
Planning with
Temporal Logic

April 25, 2016

1

2

• Consider a self-driving car…

Motivation

• Regardless of our destination, we also
want to make sure we always follow the
rules of the road.

3

Motivation

4

Motivation

Key Takeaways

• Modeling temporally-extended goals with
linear temporal logic (LTL)

• Modeling preferences between alternative
plans

5

Outline

• Introduction to Linear Temporal Logic
–Why use Linear Temporal Logic?
–Linear Temporal Logic Operators
–Example LTL Problems

• Applications to Planning

• Planning with Preferences
–Expressing Preferences
–Planning in LPP

6

Linear Temporal Logic

7

Temporal Logic

• Formalism for specifying properties of systems
that vary with time

8

Temporal Logic

• Systems proceed through a sequence of
discrete states

9

Why Temporal Logic?

10

•Previously our planning algorithms have used
propositional logic to specify goals dealing with a
single state at a single point in time

•Temporal logic allows these goals to be
specified over a sequence of states

10

Why Temporal Logic?

• What if the problem requires a condition to:

–Be met until another condition is met...
•For example: red implies (stop until green)

11

Why Temporal Logic?

• What if the problem requires a condition to:

–Always eventually be met
•For example, always have some point in
the future when you visit a gas station

12

Branching vs linear time

Temporal Logic

13

• Linear time
– Models physical time
– At each time instant, only one of the future

behaviors is considered
– We can reason about always

Branching vs linear time

Temporal Logic

14

• Branching time
– At each time instant, all possible future

behaviors are considered
– Time may split into alternate courses
– We can reason about possibilities

Branching vs linear time

Temporal Logic

15

• Branching time

• Linear time

Linear Temporal Logic

• Forward-looking conditions

16

• Linear Temporal Logic (LTL) involves:
• Linear time model
• Infinite sequences of states

• Cannot express properties over a set of different paths

16

Applications of Temporal Logic

•Temporal logic is used in:
–Verification and Model Checking

•Safety and Maintenance
–Planning

17

LTL Syntax

1. Propositional variables: p, ρ, ϕ, ω etc.–Can be True or False
2. Logical Operators: ¬, ∨, ∧, →, ↔, True, False

–¬ = not
–∨ = or
–∧ = and
–→ = implies
–↔ = if and only if
–True, False

An LTL formula is built from:

LTL formula f := true | pi | fi ∧ fj | ¬ fi | X fi | fi U fj

18

Logical Operator Examples

26

Logical Operators Example

true true

Logical Operators Example

p = true R = red light

19

Logical Operator Examples

27

Logical Operators Example

not, ¬ ¬ G = green light

Logical Operators Example

and, ∧ R ∧ B = gas station

^
20

Logical Operator Examples
Logical Operators Example

or, ∨ R ∨ G

21

Or (∨) can be rewritten with and (∧) and not (¬)
R ∨ G = ¬(¬R ∧ ¬G)

Similar process can be done for implies and iff, but
we won’t be explaining them due to time constraints

LTL Syntax

1. Propositional variables: p, ρ, ϕ, ω etc.–Can be True or False
2. Logical Operators: ¬, ∨, ∧, →, ↔, True, False

–¬ = not
–∨ = or
–∧ = and
–→ = implies
–↔ = if and only if
–True, False

3.Temporal Operators

22

An LTL formula is built from:

LTL formula f := true | pi | fi ∧ fj | ¬ fi | X fi | fi U fj

Temporal Operators

What are some useful operators we may want
to describe our car?

23

Temporal Operators

• The next light to be green

• The light will be red until it is green

• The light will eventually, at some point in the
future, turn green

24

Temporal Operators

• The light will always be red

• The light will be red until the car gets gas and
the state after it’s released, the light can be
whatever

25

^

Next

26

Operator Textual Operator

neXt Xρ

Definition: Variable ρ must be true in the next state

Until

27

Operator Textual Operator

Until ρUω

Definition: Variable ρ must remain true up until the
state where variable ω becomes true, at which point
ρ becomes unconstrained

Note that ω is required to become true in some future state

Future

28

Operator Textual Operator

Future/Eventually Fρ

Definition: Variable ρ must become true in some
future state

Global

29

Operator Textual Operator

Globally Gρ

Definition: Variable ρ must be true in all future
states

Release

30

Operator Textual Operator

Release ρRω

Definition: Variable ρ must be true up until and including the
state where ω becomes true, after which ω is unconstrained. If ρ
is not true in any future state, then ω is true in all future states

Different from U in that both ρ and ω are true in one state

Which describe the other?

31

≡ True U ρ
≡ ¬F¬ρ
≡ ¬(¬ρ U ¬ω)

Future/Eventually

Release

Globally

?

?

?

Which describe the other?

32

≡ True U ρ
≡ ¬F¬ρ
≡ ¬(¬ρ U ¬ω)

Future/Eventually

Release

Globally

Temporal Operators (Recap)

33

Operator Textual Operator

neXt Xρ

Until ρUω

Future/Eventually Fρ ≡ True U ρ

Globally Gρ ≡ ¬F¬ρ

Release ρRω ≡ ¬(¬ρ U ¬ω)

Combination of Operators

Infinitely Often

Eventually Forever

34

Example Problem

What are some true statements about this LTL
formation?

35

^

• XR
• FG
• RUG
• (RUG)∧(FG)∧(XR)

Expressing Temporal Logic in PDDL

PDDL3 Goal Description
<GD> ::= (at end <GD>)

| (always <GD>)

| (sometime <GD>)

| (within <num> <GD>)

| (at-most-once <GD>)

| (sometime-after <GD> <GD>)

| (sometime-before <GD> <GD>)

| (always-within <num> <GD> <GD>)

| (hold-during <num> <num> <GD> | …

36

Temporal Operators

37

Operator PDDL3

neXt Xρ (within 1 ρ)

Until ρUω (always-until ρ ω)

Future ρFω (sometime-after ρ ω)

Globally Gρ (always ρ)

Release ρRω (or

(always ω)
(always-until ω ρ))

(:goal (within 1 (turn red)))

•The traffic light will turn red in the next state

Expressing Temporal Logic in PDDL

38

Xr

t

Command Syntax
(within <num> <GD>)

(within <num> φ) would mean that φ must hold within
<num> happenings

t+1

Expressing Temporal Logic in PDDL

• The traffic light will be green until it turns red at
which point it will be red forever

(g U r) ∧ (r → Gr)

39

t0 ti+1t1 ti

...
gUr

ti+2 t∞

...

(:goal

(and

(always-until (turn green) (turn

red))

(implies (turn red) (always (turn red)))

))

Application to Planning

40

Büchi Automata

Büchi Automata - extension of finite automaton to
infinite inputs (words)

A Büchi automaton is 5-tuple <S, s0, T, F, Σ>
• S is a finite set of states

• s0 ∈ S is an initial state

• T ⊆ S × Σ → S is a transition relation

• F ⊆ S is a set of accepting states

• Σ is a finite set of symbols (‘alphabet’)

An infinite sequence of states is accepted iff it visits
the accepting state(s) infinitely often

41

Example Büchi Automata

Example: Model a clock

Accepted words:
TickTockTockTickTockTickTickTickTock...

TockTickTockTickTickTockTockTickTock...

42

Example Büchi Automata

43

Example: Model a clock

Accepted words:
TockTickTickTickTickTickTickTick...

Example Büchi Automata

44

Example: Model a clock

Accepted words:
TockTickTockTickTockTickTockTick...

LTL to Büchi Automata

s1s0

45

neXt?

Future/Eventually?

Globally?

LTL to Büchi Automata

46

Future - Fp ≡ True U p

Accepted word: ¬p ¬p ¬p p p ¬p …
Sequence of states: s0 s0 s0 s1 s1 s1...

Globally - Gp ≡ ¬F¬p

Accepted word: p p p p p….
Sequence of states: s0 s0 s0 s0 s0...

s1s0

s0 s1

LTL to Büchi Algorithm

47

Progression Algorithm

progress(f,N, Δt = 1) #Δt is time between successive states
if f contains no temporal qualities:

if N.curr entails f:
f’ = True

else
f’ = False

if f = f1 ∧ f2:
progress(f1, N, Δt) ∧ progress(f2, N, Δt)

if f = Xf1:
N.next.append(f1)

if f = f1 U[a,b] f2: #[a,b] is a time interval that could be infinite
if b < a:

f’ = False
else if 0 ∈ [a,b]:

progress(f2, N, Δt) ∨ (progress(f1,N, Δt) ∧ N.next.append(f1 U[a,b] - Δt

f))
else

progress(f1,N, Δt) ∧ N.next.append(f1 U[a,b] - Δt f)
48

Büchi Automata to PDDL2

Büchi states are not equivalent to PDDL2 states. Consider:

FutureGlobally - FGp

Two ways to transform temporally extended goals to PDDL2:
• Create new actions that encapsulate the allowable transitions

in each state
• Introduce derived predicates

– Do not depend on the actions
– Used to determine which state the planner is in
– Goal of the planner is to move from initial state to any

accepting state

49

Planning with Preferences

50

Preference Based Planning

Classical Planning Problem

problem := (S, s0 , A, G)
S - set of states s0 - initial state A - set of operators G - set of goal states

Preference-based Planning Problem

problem := (S, s0 , A, G, R)
R is a partial or total relation expressing preferences (≼)

between plans

Preferences express properties of the plan
that are desired but not required

51

Preference Expression Languages

• Quantitative - assign numeric values to plans to compare them
– Markov Decision Processes (MDP’s)

• Find preferred policy using a reward function over conditional plans

– PDDL3

• Preferences expressed through reward function based on satisfying/violating

logical formulas on the plan

• Qualitative - relations compare plans based on properties of the
plans that need not be numeric
– Ranked Knowledge Bases

• Plan properties are ranked with preferred formulas ranked higher

– Temporally Extended Preferences

• Use LTL to express plan properties that are then ranked

Quantitative languages imply total comparibility while qualitative

languages may allow incomparability

52

Expressing Preferences in PDDL3

Syntax for modeling preferences:
(preference [name] <GD>) - label for fluents that

represent preferences

is-violated - function that returns the number of times the
preference was not satisfied in the plan

Example:
Traffic light is green until it turns red
(preference gUr

(always-until(turn green) (turn

red)))

Plan tries to not violate any preferred fluents
(metric minimize (is-violated gUr))

53

LPP Language Overview

• LPP is a quantitative language to express
temporal preferences for planning

–Preferences between different temporal goals
can be expressed along with the strength of
preference

• i.e. Goal A is preferred twice as much as Goal B

• LPP is an extension of an older language PP
• Preference formulas in LPP are constructed

hierarchically

See Bienvenu, Meghyn, Christian Fritz, and Sheila A. McIlraith. "Planning with Qualitative Temporal
Preferences." KR 6 (2006): 134-144.

54

Constructing a Preference
Formula

Basic Desire Formula (BDFs)
express temporally extended propositions

• At some point, will cook
– b1=F(cook)

• At some point, will order takeout
– b2=F(orderTakeout)

• At some point, will eat spaghetti
– b3=F(eatSpaghetti)

• At some point, will eat pizza
– b4=F(eatPizza)

55

Constructing a Preference
Formula

Atomic Preference Formulas (APFs)
express preferences between BDFs

• In this example, weights associated with each
BDF define preferences

–Lower weight is preferred

• Prefer to cook over ordering takeout
– a1=b1[0.2]≫b2[0.4]

• Prefer eating spaghetti over eating pizza
– a2=b3[0.3]≫b4[0.9]

56

Constructing a Preference
Formula

General Preference Formulas (GPFs)
allow conjunctions or disjunctions of APFs or

qualification of BDFs with conditionals

•Satisfy the most preferred option among the
APFs (satisfy APF with lowest weight)

–g1=a1 | a2
• Choose the most preferred option that

satisfies both APFs (minimize the maximum
weight across both APFs)

–g2=a1 & a2

57

Constructing a Preference
Formula

Aggregated Preferences Formulas (APFs)
define the order in which preferences should be

relaxed

• Prefer that if both g1 and g2 from previous
slide can’t be met, that g2 from previous slide is
met

–g1 ∧ g2 ≼ g2 ≼ g1

•Situations that aren’t distinguished any other
way can be sorted lexicographically
(alphabetically)

58

LPP Formula Hierarchy Review

• Basic Desire Formula (BDF)
–Express temporally extended propositions

• Atomic Preference Formula (APF)
–Express preferences between BDFs

• General Preference Formula (GPF)
–Allow conjunctions or disjunctions of APFs or

qualification of BDFs with conditionals

• Aggregated Preference Formula (APF)
–Define the order in which preferences should be

relaxed

59

References
Gerevini, A., and D. Long. Plan constraints and preferences in PDDL3: The language of the fifth international

planning competition. University of Brescia. Italy, Tech. Rep, 2005.

Patrizini, Fabio, et al. "Computing infinite plans for LTL goals using a classical planner." Proceedings of the
Twenty-Second International Joint Conference on Artificial Intelligence; july 16-22, 2011; Barcelona. Menlo
Park, California: AAAI Press; 2011. p. 2003-2008.. Association for the Advancement of Artificial Intelligence
(AAAI), 2011.

Baier, Jorge A., and Sheila A. McIlraith. "Planning with Temporally Extended Goals Using Heuristic Search."
ICAPS. 2006.

Bacchus, Fahiem, and Froduald Kabanza. "Planning for temporally extended goals." Annals of Mathematics
and Artificial Intelligence 22.1-2 (1998): 5-27.

Baier, Jorge A., and Sheila A. McIlraith. "Planning with first-order temporally extended goals using heuristic
search." Proceedings of the National Conference on Artificial Intelligence. Vol. 21. No. 1. Menlo Park, CA;
Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2006.

Baier, Jorge A., and Sheila A. McIlraith. "Planning with preferences." AI Magazine 29.4 (2009): 25.

Bienvenu, Meghyn, Christian Fritz, and Sheila A. McIlraith. "Planning with Qualitative Temporal
Preferences." KR 6 (2006): 134-144.

Gerth, Rob, et al. "Simple on-the-fly automatic verification of linear temporal logic." Protocol Specification,
Testing and Verification XV. Springer US, 1996. 3-18.

60

Appendix

61

Solving Planning Problems with Preferences

• PPLAN
– implemented by Meghyn Bienvenu, Christian Fritz, and

Sheila A. McIlraith

• Solves planning problems with preferences
expressed in LPP via bounded best-first search
forward chaining planner
– use of progression efficiently evaluates how well partial

plans satisfy Φ (a general preference formula)
– use of admissible evaluation function ensures best-first

search is optimal

62

Quick Definitions

• Forward Chaining Planner - Forward chaining starts with
the available data and uses inference rules to extract
more data (from an end user, for example) until a goal
is reached.

• A situation s is a history of the primitive actions a ∈ A
performed from an initial situation S0.

63

https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Goal

Progression

• Purpose of progression:
– take in a situation and temporal logic formula (TLF)
– evaluates the TLF with respect to the state of the

situation
– generates a new formula representing those aspects

of the TLF that remain to be satisfied in subsequent
situations.

• Weight of general preference formula with respect to a
situation is equal to progressed preference formula with
respect to final situation

64

Evaluation Function

• Evaluation Function
– has optimistic and pessimistic weights to provide

best and worst weights on a successor with respect
to Φ.

– the optimistic weight is non-decreases and does not
over-estimate the actual weight

– this allows PPLAN to define an optimal search
algorithm

65

PPLAN Algorithm

optW = optimistic weight (Assumes all unfulfilled preferences
are fulfilled)

pessW = pessimistic weight (Assumes all unfulfilled
preferences are not fulfilled)

Algorithm
L = list of nodes sorted by optW, then pessW, then length

while L is not empty
Remove first node from L
If goal is achieved and optW = pessW

return partial plan, optW
Perform Progression
Add new nodes to L and sort

66

PPLAN

• PPLAN is implemented with a
–general preference formula fΦ they define is

admissible and when used in best first
search, the search is optimal

–the best first search searches through the
partial plans based on their weights

–for full details see paper "Planning with
Qualitative Temporal Preferences" by Fritz,
Christian, Sheila A. McIlraith, and Meghyn
Bienvenu.

67

Additional Examples were taken from
the youtube videos of NOC15 July-
Oct CS12 :
https://www.youtube.com/watch?v=W5Q0DL
9plns

68

https://www.youtube.com/channel/UCUXDMaaobCO1He1HBiFZnPQ
https://www.youtube.com/channel/UCUXDMaaobCO1He1HBiFZnPQ
https://www.youtube.com/watch?v=W5Q0DL9plns
https://www.youtube.com/watch?v=W5Q0DL9plns

Example Formulations
• Traffic light is red: r
• Traffic light is green: g

• The traffic light will turn red in the next state
– Xr

• The traffic light will be green until it turns red
but it may not ever turn red
– (g U r) ∨ Gg (Weak Until)

• The traffic light will be green until it turns red
at which point it will be red forever
– (g U r) ∧ (r → Gr)

69

Additional Examples

70

88
71

MIT OpenCourseWare
https://ocw.mit.edu

16.412J / 6.834J Cognitive Robotics
Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

