An Investigation of Space Suit Mobility with Applications to EVA Operations

> Patricia Schmidt Doctoral committee members: Prof. Dava Newman, Chair

Motivation

- Planning and rehearsal for extravehicular activity (EVA)
 - Physical simulation
 - ★ EVA human performance modeling
- Current models do not include space suit mobility

Overview

	Thesis Chapter
Background	1, 2
Methods and results	
Experiment	3
Modeling	4
Work envelope	5
Discussion	3-5
Conclusions	6

Background and Contributions

Space Suit Mobility Experiments	Space Suit Mobility Modeling	Model Applications	
Empty space suits •Dionne, 1991 •Abramov, 1994 •Menendez, 1994	Structural mechanics •Fay and Steele, 2000 •Main, Peterson, and Strauss, 1994 Comparison to experimental data	Space suit affects dynamic sim results •Rahn, 1997	
Human Subjects •Morgan et al., 1996	Descriptive Model •Rahn, 1997	ISS worksite analysis •Anderson, 1999	
Space suit mobility database	Mathematical model	Hagale and Price, 2000Dischinger, 2001	
		Work envelope analysis	

Experiment Methods

Goal: Joint torque and angle data in realistic human motions

Human testing

- 4 human test subjects
- 11 simple motions isolating individual degrees of freedom
- 9 complex motions:
 - Overhead reach
 - Cross-body reach
 - Low reach
 - Locomotion
 - Step up 15 cm (6 in)

Experiment Modeling	Work Envelope
---------------------	---------------

Experiment Methods

Robot testing

- Motion data from human subjects drives robot
- Torques at 11 joints recorded
- Space suit installed and pressurized to 4.3 psi
- Unsuited, to measure torque due to robot's weight
- Full speed and half speed, for best robot performance

|--|

Modeling Overview

Mathematical model

<u>Goal</u>: Numerically calculate torque needed to bend space suit joint, for any angle history.

Method

Preisach hysteresis model

•Coefficients fit to data for 5 joints

New error analysis method

Physics-based model

<u>Goal</u>: Understand physical processes that govern space suit joint mobility.

Gas compression vs elasticity

<u>Method</u> •Compare two approximate models of bonding inflatable

models of bending inflatable structures to experimental data. •Beam model (Main, Peterson and Strauss, 1995)

 Elasticity only
 Membrane model (Fay and Steele, 1999)

Gas compression only

Experiment	Modeling	Work Envelope
------------	----------	---------------

Preisach model overview

f(u)

β

+1

-1

α

u

- Weighted sum of simple hysteresis transducers
- Weighting coefficients μ(α,β) defined as function of switching thresholds α and β

Preisach model implementation

- To calculate output, want to know which transducers are up (+1) and which are down (-1)
- Draw boundary in α - β plane according to rules
 - segment moves up for increasing input
 - segment moves left for decreasing input
- Integrate coefficients in up region, subtract integral of coefficients in down region

$$f(u) = \iint_{u_p} \mu(\alpha, \beta) d\alpha d\beta - \iint_{down} \mu(\alpha, \beta) d\alpha d\beta$$

Preisach model implementation

Preisach model identification

- Find weighting coefficients from experimental data
- Since coefficients are integrated, find integral of coefficients over known area instead: X(α,β)
- Get integral over triangular region from output differences

Numerical implementation

Doong and Mayergoyz, 1985

- Find coefficient integrals for mesh of points in α - β plane
- Build staircase shapes from summing and differencing triangles

$$f(u) = X(\alpha_0, -\alpha_0) + \sum_{i=1}^n (-1)^{i+1} X(\alpha_i, \beta_i)$$

Error analysis

Output f(u) is sums and differences of triangle integrals

$$f(u) = X(\alpha_0, -\alpha_0) + \sum_{i=1}^{n} (-1)^{i+1} X(\alpha_i, \beta_i)$$

Sum variances of errors in $X(\alpha_i,\beta_i)$ values to obtain variance of error in output

$$\sigma_f^2 = \sum_{i=1}^n \sigma_{X(\alpha_i,\beta_i)}^2$$

Errors in X(α , β) depend on errors in experimental data

$$\sigma_{X(\alpha,\beta)}^{2} = 2\sigma_{T}^{2} + \sigma_{A}^{2} \left(\frac{\partial X(\alpha,\beta)}{\partial \alpha} + \frac{\partial X(\alpha,\beta)}{\partial \beta} \right)^{2}$$
Torque
$$\sigma_{f(u)}^{2} = 2n\sigma_{T}^{2} + \sigma_{A}^{2} \sum_{i=1}^{n} \left(\frac{\partial X(\alpha_{i},\beta_{i})}{\partial \alpha_{i}} + \frac{\partial X(\alpha_{i},\beta_{i})}{\partial \beta_{i}} \right)^{2}$$

Mathematical Model Results

Mathematical Model Results

Mathematical Model Results

Knee flexion

Physics-based Model

Physics-based Model Results

Work Envelope

Work Envelope: Volume in space in which a person can comfortably work

Computational inverse kinematics approach

- Reconfigurable for different individuals or populations
- Indicate areas to avoid
- ★ Determine good worksite locations

Work envelope criteria

- 1. Visibility
- 2. Joint torques required to hold position
- 3. Boundary shape

Experiment	Modeling	Work Envelope

Work Envelope Methods

- Eliminate non-visible areas (NSTS-07700)
- Inverse kinematics gives arm joint angles
 - Several arm configurations place the hand on target
- Calculate required torques from space suit model
- Difficulty metric
 - Choose "easiest" configuration
 - Indicates best worksite locations

$$M = \sum_{4 \text{ joints}} \frac{\text{Required torque}}{\text{Available Torque}}$$

- Evaluate torque limits: No joint may exceed specified percentage of maximum torque
- Blend 15% and 30% limits to set practical workspace boundaries

Experiment Modeling Work Envelope	Experiment	Modeling	Work Envelope

Work Envelope Results

NASA work envelope

Work Envelope Results

	<i>i</i>
Experiment Modeling Work Enve	lope

What affects work envelope size?

Experiment Modeling	Work Envelope
---------------------	---------------

Joint range of motion

Joint range of motion

|--|

Visibility

Experiment	Modeling	Work Envelope
-		

Discussion: Experiment

- Angles accurate to 2-5 degrees, torques accurate to 0.1 Nm
- Torque-angle data exhibits hysteresis
- Stiffness increases with increasing deflection--hardening
- Torque magnitudes greater than "empty-suit" studies
- Space suit mobility database is more extensive in number of joints and range of motion than other published data sets

Study	Dionne	Menendez	Abramov	Morgan et al.	Current study
Methods	EMU, empty suit	Prototype segments, empty	Orlan- DMA, 4.3 psi, empty	EMU, human subjects	EMU, human subjects and robot
Knee, 72 deg	3.2 Nm	NA	6.0 Nm	8.1 Nm	14.6±0.136 Nm
Elbow, 80 deg	2.0 Nm	2 Nm	2.2 Nm	3.4 Nm	3.74±0.0676 Nm

Discussion: Modeling

- Mathematical model
 - Hysteresis model agrees with data in human-generated motions for elbow flexion, knee flexion, and hip abduction
 - Proper choice of input angles in experiment is critical to fit quality
 - Hysteresis model is implementable in real time for dynamic simulation
- Physics-based model
 - > Gas compression vs. elastic deformations in space suit mobility
 - Membrane model agrees with data within 30-50 degrees of equilibrium angle
 - Beam model does not agree with experimental data
 - → Gas compression is dominant process for EMU space suit elbow and knee mobility

Physics-based Model Results

Discussion: Work Envelope

- Possible to predict large-scale human factors metric from joint torque-angle models
- Work envelope analysis method is easily reconfigurable for different anthropometrics and strengths
- Sensitivity analysis indicates
 - Improving shoulder mobility adds most volume to work envelope
 - Improving upward and downward visibility enlarges work envelope

Contributions

- Extensive space suit joint torque-angle database
- Real-time numerical predictions of torque needed to bend space suit joints for complicated angle histories
- Comparison of experimental data to approximate theoretical models indicates that gas compression is dominant process in space suit elbow and knee mobility
- Computational work envelope analysis
 - Reconfigurable for individuals of different sizes and strength
 - Indicates both desirable and undesirable areas for worksite placement

Future work

- Experiment
 - Space suit mobility
 - Contact forces between limbs and space suit
 - Space suit motions
 - Validation of computational work envelope predictions
 - Experimentation with space suit joint mockups
- Analysis
 - > EVA dynamic simulations should incorporate space suit models
 - > More sophisticated physics-based models, including joint design
- NASA EVA operability standards and requirements
 - Currently simple, low accuracy
 - Update to reflect current analytical techniques that can evaluate complicated requirements

backup slides

Experiment: Robot angle error

Motion capture error

Motion capture system tracks reflective markers on arm and leg

Accuracy depends on

- Marker spacing
- Number of markers visible

Assume that markers are located to 1 cm (1 diameter)

Joint angle error	standard	deviation	(dea)
			(- J/

Joint	8 markers	7 markers	6 markers	5 markers	4 markers
Elbow	3.7	4.2	4.6	5.0	5.3
Knee	2.8	3.3	3.5	3.8	4.0

Beam Model

- Main, Peterson, and Strauss, 1994
- Fabric wrinkles when compressed, then does not contribute to flexural rigidity
- Solve numerically for bending angle θ_0

- Substitute θ_0 into momentcurvature equation
- Assume cantilever boundary conditions, moment applied distance a from beam root

Membrane model

Fay and Steele, 2000

Energy minimized when

 Inextensibility and cylindrical shape provide enough information to specify bent tube shape and obtain V(\u00f3)

- Numerically integrate crosssectional area to get V(φ)
- Differentiate V(ϕ) to get M(ϕ)

Membrane model

Work Envelope: Visibility

NSTS-07700

Work Envelope: Torque Limits

Force developed in fractions of maximum force

Astrand, 1977

Chaffin, 1984

-23 deg < Humerus rotation < 160 deg NASA STD-3000

Work Envelope: Smoothing

Fewest vertices in contour

NASA work envelope

Work envelope volumes

