list, before evaluating the
rest.

Drive(t,c1,c2)

Drive(t,c1,Paris)

If we select this action, the next layer of actions in the
relaxed plan graph are the associated helpful actions.

Drive(t,c2,Paris)

Unload(b, t, c2)
Unload(b, t, Paris)

62

Building the Helpful Action List

Possible Action State h(s) Relaxed Plan

A1 s1 h(s1) = 4 {A'1}, {A'2, A'3}, {A'4}

A2 s2 h(s2) = 3 {A'5, A'6}, {A'7}

A3 s3 h(s3) = 4 {A'8, A'9}, {A'10}, {A'11}

Another Perspective….

Helpful Actions List A2 Minimizes h(s)

Possible Action State h(s) Relaxed Plan

A'5 s'1 h(s'1) = 2 {A''1, A''2}

A'6 s'2 h(s'2) = 3 {A''3} , {A''4}, {A''5}

Helpful Actions List A'5 Minimizes h(s)

Action layer 2

Action layer 1

63

Fast Forward Heuristic – Details
How to assert a negative goal?

• What if goal state requires no truck in Paris?
– Generate negative versions of each atom

State S'1

Atom Value

TruckIn(t, c1) False

TruckIn(t, c2) True

TruckIn(t, Paris) True

NoTruckIn(t, c1) True

NoTruckIn(t, c2) True

NoTruckIn(t, Paris) True

Relaxed
Drive'(t, c2, Paris)

State S'0

Atom Value

TruckIn(t, c1) False

TruckIn(t, c2) True

TruckIn(t, Paris) False

NoTruckIn(t, c1) True

NoTruckIn(t, c2) False

NoTruckIn(t, Paris) True

Action Preconditions Add Effect Delete Effect

Drive(t, c, c’) TruckIn(t, c) TruckIn(t, c’), NoTruckIn(t, c) TruckIn(t, c), NoTruckIn(t, c’)

Drive'(t, c, c’) TruckIn(t, c) TruckIn(t, c’), NoTruckIn(t, c) --

64

Planning Graph Intution

• A plan graph is a compact way of representing
the state-space.

• It collapses:
– all the states 1 operation (action) away from the

initial state into Fact Layer 2.
– all the states 2 operations away from the initial

state into Fact Layer 3.
– etc…

65 Reactive Planning

BoxIn(b, c1)

BoxIn(b, c2)

BoxIn(b, Paris)

BoxOn(b, t)

TruckIn(t, c1)

TruckIn(t, c2)

TruckIn(t, Paris)

…

Plan Extraction

BoxOn(b, t)

TruckIn(t, c1)

Unload(b, t, c1)

Drive(t, c1, c2)

Drive(t, c1, Paris)

BoxIn(b, c1)

BoxOn(b, t)

TruckIn(t, c1)

TruckIn(t, c2)

TruckIn(t, Paris)

Load(b, t, c1)

Unload(b, t, c1)

Unload(b, t, c2)

Unload(b, t, Paris)

Drive(t, c1, c2)

Drive(t, c1, Paris)

…

Fact 1 Fact 2 Fact 3 Action 1 Action 2

• Step 5: Adding “Mutexes” – We add some realism back by marking facts
and actions that could not possibly occur at the same time (mutual
exclusions)
– There are rules for how to compute mutexes, but they are not important for this lecture.

Mutexes: We can’t unload and drive at
the same time, so we mark these

actions as mutex. If some actions can’t
happen at the same time, some effects

also can’t appear at the same time. … 66

Plan Extraction

BoxOn(b, t)

TruckIn(t, c1)

Unload(b, t, c)

Drive(t, c1, c2)

Drive(t, c1, Paris)

BoxIn(b, c1)

BoxOn(b, t)

TruckIn(t, c1)

TruckIn(t, c2)

TruckIn(t, Paris)

Fact 1 Action 1

• Step 6: Search – Find a path from each goal to the initial state that is
free of mutexes in each layer
– i.e. two facts in the same “layer” can only be included in the plan if there is not a

mutex between them. The same goes for actions.
– Search can be done via DFS, by following back-pointers.

BoxIn(b, c1)

BoxIn(b, c2)

BoxIn(b, Paris)

BoxOn(b, t)

TruckIn(t, c1)

TruckIn(t, c2)

TruckIn(t, Paris)

…

Load(b, t, c1)

Unload(b, t, c1)

Unload(b, t, c2)

Unload(b, t, Paris)

Drive(t, c1, c2)

Drive(t, c1, Paris)

…

Fact 2 Fact 3 Action 2

Noop

67

Relaxed Planning Graph
Problem: Mutexes make plan extraction & generating action layers hard
What if…
• Remove the mutexes!
• Settle for suboptimal plan, instead of the optimal (shortest one).

BoxOn(b, t)

TruckIn(t, c1)

Unload(b, t, c)

Drive(t, c1, c2)

Drive(t, c1, Paris)

BoxIn(b, c1)

BoxOn(b, t)

TruckIn(t, c1)

TruckIn(t, c2)

TruckIn(t, Paris)

Fact 1 Action 1

BoxIn(b, c1)

BoxIn(b, c2)

BoxIn(b, Paris)

BoxOn(b, t)

TruckIn(t, c1)

TruckIn(t, c2)

TruckIn(t, Paris)

…

Load(b, t, c1)

Unload(b, t, c1)

Unload(b, t, c2)

Unload(b, t, Paris)

Drive(t, c1, c2)

Drive(t, c1, Paris)

…

Fact 2 Fact 3 Action 2

Noop

68

MIT OpenCourseWare
https://ocw.mit.edu

16.412J / 6.834J Cognitive Robotics
Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

	Creating Programs on State:�Through Activity Planning
	The Firefighting Scenario
	The Firefighting Scenario
	Traditional Solution:
	State-based Solution:
	Activity Planning
	Activity Planning Maps Desired States to Actions
	Outline
	Plan Representation
	“Classic” Representation (PDDL)
	“Classic” Planning Actions
	Automata Representation
	What is the difference between �Path and Activity Planning?
	Formulating Activity Planning as Search
	Activity Planning as Search
	How Hard is Activity Planning?
	Activity Planning Search Strategies
	Forward Search
	Goal-Regression Search
	Outline
	Enforced Hill-Climbing Search�(i.e., greedy with-out backup)
	Enforced Hill-Climbing Search�(i.e., greedy with-out backup)
	Enforced Hill-Climbing Search�(i.e., greedy with-out backup)
	Enforced Hill-Climbing Search�(i.e., greedy with-out backup)
	Enforced Hill-Climbing Search�(i.e., greedy with-out backup)
	Enforced Hill-Climbing Search�(i.e., greedy with-out backup)
	Enforced Hill-Climbing Search�(i.e., greedy with-out backup)
	Enforced Hill-Climbing (EHC) Pseudo Code
	Planning as Enforced Hill-Climbing (cont.)
	Where does this Heuristic come from?
	Fast Forward Heuristic, hff(s)
	Simple Planning Problem
	Simple Planning Problem
	Getting to Paris the Correct Way
	Getting to Paris the Relaxed Way
	The Fast Forward Heuristic, in Practice
	The Fast Forward Heuristic, in Practice
	1. Create Relaxed Plan Graph �that Encodes All Plans
	1. Create Relaxed Plan Graph �that Encodes All Plans
	1. Create Relaxed Plan Graph �that Encodes All Plans
	1. Create Relaxed Plan Graph �that Encodes All Plans
	2. Extract Relaxed Plan �
	Fast Forward Heuristic
	Fast Forward Heuristic
	Fast Forward Heuristic Summary
	Real-World Planning Problems
	Outline
	Classical [, Instantaneous] Action
	PDDL Durative Action
	Temporal Planning
	Strategies for Planning with �Durative Actions
	Complications in Temporal Planning: Required Concurrency
	State Space of Crikey 3
	Recall: Enforced Hill-Climbing Search
	Crikey 3’s Successor Function�Big Ideas
	Crikey 3’s Successor Function
	Slide Number 58
	Temporal Relaxed Planning Graph (TRPG)
	Questions?
	Appendix
	Fast Forward Heuristic – Details�Limiting Children Evaluation
	Fast Forward Heuristic – Details�Helpful Actions
	Building the Helpful Action List
	Fast Forward Heuristic – Details�How to assert a negative goal?
	Planning Graph Intution
	Plan Extraction
	Plan Extraction
	Relaxed Planning Graph

