Muscle Spindle Response: Review, Model, and Simulations

1. Length, velocity and bursts:

Everybody agrees that spindles give information about not only its length, but also about its rate of change of length. (T. McMahon pg. 153-154)
"Primary endings of muscle spindle are highly sensitive to the rate of change of muscle length, a property referred to as velocity sensitivity."
"Because of their high degree of dynamic sensitivity, primary endings respond with bursts of firing to transient stimuli." (C. Ghez in Principles of Neural Science pg. 569)

Bottom Line: - Primary endings encode information about:

$$
\left\{\begin{array}{c}
- \text { length of muscle } \\
- \text { speed of movement }
\end{array}\right.
$$

- Primary endings are most sensitive to small changes in muscle length. "This sensitivity is reflected in transient increase in firing rate at the beginning of a stretch." (C. Ghez)

2. Dynamic/Static γ motoneurons (mn)

The extent that Ia (primary afferents) contain information about "x" and " v " is determined by the amount of activation of static and dynamic $\gamma^{\prime} \mathrm{s}$ (S- γ and $\mathrm{D}-\gamma$).
$\left\{\begin{array}{l}\text { High activation of } \mathrm{S}-\gamma \rightarrow \text { high sensitivity to "x" } \\ \text { High activation of } \mathrm{D}-\gamma \rightarrow \text { high sensitivity to "V" }\end{array}\right.$
Utility: as the speed and/or difficulty of the movement increases, both static and dynamic γ motor neurons are set at high levels. Their activation is dependent on task or context.

For example, think of a clown walking on an elevated tight rope, she will have high activation levels of both $\gamma \Rightarrow$ higher resolution in the measurement of x and $v \Rightarrow$ better stabilization.
3. Conceptual mechanical model of spindle (McMahon, 1984)
Γ_{0} is the fusimotor drive (\approx isometric tension developed by spindle)
Then he proposes that the frequency of discharge of the Ia, $v(\mathrm{t})$, is proportional to the tension T (pg. 152).

$$
\begin{align*}
& \left\{v(t)=\frac{A}{K_{S E}} \cdot T\right. \tag{3}\\
& \Rightarrow \frac{d}{d t}(3) \Leftrightarrow \dot{v}=\frac{A}{K_{S E}} \dot{T}=\frac{A}{K_{S E}}\left(\dot{x}-\dot{x}_{1}\right) \tag{4}
\end{align*}
$$

(3) and (4) $\Rightarrow\left\{\begin{array}{l}x_{1}=x-\frac{K_{S E}}{A} v \\ \dot{\mathrm{x}}_{1}=\dot{x}-\frac{1}{\alpha} \dot{v}\end{array}\right.$
derived in McMahon but not in this form (pg. 64-165)

Now, taking all the previous equations together, we get:

$$
\frac{K_{S E}}{A}\left[\left(K_{P E}+K_{S E}\right) v+B \dot{v}\right]=\Gamma_{o}+K_{P E} x+B \dot{x}
$$

Or we can write it as a transfer function (not in McMahon):

$$
\begin{equation*}
v(s)=\frac{A}{K_{S E}}\left[\frac{K_{P E}+B \cdot s}{\left(K_{P E}+K_{S E}\right)+B \cdot s} \cdot x(s)+\frac{\Im\left(\Gamma_{0}\right)}{\left(K_{P E}+K_{S E}\right)+B \cdot s}\right] \tag{8}
\end{equation*}
$$

where $\mathfrak{J}\left(\Gamma_{o}\right)$ is the Laplace transform of Γ_{o}.

This is just a representation of (8)

4. Problems with the model

- The model does not explicitly include information about " v "
$\Gamma_{o}=0 \Rightarrow \frac{v(s)}{x(s)}=\frac{1+a \tau s}{1+\tau s} \quad \begin{array}{ll} & a>1 \\ \tau>0\end{array}$
which is just a "phase-advance" filter or an approximation of a derivative.
\Rightarrow Changing its parameter (of the above transfer function), we cannot separately include information about x and v or decouple the sensitivity of v to x and $\frac{d x}{d t}=\mathrm{v}$.

However, this is what is observed and what the literature talks about.

- This model cannot reproduce the "bursts" mentioned on page 1 , due to its structure

$$
\frac{N(s)}{D(s)} \text { where } \mathrm{N}(\mathrm{~s}) \text { is first order and } \mathrm{D}(\mathrm{~s}) \text { as well. }
$$

5. Proposed enhanced model

- α and β are just the "symbolic" sensitivity (which could be in terms of a simple gain or changing the parameters in the transfer functions) to γ levels of activation.
- In the second branch: The 's' has been separated out from its transfer function to highlight that this is the information about the derivative of $x \Rightarrow v$.

