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PHYSIOLOGICAL FLUID MECHANICS


As a preliminary to the discussion of hemodynamics, we need to develop some basic fluid dy­
namic concepts. The discussions of this section pertain to fluid flow in general and are therefore 
useful in a much broader context than the more specific topics to be discussed in subsequent sec­
tions. For the sake of simplicity, however, some subtleties of fluid dynamics, which are of little 
practical import to blood flow, will be overlooked. Those wanting a somewhat more thorough 
presentation but still on an elementary level, should look in any basic text in fluid dynamics. 

1. Forces acting on a small element 

We first need to establish a convention in referring to forces of various types which may act on 
a fluid or solid element. If we isolate a small cubical element of some substance (as shown in 
Figure 1), we can distinguish three different types of forces. The first two act on the surfaces of the 
element, and are by convention termed the pressure force (associated with the direction normal 
to the surface) and a shear force (acting parallel to the surface). It is often more convenient to 
speak in terms of a force per unit surface area, termed the pressure ( p) and shear stress (t ) for 
the normal and tangential directions, respectively. In three dimensions, it is necessary to identify 
nine stress components in order to completely define the state-of-stress at a point in the fluid. 
These nine stress components comprise the stress tensor. We denote the various components of 
the stress tensor by ti j where i is the face of a small cubic fluid element on which the stress acts 
(the “direction” of a face is determined by a vector normal to the surface), and j is the direction in 
which the stress points. For example, tyx is a shear stress acting upon the y-face in the x -direction 
as shown in Figure 1. The third type of force is a body force which acts uniformly throughout the 
fluid and is usually expressed in terms of a force per unit volume. Gravity is the only body force 
we will consider. 
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Figure by MIT OCW. 

Figure 1: Forces acting on a small element. Pressure is normal to the surface, while shear stress is 
tangential. 
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2. The Properties of a Fluid 

We can distinguish between a solid and fluid according to the response of a small element to a 
shear force. A solid will deform as the force is applied and maintain that deformation until the 
force is released, at which time it will return to its original configuration. (See Figure 2.) This is 
termed “elastic deformation”. For an ideal elastic solid (a Hookean solid) the shear deformation or 
“strain” is proportional to the shear stress, τ . For small strains, 

l 
τ G G dγ= 

h 
= 

The constant of proportionality, G, is the shear modulus of elasticity. 
In contrast, if a stress is applied to a fluid surface, the fluid will continue to deform at a rate 

which is proportional to the applied stress. Here the appropriate constitutive relation is between 
the shear stress and the rate of deformation. Taking the one-dimensional case of Figure 3, the rate 
of deformation, or the “shear rate”, is simply the velocity gradient (du U ). The constant of dy h= 
proportionality relating shear stress to the rate of deformation is the coefficient of viscosity, µ. In 
the one-dimensional case again, we can write: 

du 
τx y 

dy
= µ 

h 
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Figure 2: An elastic solid deforms with shear stress but will return to its original configuration. 
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Figure 3: A fluid will deform at a rate proportional to the shear stress. Here the shear rate is the 
velocity gradient U/h. 
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In a so-called Newtonian fluid, µ is independent of shear rate (but can depend upon such 
parameters as temperature, and liquid or gas composition). Many fluids, however, possess the 
characteristic that µ changes as the shear rate changes and are therefore termed “non-Newtonian” 
fluids. 

A plot of shear stress, τ , versus shear rate is called a flow curve. Examples are shown in Figure 
4. Curve 1 is for a Newtonian fluid in which viscosity is independent of shear rate. The slope of the 
curve is the coefficient of viscosity, µ. It has units of dyne-sec/cm2 or poise. Water has a viscosity 
of .01 poise or 1 centipoise. Plasma’s viscosity is 1.5 centipoise, and that of whole blood is about 4 
centipoise. Curve 2 shows a behavior seen in solutions of high polymers in which the viscosity is 
a function of shear rate. In the curve shown, the viscosity decreases with increasing shear rates (a 
“shear-thinning” fluid). The fluid shown in curve 3 behaves as a solid at low levels of shear stress, 
but begins to flow when some critical “yield stress”, τy , is exceeded. If the curve were linear for 
τ > τy , the material would be known as a “Bingham plastic”. 
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Figure by MIT OCW. After Middleman. 

Figure 4: Flow curve of simple types of fluids. 

Note that viscosity is usually associated with the “thickness” of a fluid. Motor oil, for example, 
is considered much “thicker” than water, because it is highly viscous and doesn’t flow easily. 
The property of “thickness” is quite different from fluid density: both water and mercury are 
considerably denser than oil, but both behave as “thinner” fluids. 

An effect associated with fluid viscosity is the no-slip condition. It is experimentally observed 
that whenever a fluid is in contact with a solid surface, the fluid moves at exactly the same velocity 
as the surface. There is no slippage between the solid surface and the adjacent fluid. (This explains 
why moving fan blades can accumulate dust.) Ludwig Prandtl, in a classic 1904 paper, proposed 
this. 

2.1 Blood as a Fluid 

Blood is a suspension of cells in a solution of electrolytes and proteins. Red blood cells (RBCs) 
account for most of the cells, and occupy about 50% of the blood volume. (The percent of volume 
taken up by RBCs is the hematocrit.) The non-cellular fluid, separable by centrifugation, is plasma. 
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If blood is allowed to clot, the remaining fluid is called serum, which is similar to plasma, but is 
3missing the protein fibrinogen. Red blood cells number about 5 × 106 per mm . They are disk-

shaped, measuring about 7.6 µm in diameter and 2.8 µm in thickness. 
Plasma behaves as a Newtonian fluid. Whole blood, however, is non-Newtonian in its prop­

erties. Figure 5 shows a flow curve for whole blood. It is a “shear-thinning” curve of the type 
shown in curve 2 of Figure 4. Two phenomena explain the non-Newtonian flow curve of blood: 
cell aggregation at low shear rates, and RBC deformation at high shear rates. 
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Figure by OCW. After Charm. 

Figure 5: Dynamic equilibrium between cell aggregate size and shear stress applied. 

In the presence of fibrinogen and globulin RBCs tend to form aggregates known as rouleaux. 
(In the absence of fibrinogen and globulin such clumping does not occur.) As blood flows, the 
rouleaux are broken up at increasing shear rates, resulting in smaller particle sizes and lower ef­
fective viscosity. An experiment done by Chien illustrates the mechanisms underlying the non-
Newtonian behavior of blood. Figure 6 shows the relationship between the viscosity of several 
fluids and the shear rate. All of the fluids were suspensions containing 45% RBCs by volume. 
Curve NP is for RBCs suspended in normal plasma, in which aggregates may form at low shear 
rates. Curve NA is for RBCs suspended in 11% albumin (no aggregates can form). Curve HA is 
for acetaldehyde-hardened RBCs in albumen (no membrane deformation possible). The data show 
that the fixed RBC suspension has a constant viscosity at all shear rates tested. 

The separation of curves NP and NA suggest that RBC aggregates are broken up to single-cell 
size at shear rates of about 10 sec-1. The continuing decrease in viscosity as shear rates increase 
to several hundred suggest that the RBCs become elongated in the presence of high shear, thus 
decreasing viscosity slightly. (See Figure 7.) 

Whole blood may be considered reasonably Newtonian for shear rates greater than 100 sec-1. 
Estimates of the wall shear rates in various blood vessels are shown in Table 1 below. In all cases 
wall shear rates are above 100 sec-1. 

The viscosity of blood is a strong function of the hematocrit. Figure 8 illustrates the relative 
viscosity of blood as a function of hematocrit. The figure also illustrates the changes in viscosity 
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Figure by MIT OCW. After Fig. 3.4-2 in Fung, 1981. 

Figure 6: Blood is not Newtonian. At low shear rates, aggregates of red cells form, increasing 
viscosity. At high shear rates, red cells elongate, decreasing viscosity further. 

Table 1: Estimates of wall shear rate in various vessels in man γw = 8V̄ /D˙
Average velocity* 

Diameter† (cm) γw (s-1)Vessel 
(cm s-1) 

˙

Aorta 48 2.5 155 
Artery 45 0.4 900 
Arteriole 5 0.005 8000 
Capillary 0.1 0.0008 1000 
Venule 0.2 0.002 800 
Vein 10 0.5 160 
Vena cava 38 3.0 100 
* Taken from Berne and Levy, 1967. 
† Taken from Burton, 1965. 

of suspensions of rigid spheres and discs, liquid droplets, and sickled RBCs. Note the much more 
dramatic increase in viscosity of suspensions of rigid particles as their volume fraction increases. 
At 50% volume fraction, the rigid sphere suspension cannot flow, while blood is fluid even to 
hematocrits above 90%. Note also the dramatic increase in viscosity of sickled cells at normal 
hematocrits! ( What clinical implications follow? ) 

Figure 9 also shows the increase in relative viscosity of blood as a function of hematocrit. It 
makes the point that at any given hematocrit the apparent viscosity of blood is less when measured 
in the vascular system than when measured in capillary tube viscometers. Why should this be so? 
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Figure by MIT OCW. 

Figure 7: Non-Newtonian characteristics of blood. 
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Figure by MIT OCW. After Figure 3.4-3 in Fung, 1981, based on Goldsmith, 1972. 

Figure 8: Relative viscosity of human blood at 25◦C as a function of red cell volume fraction, com­
pared to that of suspensions of rigid latex spheres, rigid discs, droplets, and sickled erythrocytes, 
which are virtually nondeformable. From Goldsmith (1972b). 
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Figure by MIT OCW. After Levy and Share. Circ Res. 1: 247, 1953. 

Figure 9: Viscosity of whole blood, relative to that of plasma, increases at a progressively greater 
rate as hematocrit ratio increases. for any given hematocrit ratio the apparent viscosity of blood is 
less when measured in a biological viscometer (such as the hind leg of a dog) than in a conventional 
capillary tube viscometer. (Redrawn from Levy, M. N., and Share, L.: Circ. Res. 1:247, 1953.) 
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In 1931 Fahraeus and Lindqvist measured the viscosity of blood, relative to that of water, in 
thin glass tubes at high shear rates. They observed a decrease in relative viscosity when tube 
diameter fell below 0.3 mm (Figure 10). The explanation of this effect is the fact that RBCs tend 
to migrate toward the center of the tube, leaving a cell-poor layer of plasma (of lower viscosity) 
near the walls. 

It is also true that the effective hematocrit in the thin tube is lower than that of the reservoir 
feeding the tube. (The RBCs at the center of the tube move faster than the plasma at the walls; 
thus, to transport the same ratio of cells to plasma through the tube, the concentration of RBCs 
must be lower than at the feeding reservoir.) (See Figure 11.) 
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Figure by MIT OCW. After Fahraeus and Lindavist. Am J Physiol. 96: 562, 1931. 

Figure 10: Viscosity of blood, relative to that of water, increases as a function of tube diameter up 
to a diameter of about 0.3 mm. (Redrawn from Fåhraeus, R., and Lindavist, T.: Am. J. Physiol. 
96:562, 1931.) 
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Figure by MIT OCW. After Barbee and Cokelet. Microvasc. Res. 3: 6, 1971. 

Figure 11: The “relative hematocrit” of blood flowing from a feed reservoir through capillary tubes 
of various calibers, as a function of the tube diameter. The relative hematocrit is the ratio of the 
hematocrit of the blood in the tubes to that of the blood in the feed reservoir. (Redrawn from 
Barbee, J. H., and Cokelet, G. R.: Microvasc. Res. 3:6, 1971.) 
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It is the Fahraeus-Lindqvist effect which explains the lower apparent viscosity of blood in the 
microcirculation as compared to the viscometer (Figure 9). 

From all of the above, we may conclude that to a good approximation blood may be 
considered as a Newtonian fluid provided the diameter of the vessel is greater than about 0.3 
mm., and the shear rate exceeds 100 sec.-1. 

3. Conservation of Mass 

In addition to the constitutive relation just discussed (Eq. 2.), two other concepts are commonly 
used in fluid dynamics; conservation of mass and conservation of momentum. We sometimes also 
need to invoke the equation for conservation of energy. In the context of flow through vessels of 
varying cross-sectional area, the principle of mass conservation can be simply visualized. Take, 
for example, the tube shown in Figure 12. 

Figure 12: Conservation of Mass 

A fluid region has been denoted by dashed lines having two ends which are perpendicular to the 
tube axis, and a curved lateral surface which we define as being parallel to the fluid velocity vector 
at every point on the surface. This is called a stream tube.1 In steady flow the stream tube can be 
thought of as an imaginary vessel, completely contained by the actual vessel. No fluid passes into 
or out of the stream tube through the lateral surface. Furthermore, if we choose the stream tube to 
be very small, we can ascribe a single inlet velocity (u1) and a single outlet velocity (u2) to all the 
fluid particles passing through areas A1 and A2, respectively. 

Conservation of mass then dictates that the mass flow rate through area A1 (ρu1 A1) must equal 
the mass flow rate through area A2 (ρu2 A2) where ρ is the fluid density. In blood flow, the density 
can be assumed constant, giving 

u1 A1 = u2 A2 (1) 

Considering the entire vessel as the stream tube, the same equation can be written, except that u1 

and u2 must then be thought of as average velocities over the entire cross-sectional area. 

1Another useful concept is that of the “streamline”, which is an imaginary line that is everywhere tangent to the 
fluid velocity vector. 
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Having derived an equation for mass conservation for a simple, very specific case, consider 
now a more general formulation. 

Figure 13: Mass Flux through an arbitrary control volume 

Consider an arbitrary control volume in a fluid with a velocity field �v(x , y, z, t ) as shown in 
Figure 13. The mass contained within the control volume is 

m ρ dV= 
cv 

where ρ is the density of the fluid and dV is a volume element. The net flow of matter through a 
differential surface area d Ai , into the control volume is: 

dmi 
vi d A�i (2) 

dt 
= −ρ � •

where v�i is the fluid velocity vector at point i , and d A�i is a vector differential area pointing in the 
inward direction. By integrating over the entire closed surface of the control volume we have: 

dm 
v d A� (3) 

dt 
= − 

cs 
ρ� •

Conservation of mass states that the time rate of change of the mass inside the control volume 
must equal the rate of mass transfer across the surface into the control volume. Hence, 

∂ 
v A (4) ρ�

∂ t cv
ρ dV = − 

cs 
• d �

or 

∂ 
ρ dV ρv� A 0 

∂ t cv 
+ 

cs 
• d � =

If we deal with incompressible fluids (such as blood) (ρ = const.) then the left-hand side of eq. 
(4) is zero, and we have, 

v d A� 0 (5) 
cs 

� • =
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An alternative formulation, useful when the velocity field varies in both magnitude and direc­
tion, can be derived from equation 5 using Green’s theorem, and states that for an incompressible 
fluid, 

v 0 (6) 

This is called the continuity equation. 
The evaluation of the integral in equation 5 to the tube depicted in Figure 12 is quite simple if 

we assume that the velocities are constant across each section: 

0A1u1 − A2u2 =

or 

A1u1 = A2u2 = Q (7) 

as in equation 1. 
A more general statement for this situation is: 

u(r ) r constant2πr �
A 

• d� =

Equation 7 states that in a conduit of varying cross-sectional areas, the flow velocity must vary 
inversely with the area of the tube. This principle may be applied to the circulation as a whole 
in order to estimate blood velocity at various points. The table below documents the geometry of 
the mesenteric vascular bed of the dog. Note that the total cross-sectional area of the vascular bed 
increases almost three orders of magnitude from aorta to capillaries. As shown diagrammatically 
in Figure 14, the mean velocity in the vascular tree varies inversely with total area. Thus, if the 
mean velocity in the aorta is about 30 cm/sec., it would be in the order of 0.3 mm/sec. in the 
capillaries. 
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Table 2: Geometry of Mesenteric Vascular Bed of the Dog* 

Total Total 
Kind of Diameter Cross- Length Volume 
Vessel (mm) Number sectional (cm) (cm3)Area (cm2) 

Aorta 10 1 0.8 40 30 
Large arteries 3 40 3.0 20 60 
Main artery branches 1 600 5.0 10 50 
Terminal branches 0.6 1,800 5.0 1 25 
Arterioles 0.02 40,000,000 125 0.2 25 
Capillaries 0.008 1,200,000,000 600 0.1 60 

⎫ 

⎪ 

Venules 0.03 80,000,000 570 0.2 110 
⎪ 

⎪ 

⎪ 

⎪ 

Terminal veins 
Main venous branches 

1 
2 

1,800 
600 

30 
27 

1 
10 

30 
270 

⎬ 

740 
⎪ 

⎪ 

Large veins 6 40 11 20 220 ⎪ 

⎪ 

⎪ 

Vena cava 12 1 1..2 40 50 
⎭ 

930 

* Data of F. Mall. 
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Figure by MIT OCW. After Burton. 

Figure 14: Schematic graph showing: broken line, the changes in relative total cross-sectional area 
(on a logarithmic scale) of the vascular bed; solid line, the mean velocity in the different categories 
of vessel. 
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4. Conservation of Momentum 

4.1 Differential Approach 

The principle of conservation of momentum is no more than a statement of Newton’s second law 
written for a particle of mass, m. 

F� = ma� (8) 

where a� is the particle acceleration and F� is the total force acting on the particle. However, 
we will find it more convenient to re-write the right-hand side of equation 8 in terms of the rate 
of change of momentum, where the momentum of a particle is equal to its mass times its velocity. 
For fluids, we prefer to use the mass per unit volume or density, ρ, and also the momentum per 
unit volume, ρv�. Hence, equation 8 can be re-written as 

d 
F� = 

dt 
(ρv)� (9) 

where F� is the net force per unit volume and the right-hand side is the rate of change of momentum 
with time. 

The components of the velocity, u, v, and w are each functions of both time and position. 
Hence, 

du(x , y, z, t ) ∂u ∂u ∂x ∂u ∂y ∂u ∂z 

dt 
= 

∂ t 
+ 

∂x ∂ t 
+ 

∂y ∂ t 
+ 

∂z ∂ t 
∂u ∂u ∂u ∂u 

v w= 
∂ t 

+ u 
∂x 

+ 
∂y 

+ 
∂z 

(10) 

with similar expressions for v and w. Equation 10 may be rewritten with the help of the vector 
notation ��: 

du 

dt 
= ∂u 

∂ t 
+ 

� 

v� · ��
� 

u (11) 

� � 

Note that the operator v� · �� ( ) is a scalar, and is given in equation 12. 

� 

v� · ��
� 

( ) = u 
∂( ) 

∂x 
+ v ∂( ) 

∂y 
+ w 

∂( ) 

∂z 
(12) 

This operator is applied to each velocity vector component, and the total rate of change of momen­
tum may be written as: 

ρ
∂

∂

v�
t 

+ ρ v� · �� v� = (forces/volume) (13) 

The first term is called the unsteady or temporal acceleration, and vanishes if the flow is steady as 
viewed by a stationary observer. The second term is called the convective acceleration. 

To complete the description of fluid motion, we must specify the forces which are acting on the 
fluid. For blood and other “simple” fluids, there are only three forces of interest. 
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• Gravitational force, which is simply ρ g per unit volume acting in the vertical direction. 

Pressure forces.• 

• Viscous forces arising from friction between the flowing fluid element and its surroundings. 

4.1.1 Pressure Forces 

Since equation 13 is written in differential form, we are looking for the local forces on a small 
element of fluid. The local net pressure force per unit volume which the fluid element experiences 
is simply the local pressure gradient. Consider first the x -direction. 

Figure 15: Pressure body force on a fluid element 

The force per unit volume in the x -direction will be given by: 

p − p + 
∂
∂ρ 

x dx dydz ∂p 
(14)fx,p = 

dx dydz 
= − 

∂x 

In more general terms: 

f�p p (in three dimensions)= −��

The net viscous force per unit volume acting on the same fluid particle in one-dimensional flow 
results from the difference in shear stress between the upper and lower surfaces. 

The force per unit volume in the x -direction due to viscosity can then be written: 

∂τyx
τyx + dy − τyx dx dz· 

fx,v = ∂y 

dx dydz 

∂τy ∂2u(y) = 
∂y 

= µ
∂y2 

(15) 

Neglecting some subtleties in the derivation, the vector force per unit volume due to viscosity in a 
three-dimensional, incompressible flow can be written: 

f�v = µ� 2 v� 2 ∂ ∂ ∂ 
where � ≡ 

∂x 2 
+ 

∂y2 
+ 

∂z2 
(16) 
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Figure 16: Viscous force on an element 

Combining equations 9 - 16 we obtain the vector differential equation for conservation of 
momentum, also known as the Navier-Stokes equation: 

ρ
∂v�

ρ + µ� v� + ρg� (17)
∂ t 

+ ρ v� · �� v� = −�� 2 

We rarely use this equation in its complete form, however, since very few exact solutions have been 
found. Instead, we make various simplifications, appropriate for the problem at hand, to reduce 
this equation to a more tractable form. For example, in cases of steady one-dimensional flow in 
the x-y plane we can write (neglecting gravity): 

∂p ∂2u 
(18)− 

∂x 
+ µ

∂y2 
= 0 

and 

∂p 
0 (19)

∂y 
= 

The velocity profile can therefore be obtained simply by integrating equation 18 over y and apply­
ing the appropriate boundary conditions. 

4.1.2 Laminar Viscous Flow in Rigid Tubes 

As a specific example, we will consider the problem of steady laminar viscous flow in rigid tubes. 
One solution, following directly from equation 17 written in cylindrical coordinates is given in 
Appendix A. A simpler solution based on a direct application of equation 8 is given here. 

Consider a tube of radius a and length �l, and a fluid of viscosity µ. (See Figure 17.) The 
pressure at x = 0 is pa , and at x = �l the pressure is pb. Consider the cylindrical shell control 
volume of radius r , thickness dr , and length �l. Since the flow is steady, there is no acceleration, 
so the total force acting on the control volume must be zero. Two forces must be considered: the 
force due to the pressure gradient, and viscous forces. 

The net force acting on the control volume due to the pressure gradient is: 

(pa − pb)2πr drf p = (pa − pb)d A = 
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Figure 17: Steady flow through a straight cylinder, known as Poiseuille Flow 

The net viscous force acting on the control volume would be given by: 

fv(r ) = 
= 

fv(r + dr ) −
∂ 

∂r 
[ fv(r )] dr 

fv(r ) 

= ∂ 

∂r 
[2πr �lτ(r )] dr 

Since the flow is steady: 

0f p + fv = 
∂ 

(pa − pb)2πr dr +
∂r 

(2πr �lτ(r )) dr 0= 

Integrating once, we have: 

+ k12πr �lτ(r ) = −π(pa − pb)r 2 

Since τ(r ) ∂u , we have = µ
∂r 

∂u r (pa − pb) k1 

∂r 
= − 

2µ�l 
+

2πµ�lr 

When r 0, ∂u must be zero by symmetry, so that k1 must be zero. Rearranging, we have: 
∂r= 

18 



∂u −(pa − pb) 
r 

∂r 
= 

2µ�l 

Integrating again, 

2u(r ) 
−(pa − pb) 

r + k2= 
4µ�l 

The second boundary condition is the no-slip condition, namely, u(a) 0. Hence, we have = 

1 (pa − pb) 
� 

u(r ) 2 
� r �2

� 

(20) = 
4µ �l

a 1 − 
a 

This is the equation of a parabola, and the velocity distribution is shown below: 

Figure 18: Parabolic Flow Profile of Poiseuille Flow (also called Hagen-Poiseuille Flow) 

We may now calculate the total flow, Q, through the tube. 

� a 

Q = u(r ) · 2πr dr 
0 

= π(pa − pb)a2 

2µ�l 

� a 

0 
r 

� 

1 − r 2 

a2 

� 

dr 

= π 

8 
· 1 

µ 
· a4 

�l 
(pa − pb) (21) 

Equation 21 is the well-known Poiseuille’s law which relates flow to pressure drop for rigid 
tubes. Note the division of the terms into a constant, a viscosity term, a geometric term, and a 
pressure term. Note particularly the strong dependence of flow on tube radius, a. Equation 21 may 
be written in the form 

8 �l 
(pa − pb) Q R where R= = 

π 
· µ · 

a4 

Here R is the “resistance” of the tube and is directly proportional to length and viscosity, and 
inversely proportional to the fourth power of the radius. Thus, one would expect that the major 

Physiological Fluid Mechanics 19 



� � 

� � 

contribution to vascular resistance would be made by the small vessels. This is born out by con­
sideration of the following table. Note also that the strong dependence of resistance upon vessel 
radius implies sensitive regulation of flow is possible by changing vessel diameter through action 
of vascular smooth muscle. 

Table 3: Relative Resistance to Flow inthe Vascular Bed: Calculated from 
R ∝

r 
1
4Table 2 and Poiseuille’s Law 

Aorta 4%

Large arteries 5%

Main arterial branches 10%

Terminal branches 6%

Arterioles 41%

Capillaries 27%


Venules 4% 
Terminal veins 0.3% 
Main veinous branches 0.7% 
Large veins 0.5% 
Vena cava 1.5% 

Total arterial + capillary: 93% Total venous: 7% 

Another common simplification of the Navier-Stokes equation involves the neglect of all terms 
involving viscosity. This leads to: 

v 
ρ

∂

∂

�
t 

+ ρ v� · �� v� = − �� p + ρg� (22) 

commonly referred to as Euler’s equation. When using Euler’s equation we make the assumption 
that the flow can be treated locally as inviscid. In this context the inviscid assumption simply means 
that the pressure gradient is due primarily to the effects of inertia rather than viscous stresses. 

Euler’s equation may be integrated along a streamline to yield 

p + ρgh + 1 
ρv 2 = constant along a streamline (23)

2 

where ρ is the density of the fluid in grams/cc, v the velocity in cm/sec, p the pressure in dynes/cm2, 
g the acceleration of gravity (980 cm/sec2), and h the height of the fluid above some arbitrary ref­
erence in cm. Instead of gram-centimeter-second units, we may use millimeters of mercury for all 
terms (1 mmHg = 1,330 dynes/cm2). In the above expression 1 

2 ρv 2 is the kinetic energy per unit 
volume along the stream line, while p and ρgh appear as the potential energy per unit volume 
due to pressure and the earth’s gravitational field respectively. It should be noted that the relation 
expressed in equation 23 assumes no energy losses due to friction—it does not apply to viscous 
flows. It is known as Bernoulli’s equation, and is an expression of conservation of energy. Its 
application in situations where dissipation of energy is negligible is extremely helpful. However, 
you should note that the absence of viscosity and thermodynamic terms indicates that this is not a 
complete energy balance equation. Several illustrative examples follow: 

1. Vascular Constrictions: 

Consider the simple example shown in Figure 18. A tube of varying cross-sectional area 
carries fluid in a horizontal direction. We wish to determine the relation between p1 and p2. 
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Figure 19: Manometry: flow through a constriction 

Since the tube is horizontal, we may neglect the gravitational term in equation 23. The 
equation of continuity permits us to relate the cross-sectional areas and velocities: 

A2v2 A1v1= 
A1 

v2 v1= 
A2 

Bernoulli’s principle states: 

1 2 1 2 

2 
ρv 1 + p1 = 

2 
ρv 2 + p2 

2 1 2 2p2v1 ρ v v1= p1 −
2 2 −

1 2 
� 

A1 
�2 

� 

p2 ρv 1 A2 
− 1= p1 −

2 

Thus, in the narrowed portions of the tube, the pressure drops as the velocity increases. One 
interesting physiologic application of this finding is discussed by Burton (Chap. 10 ) in 
connection with the arterial narrowing due to atherosclerotic plaques. Consider the vessel 
shown in Figure 20. 

Assume the vessel’s normal area to be A1, with a mean pressure of 100 mmHg and a velocity 
of 30 cm/sec (ρ ≈ 1). If the vessel is narrowed by the plaque to an effective area only one-
ninth as large as normal, what will the transmural pressure be at the point of narrowing? 
Consider also the possible disastrous results of capillary ingrowth or cracks into plaques as 
illustrated in Figure 21. How might such geometry lead to rupture of the capillaries into the 
plaque? 
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Figure 20: Flow past an atherosclerotic blockage. 

Figure 21: Pressure differential across an atherosclerotic plaque. 

2. Pressure Measurement 

If an obstacle is placed in a liquid flowing with velocity, vo, the liquid must come to rest just 
before the obstacle, and the streaming is divided into two branches one on each side of the 
obstacle. The original parallel streamlines are deformed as shown in Figure 22. 

Figure 22: Stagnation point of a catherter in flow. 

There is a stagnation point at the tip of the obstacle (v1 = 0) and by the Bernoulli theorem, 

1 2ρv 0p1 = p0 + 2 

where p0 and v0 are measured well upstream from the obstacle. 

Question: Extend this reasoning to the problem of measuring pressures in the arterial system 
with catheters. Compare the pressure readings which would be obtained from a catheter with 
the opening facing “upstream” (end pressure) versus one with laterally oriented openings 
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(side pressure). Consider Table 4 below, which shows the amount and relative importance of 
kinetic energy at different cardiac outputs. Note the rather significant effect in the pulmonary 
artery. (Here, however, catheter opening usually points “downstream”, and would come very 
close to measuring true pressure.) 

Table 4: Amount and Relative Importance of Kinetic Energy in Different Parts of the Circulation* 

Resting Cardiac Output Cardiac Output 
Increased 3 Times 

Kinetic Kinetic Kinetic Kinetic Velocity Energy Pressure Energy as Energy Pressure Energy as Vessel (cm/sec) (mmHg) (mmHg) % of % of (mmHg) (mmHg) 
Total Total 

Aorta, systolic 100 4 120 3% 36 180 17% 
Mean 30 0.4 100 0.4% 3.8 140 2.6% 

Arteries, 
systolic 30 0.35 110 0.3% 3.8 120 3% 

Mean 10 0.04 95 Neg. 100 Neg. 
Capillaries 0.1 0.000004 25 Neg. Neg. 25 Neg. 
Venæ cavæ 

and atria 30 0.35 2 12% 3.2 3 52% 
Pulmonary 
artery, systolic 90 3 20 13% 27 25 52% 

Mean 25 0.23 12 2% 2.1 14 13% 
* The cases where kinetic energy should not be neglected—that is, where it is more than 5% of the total fluid 
energy—are indicated by italic figures. When an artery is narrowed by disease processes, the kinetic energy 
becomes very important. Note: Neg. = Negligible. 

3. Calculation of Valve Areas 

The Bernoulli principle provides an approach for estimating the size of the valve areas using 
data obtained via cardiac catheterization. In Figure 23 the chamber represents the ventricle 
during ejection. 

Figure 23: Blood ejected during systolic out of the left ventricle through the aortic valve (A) 

Fluid is ejected through the orifice, and the cross-section area of the jet is A. The pressure 
inside the chamber is po, and the velocity is vo. The velocity and pressure of the fluid in the 
jet are v1, p1. Bernoulli’s equation states: 
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1 2 1 2ρv 0 ρv 1p0 +
2 

= p1 +
2 

1 2 2ρ v v02 1 − = p0 − p1 

If we assume that v0 � v1, this equation becomes: 

1 2ρv 02 
= p0 − p1 

2 
v1 = 

ρ
(p0 − p1) 

If the flow rate, Q, is known, we have 

Q Av1= 
Q

A = 
v1 

Substituting from above, we have 

Q
A = 

k
√

p0 − p1 
(24) 

In our derivation k 
√

2/ρ. The form of equation 4.1.2 has been verified experimentally = 
for diseased human heart valves, but the value of the constant, k, differs depending on the 
valve involved. Q is measured in cc/sec; p0 − p1 is the pressure gradient across the valve in 
mmHg; k is 44.5 for the aortic valve and 37 for the mitral valve; and A is the valve area in 

2cm . 

Note: Q is not cardiac output, but the instantaneous flow rate through the valve at the time 
the pressures are being measured. 

5. Reynolds Number and Turbulent Flow 

A dimensionless parameter called the Reynolds number is used as a measure of the relative im­
portance of inertial effects (related to fluid momentum) and viscous effects. From equation 23 
it can be seen that changes in pressure due to changes in fluid velocity scale with ρv 2. Viscous 
stresses in a two-dimensional flow, as noted earlier, are equal to the coefficient of viscosity, times 
the shear rate, µ du/dy, which can be roughly aproximated for flow through a tube by µ v/d. We 
can form a ratio, which we call the Reynolds number, between inertia-induced stress and viscous 
shear stress of the form 
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ρv 2 ρvd vd 
Red ≡ (25) 

µv/d 
= 

µ 
= 

ν 

where r ed is the Reynolds number using tube diameter, d, as the characteristic length, and where 
ν is the kinematic viscosity (ν ≡ µ/ρ). 

High Reynolds number flow (Red � 1) is dominated by inertial effects, and vicous effects 
may be neglected as a first approximation. Bernoulli’s equation (eq. 23), for example, would be 
valid when the Reynolds number is high. When the Reynolds number is low (� 1) viscous effects 
dominate. 

In steady laminar flow, fluid particles move along well-defined trajectories or streamlines and 
no mixing occurs between adjacent streamlines. A different kind of flow results, however, when 
the Reynolds number is sufficiently large; a flow characterized by apparently random velocity 
fluctuations superimposed (see Figure 24). 

u 

u 

t 

Laminar 

t 

u 

Turbulent 

Figure by MIT OCW. 

Figure 24: Reynolds number predicts development of turbulence in a given geometry. 

In contrast to laminar flow, turbulence causes each fluid particle to move down the vessel in 
an apparently random fashion in which kinetic energy associated with the axial flow direction 
is continuously converted, first into a swirling or eddy motion, and finally into heat by viscous 
dissipation. 

Turbulent flow results from an instability of laminar flow and occurs at a value of Reynolds 
number which depends on the local geometry. For example, flow in a tube of uniform circular 
cross-section typically becomes turbulent when Red > 2300. In contrast, flow passing from a 

∼

narrow orifice into a larger tube or reservoir can become turbulent at Reynolds numbers as low as 
10. Judging from the range of Red given in Table 5 below (page 37), turbulence in fully-developed 
flow is not likely to occur in the venous circulation, but flow through venous valves or past vessel 
constrictions could become turbulent. 
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Without going into a detailed description of turbulent dissipation and the pressure drops asso­
ciated with turbulence, one general statement, derived primarily from experimental observations, 
will be useful. Due to the internal dissipation of fluid energy associated with turbulence, an addi­
tional loss or pressure drop must be included in the mechanical energy equation. For a wide range 
of geometries, it can be shown that pressure changes due to turbulence vary as the square of the 
mean velocity. 

Turbulent blood flow creates mechanical vibrations in the walls of vessels. The vibrations are 
often audible through the stethescope (bruits or murmurs), or palpable (thrills). While turbulent 
flow is common in cases of narrowed heart valves or partial obstructions to arterial flow, it may 
also occur in normal individuals when sufficiently high Reynolds numbers are encountered. This 
is particularly likely during situations of high cardiac output such as exercise, fever, anemia, etc. 
Murmurs heard in such cases are called “flow murmurs” or “functional murmurs”, and are benign. 

6. Entrance Effects 

In our discussion so far we have assumed steady viscous flow, and have derived the equation 
for Poiseuille flow. This type of flow is sometimes called “fully developed” viscous flow in a 
cylindrical conduit in which the viscous drag from the walls penetrates throughout the fluid leading 
to a parabolic velocity profile. Clearly blood flow at the proximal aorta is not fully developed 
laminar flow, since it enters the aorta as a bolus with a uniform velocity distribution over the cross-
section. As the blood flows down the aorta, the viscous drag from the walls has an increasing effect 
on the flow. In particular, velocities near the wall tend to decrease, and the penetration of the drag 
into the fluid increases as the fluid continues down the conduit. Eventually the “boundary layer” 
penetrates to the center of the conduit and steady laminar flow is established. (See Figure 24.) The 
distance from the entrance to the point where fully developed flow occurs is termed the entrance 
length, L E . The ratio Le/D, where D is the diameter of the conduit, is related to the velocity of the 
fluid. One might expect Le/D to be directly proportional to v and inversely proportional to µ. In 
fact, a theoretical entrance length which agrees reasonably well with experiment for non-turbulent 
flow is 

Le v Dp 
0.065Red , where Red = (Reynolds number). (26) 

D 
= 

µ 

For the aorta v ≈ 25 cm/sec, D = 2.5 cm, µ 4 × 10−2, and Red ≡ 1560. Hence, = 

Le 100 , or 250cm 
D 

= L E = 

This result implies that the velocity distribution in the entire aorta will tend to be uniform over 
the cross-section. Experimental results for dogs is shown in Figure 25 which show rather uniform 
velocity distributions almost all the way to the iliac bifurcation. Note that the above analysis 
assumes steady flow, and we have used the mean aortic flow in estimating the entrance length. The 
important point is that even if we neglect the pulsatile component of the flow, viscous effects are 
not important in the large vessels such as the aorta. They become important, however, in smaller 
vessels. 
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Figure 25: Entrance effects. 

Image removed for copyright reasons. 

Figure 26: Velocity distribution in the aorta of dogs. 
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7. Oscillating Viscous Flow 

Flow in the aorta and large arteries is clearly not steady, but rather is pulsatile. The question is– 
what is the nature of the flow? How much influence upon velocity profiles is played by shear 
stresses at the vessel walls? Is it possible to estimate where in the arterial system we might expect 
Poiseuille flow, and where to expect bolus or slug flow? 

As a first approach to this problem, consider the problem of a one-dimensional oscillating plate 
immersed in an infinite fluid. (See Figure 27.) 

Figure 27: Oscillating plate in an infinite fluid reservoir. 

The plate, assumed to be of infinite length in the x-direction, and perpendicular to the xy plane 
is oscillated back and forth with velocity v0 cos ωt . 

Intuition permits us to predict the behavior of the fluid motion in some limiting cases. If ω 0, =
and the plate moved at constant velocity v0, eventually all the fluid would move with the plate at a 
velocity, v0. On the other hand, it is apparent that as ω → ∞, only an infinitesimal layer of fluid 
which clings to the plate at y = 0 would tend to move with the plate, and that fluid away from the 
plate would tend to remain at rest. For intermediate values of ω one would expect the viscous drag 
of the plate to “penetrate” the liquid to various distances. It would also appear reasonable to expect 
the depth of penetration of the viscous effects to be greater as the fluid viscosity increased. We are 
interested in getting a rough estimate of this “boundary layer thickness”, and in applying the result 
to the vascular system. 

The problem is solved as follows: 
Consider the control volume dx dydz at a distance y cm from the oscillating plate. 
The equations of motion need consider only the “mass × acceleration” term and the viscous 

shear forces since the pressure gradient ∂p/∂x 0. =

Mass = ρ dx dydz 

Acceleration = ∂u(y, t ) 

∂ t 

shear force = ∂ 

∂y 
[τ(y) dx dz] dy = µ 

∂2u 

∂y2 
dx dydz 

The equation of motion becomes: 
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∂u(y, t) ∂2u(y, t) = 0 where ν ≡ µ 
(27) 

∂ t 
− ν

∂y2 ρ 

The boundary conditions are: 

v0 cos ωtu(y = 0) = 
u(y = ∞) = 0 

The solution to the differential equation is of the form: 

u(y, t) Ae−y/δ cos ωt − y 
(28) = 

δ 

Substituting back into the original equation, and recalling the boundary conditions we have 

2ν 
A = u0 δ = 

ω 
(29) 

When y = δ, the amplitude of the fluid oscillation drops to 1 of its maximum, and hence δ is a e 
measure of the boundary layer thickness. 

An estimate of δ may be made for the cardiovascular system. Assume a heart rate of 100 
beats/min. and a kinematic viscosity of blood of ν 5 × 10−2. For H.R. = 100 beats/min. = 
ω = 2π f ≈ 10. Substituting, we obtain 

δ 0.1 cm 1 mm = =

This implies that for large (� 1 mm) vessels such as the aorta the boundary layer extends only 
a very short distance into the fluid. Thus, in the aorta the fluid tends to behave as plug flow, with 
relatively uniform velocity distribution. 

Using similar methods one may solve the problem of oscillating flow in a rigid tube. The 
mathematics is quite complex and not worth discussing here, but it does permit one to estimate 
boundary layer effects in tubes. The resultant expression for boundary layer thickness is identical 
to that of equation 29 above. It is emphasized again that fully developed laminar (Poiseuille) flow 
is to be expected only in vessels in the order of several mm. and less in diameter. 

8. Pulse wave propagation in arteries 

In this section, we wish to develop a simple model which illustrates how pulse propagation may 
occur in the arterial system. We will represent the artery as a thin-walled elastic tube characterized 
by an equation of state relating the area of the vessel, A, to the transmural pressure, p, 

A = A(p) 

For simplicity we will assume a linear operating region and define a compliance per unit length 
Cu such that 
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∂ A 
Cu constant = 

∂p 
=

This implies 

A (30) = A0 + Cu p


Consider a section of vessel as shown in Figure 28.


Figure 28: 

The equation of continuity states that the net rate of increase in mass of the control volume, 
∂Q

ρ ∂ A dx must equal the net inflow into the control volume which is −ρ dx .
∂t ∂x 

Hence, 

∂ Q ∂ A 
(31) 

∂x 
+

∂ t 
= 0 

The equation of motion equates the time rate of change of momentum to the pressure gradient. 

∂ ∂ 
A)dx(p ·

∂ t 
(uρ Adx ) = − 

∂x 

Differentiating and suitably factoring we obtain: 

1 ∂u 1 ∂ A 
� 

1 ∂ A 1 ∂p 
� 

ρu ρ 
u ∂ t 

+
A ∂ t 

= −
A ∂x 

+
p ∂x 

∂ ∂ ∂ ∂ 
ρu ln u +

∂ t 
ln A = −ρ ln A +

∂x 
ln p

∂ t ∂x 

small small 
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We will assume a small-signal case; that is, the variation in A with respect to time and space 
is small compared to similar variations in velocity u and pressure, p. Hence, we may neglect the 
terms containing ln A, and we have: 

∂u 1 ∂p 
(32) 

∂ t 
+

ρ ∂x 
= 0


Multiplying by A we obtain (noting that Q = Au),


∂ Q A ∂p 
(33) 

∂ t 
+ 

ρ ∂x 
= 0 

Using equation 30, differentiating with respect to t , and substituting into equation 31, we obtain 

∂ Q ∂p + Cu 0 (34) 
∂x ∂ t 

= 

Equations 33 and 34 are similar to the equations governing lossless transmission lines, and 
ρ/A may be identified as Lu , the inertance per unit length. 

If the compliance of the vessel is assumed to be independent of pressure and location, and if 
the area of the vessel is assumed to be constant (no tapering and small peturbations with pressure), 
we may treat Cu and Lu as constants and solve equations 33 and 34. 

Differentiating 33 with respect to x , and 34 with respect to t and eliminating the Q terms, we 
have: 

∂2 p A ∂2 p
Cu 

∂ t 2 
−

ρ ∂x 2 
= 0 

or 

∂2 p A ∂2 p 
(35) 

∂ t 2 
−

ρCu ∂x 2 
= 0 

Solutions are of the form 

p = p(x − ct ) 

Thus pressure waves propagate at constant velocity, c, without distortion, where 

A 1 
c (36) = 

ρCu 
= 

LuCu 

This velocity is known as the Moens-Korteweg wave speed. The Moens-Korteweg relation­
ship indicates a constant wave velocity in the arterial system. In man, pulse wave velocity varies 
greatly—for instance it is about 3 m/sec. at the proximal aorta, and 8 or 9 m/sec. at the iliac 
bifurcation. Further, it is also true that the pulse wave distorts as it moves down the aorta. (See 
Figure 29.) 

Factors of importance which influence pulse propagation in the circulatory tree include: 1) 
vessel stiffness increases with pressure such that the peaks of pressure move faster than the low-
pressure points; 2) the arterial tree is tapered in area and wall properties; and 3) reflections may 
distort pressure waveforms. 
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Figure 29: Contour of arterial pressure pulse in various parts of aorta. Curve 0, pulse near root of 
aorta; curves 10, 20, and 30, pulse at 10, 20, and 30 cm farther down aorta. 

In general, vessels become stiffer with age as elastic tissue becomes replaced with collagen, 
and as arteriosclerosis becomes more common. As one would expect, pulse wave velocity in the 
aorta increases with age. Also, since vessels expand and become stiffer as pressure increases, pulse 
wave velocity increases with mean blood pressure (Figure 30). 
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Figure 30: Changes in pulse wave velocity with age and mean blood pressure. 
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9. Reflection of Waves 

Characteristic impedance, z0, is defined by analogy to transmission line theory. 

p 
z0 = 

Q 
(37) 

From equation 34 above we have 

∂ Q ∂p 
0+ Cu 

∂x ∂ t 
= 

Using (37) we get 

∂ p ∂p 
0+ Cu 

∂x z0 ∂ t 
= 

1 ∂p ∂p 
0 (38) 

∂x 
+ Cu 

z0 ∂ t 
= 

From equation 33 we have 

∂ Q A ∂p 

∂ t 
+ 

ρ ∂x 
= 0 

1 ∂p A ∂p 

z0 ∂ t 
+ 

ρ ∂x 
= 0 

Substituting from (38) we have 

1 Az0Cu 
� 

∂p 
(39) 

z0 
− 

ρ ∂ t 
= 0 

Since ∂p �= 0, the terms in the parentheses must be zero. 
∂t 

1 Az0Cu 

z0 
− 

ρ 
= 0 

2 ρ Lu ρ 
z0 = 

ACu 
= 

Cu 
where Lu = 

A 

Lu 
z0 = 

Cu 
(40) 

The reflection coefficient is the ratio of the reflected to the incident wave. 

z0zL −
� (41) = 

z0zL +
Here zL is the terminating impedance, and z0 the characteristic impedance. 
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10. Fluid Mechanics of Heart Valve Action 

10.1 Aortic Valve 

The aortic valve consists of three thin (0.1 mm) flexible, self-supporting cusps. Corresponding to 
each cusp, there is a bulge in the aortic wall called a sinus (sinuses of Valsalva). The coronary 
arteries arise from two of these sinuses. 

Figure 31: Sinuses of Valsalva of the Aortic Valve. 

In the normal valve, blood flow is laminar, and furthermore, the reversed flow is less than 5% 
of the stroke volume. The fact that flow is observed to be laminar despite peak Reynolds numbers 
of near 104 suggests that the normal valve offers no obstruction to forward flow. On the other hand 
the very low reverse flow at the end of systole suggests the valve may be almost closed before the 
end of systole. It also seems important that the ostia of the coronary arteries not be occluded during 
the heart cycle. 

The movement of the valve cusps has been studied by Bellhouse by means of a model system, 
and they have demonstrated the importance of the sinuses. The observations are: 

At the start of systole the valve cusps open rapidly and move out toward the sinuses. Vortices 
formed between the cusps and the sinus walls. The cusps did not flutter, and flow entered each 
sinus at the ridge, curled back around the sinus wall, and then along the cusp to flow out into 
the main stream at the points of attachment of the cusp to the aorta. Thus, the valve leaflets are 
supported, during ejection, between the main stream and the trapped vortices. 

After peak ejection velocity, as blood was being decelerated ( but still moving out of the heart), 
the valve cusps move away from the sinuses, and are almost completely closed before the end of 
systole. Reverse flow was less than 5% of the forward S.V. 

If the sinuses are occluded, the cusps open and touch the walls of the aorta during systole, and 
there are no trapped vortices. The valve closes by means of reversed flow above, and back flow 
increased to 25% of the forward flow. 

The action of the valve may be explained on the basis of local pressure gradients in the regions 
of the aortic root. During deceleration of the blood (latter half of systole) there must be a reverse 
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Figure 32: Vortices in the Sinuses of Valsalva in Systole. 

pressure gradient in the region of the aortic outlet. In the figure below, pa > p1. If the velocities 
in the aorta and in the vortex are the same, then pc ≈ pa . Hence: 

∂upa − p1 
ρ 

�L 
= −

∂ t 

and hence 

∂u 
pc − p1 = �Lρ 

∂ t 

Figure 33: Closure of the aortic valve due to temporal deceleration. 

Since Pc − P1 is > 0 during deceleration, the valve leaflets tend to close. The figure below 
shows data from a simulated aortic valve system designed by Bellhouse. The measurements in­
clude fluid velocity, u, and the pressures p1, pr , and pc. Note change in direction of the pressure 
gradient across the valve ( pc − Pp) as a function of time during systole. 

10.1.1 Vortex formation in the ventricle during filling. 

The vortex behind the anterior leaflet was stronger than the posterior vortex, tending to close the 
anterior leaflet first. 
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Figure 34: Closure of the mitral valve. 
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Table 5: Geometry of Mesenteric Vascular Bed of the Dog* 

Main 
Ascending Descending Abdominal Femoral Carotid 

Arteriole Capillary Venule 
Inferior pulmonary Site 

aorta aorta aorta artery artery vena cava artery 

Internal diameter di (cm) 1.5 1.3 0.9 0.4 0.5 0.005 0.0006 0.004 1.0 1.7 
1.0-2.4 0.8-1.8 0.5-1.2 0.2-0.8 0.2-0.8 0.001-0.008 0.0004-0.0008 0.001-0.0075 0.6-1.5 1.0-2.0 

Wall thickness h (cm) 0.065 0.05 0.04 0.03 0.002 0.0001 0.0002 0.015 0.02 
0.05-0.08 0.04-0.06 0.02-0.06 0.02-0.04 0.01-0.02 0.01-0.03 

h/di 0.07 0.06 0.07 0.08 0.4 0.17 0.05 0.015 0.01 
0.055-0.84 0.04-0.09 0.055-0.11 0.053-0.095 

Length (cm) 5 20 15 10 15 0.15 0.06 0.15 30 3.5 
10-20 0.1-0.2 0.02-0.1 0.1-0.2 20-40 3-4 

Approximate cross-sectional area 
(cm2 ) 

2 1.3 0.6 0.2 0.2 2 × 10−5 3 × 10−7 2 × 10−5 0.8 2.3 

Total vascular cross-sectional area at 2 2 2 3 3 125 600 570 3.0 2.3 
each level (cm2) 

⎧ ⎫ 

Peak blood velocity (cm s -1) 120 105 55 100 ⎪ 

⎪ 0.75 0.07 0.35 ⎪ 

⎪ 25 70 
⎨ ⎬ 

40-290 25-250 50-60 100-120 0.5-1.0 0.02-0.17 0.2-0.5 15-40 

Mean blood velocity (cm s -1) 20 20 15 10 
⎪ 

⎪ 

⎩ 

⎪ 

⎪ 

⎭ 15 
10-40 10-40 8-20 10-15 6-28 

Reynolds number (peak) 4500 3400 1250 1000 0.09 0.001 0.035 700 3000 

α (heart rate 2 Hz) 13.2 11.5 8 3.5 4.4 0.04 0.005 0.035 8.8 15 

Calculated wave-speed c0 (cm s -1) 580 770 840 850 100 350 

Measured wave-speed c (cm s -1) 500 700 900 800 400 250 
400-600 600-750 800-1030 600-1100 100-700 200-330 

Young’s modulus E (Nm -2 × 105) 4.8 
3-6 

10 
9-11 

10 
9-12 

9 
7-11 

0.7 
0.4-1.0 

6 
2-10 

* (From C. G. Caro, T. J. Pedley, and W. A. Seed (1974). “Mechanics of the circulation,” Chapter 1 of Cardiovascular Physiology (ed. A. C. Guyton). Medical and Technical Publishers, 
London.) 
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Appendix A 

Laminar Viscous Flow in Rigid Tubes 

Poiseuille, a French Physician, was interested in estimating the pressure drop in various parts of the 
circulation. On a somewhat less formal basis than the Navier Stokes equation above, he reasoned 
that to maintain a steady flow in a tube, one had to balance the viscous forces retarding the flow 
with a pressure drop from inlet to outlet. 

vIf we assume steady flow ∂
∂
�
t = 0 and straight parallel flow [v� = u(x ), so (v� v 0, then· ��)� = 

equation 17 simplifies to 

v 0 (42)−�� p + µ�2 � = 

Figure 35: Poiseuille Flow


For the geometry of Figure 35, equation 42 becomes (in cylindrical coordinates):


d p 1 d 
� 

du 
r 

dx 
= µ 

r dr dr 
(43) 

This is a separable partial differential equation. If the tube is L long, then 

d p 
constant = − p(0) − p(L) 

(44)
dx 

= 
L


The velocity u(r ) is subject to the two boundary conditions:


1. u 0 at r = a (no-slip condition at surface of tube)= 
du2. dr = 0 at r = 0 (continuous velocity of at origin) 

The form of u(r ) satisfying these boundary conditions and �2 v� = constant is the parabolic 
profile 

u(r ) r 2 

u(0) 
= 1 −

a2 
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and the total flow rate, Q, through the pipe is 

� a 

Q 2πr dr u(r )= 
0 

· 
1 
πa2u(0)	 (45) = 

2


Combining (43) and (45),


1 d 
� 

du 4µu(0) 8µQ 
µ r 

r dr dr 
= − 

a2 
= − 

πa4 

and, with (44) we have the Poiseuille flow relation 

p(0) − p(L) 8µQ 
(46) 

L 
= 

πa4


Equation (46) may be rewritten in the form:


p(0) − p(L) Q R =

where 

8 L 
R = 

π 
· µ · 

a4	
(47) 

Here R is termed the “resistance” of the tube and is directly proportional to length and viscosity 
and inversely proportional to the fourth power of the radius. Thus, one would expect that the major 
contribution to vascular resistance would be made by the small vessels. Note that the mean velocity, 
v, is half the centerline velocity: ¯

Q 1 
v	 (48) ¯ = 

πa2 
= 

2 
u(0) 

Although Poiseuille’s law has many engineering applications, and although it gives consider­
able insight into flow in the circulation; nevertheless, it cannot be rigorously applied to the circu­
lation. It requires the following assumptions: 

1.	 The fluid is homogeneous and Newtonian. Blood may be considered as a Newtonian fluid 
only if the radius of the vessel exceeds 0.5 mm and if the shear rate exceeds 100 sec.-1. This 
condition, therefore, excludes arterioles, venules, and capillaries. 

2.	 The flow is steady and inertia-free. If the flow is pulsatile, the variable pressure gradient 
communicates kinetic energy to the fluid, and the flow is no longer inertia-free. This condi­
tion excludes the larger arteries. 

3.	 The tube is rigid so that its diameter does not change with pressure. This condition is never 
met in the circulatory system, particularly the veins. 

More precise models of blood flow in the circulation have been devised which take account of 
the properties of vessel walls, inertia, pulsatile flow, etc. 
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