An Astronaut 'Bio-Suit' System for

Exploration 44

Missions

Professor Dava J. Newman, Ph.D. ^{*∂*+*}

Professor Jeff Hoffman*, Kristen Bethke*, Christopher Carr*+, Nicole Jordan*, & Liang Sim*

Norma Campos, Chip Conlee, Brendan Smith, Joe Wilcox and Nina Wolfrum

Guillermo Trotti

^a Director, Technology and Policy Program
 *MIT Department of Aeronautics and Astronautics
 *Harvard-MIT Division of Health Science and Technology
 ^ITrotti & Associates, Inc., MIDÉ Technologies

Technology + Policy Program

Image, © Michael Light, Full Moon

Industry Partners

Trotti & Associates, Inc. (TAI)

TAI is a design consulting firm helping private and public organizations visualize and develop solutions for new products, and technologies in the areas of Architecture, Industrial Design, and Aerospace Systems.

Award-winning designs for: Space Station, South Pole Station, Underwater Habitats, Ecotourism. (Phase I and II)

Advisory Board

Dr. Chris McKay, expert in astrobiology, NASA ARC.Dr. John Grunsfeld, NASA astronaut.Dr. Cady Coleman, NASA astronaut.Dr. Buzz Aldrin, Apollo 11 astronaut.

Midé Technology Corporation is a R&D

company that develops, produces, and markets High Performance Piezo Actuators, Software, and Smart (Active) Materials Systems; primarily for the aerospace, automotive and manufacturing industries.

MIT Advanced EVA Research

Astronaut EVA Performance

- Human/Robotic database
- Spacesuit Modeling (Hysterisis, Physics-Based, Dynamic Analysis)
- Energetics and Biomechanics Design Requirements
- Mission Planning and Geological Traverse Analysis
- Space Suit Simulator Exoskeleton
- Advanced Spacesuit Design: Bio-Suit MCP System
 - Human Modeling & Requirements Definition
 - Bio-Suit MCP Feasibility and Prototypes
- EVA Systems Flexibility and Uncertainty Analysis
 - EVA community and EVA system are/should be at the center of the U.S. Vision for Space Exploration

Augmented Human Performance

Problem: Drop foot, pathology (stroke, CP, MS) Variable-impedance control active ankle device Contact 1: Adaptive biomimetic torsional spring - min. slap Contact 2: Minimized impedance

Swing: Adaptive torsional spring-damper to lift foot

Next: Exoskeleton -Harness, hip bearing, fiberglass members, ankle -Fiberglass spring mechanism provides energy

Blaya, J.A., Newman, D.J., Herr, H.M., "Comparison of a variable impedance control to a free and rigid ankle foot orthoses (AFO) in assisting drop for Proceedings of the International Society of Biomechanics (ISB) XIXth Congress, Dunedin, New Zealand, July 10, 2003.

Results: Partial Gravity Locomotion

Space Suit Design: Motivation

- Extravehicular Mobility Unit (EMU)
 - Designed for weightlessness
 - Pressurized suit (29 kPa, 4.3 psi)
 - Life support system (O₂, CO₂, etc.)
 - 2 pieces: pants, arms & upper torso
 - Donning and doffing are highly involved
 - Adequate mobility for ISS
 - NOT a locomotion/exploration suit
- Mechanical Counter Pressure (MCP)
 - Skin suit compared to a pressure vessel
 - Greater flexibility, dexterity
 - Lightweight
 - Easy donning and doffing

Human/Robot Database

- Human, robot, human suited, & robot suited
- 11 simple motions isolating individual joints
- 9 complex motions:
 - Overhead reach
 - Cross-body reach
 - Low reach
 - Locomotion
 - Step up 15 cm (6 in)

Re-Thinking Work Envelope Analysis

Arm segment

Joint angle

Visibility

lengths

- Can predict large-scale human factors metric from joint torque-angle models
- Work envelope analysis method is easily reconfigurable for different anthropometrics and strengths
- Sensitivity analysis indicates

Strength Torque limits

Space suit joint stiffness

- Improving shoulder mobility adds most volume to work envelope
- Improving upward and downward visibility _ enlarges work envelope Size

Space Suit Simulator – Exoskeleton

- Exoskeleton joint torques match EMU knee torques
- "Tuned space suit"

Exoskeleton & Space Suit Comparison

- Similarities
 - Similar knee joint angles
 - High-recovery: springs in parallel w/ legs
 - Cost of Transport in Reduced G running ≤ than unsuited

Differences

- –Poor ankle & hip mobility in spacesuit
- –Excellent mobility in Exoskeleton (3 dof)
- -Cost of Transport is Elevated in space suits

- Simulated space suit knee joint via an exoskeleton.
- Explained metabolic cost of suited walking & running.
- Evidence of an optimal space suit torque.
- Evidence that energy recovery plays a key role.

Synthesis of Energetics

Hypothesis:

Fast running (Fr>1) has lower specific resistance than walking or slow running (Fr<1).

Performed a twosample T-test.

Significance:

Means are different (p<0.0005).

Exolocomotion: Cost of Transport [J/(kg·m)]

Walk (Gray), Run/walk (Dotted), Run (Black)

Suited Locomotion: Run, don't walk!

Carr & Newman (SAE paper 2005-01-2970).

The Art of Engineering!

報

Creative Spacesuit Design

4

Human EVA History

PRIMARY FUNCTIONS OF A SPACE SUIT

報

Pressurization - pressure, air, and carbon dioxide removal Thermal Control - heating, cooling, and humidity control Environmental Protection - radiation, micrometeorite, etc. <u>Human Performance - mobility, locomotion</u>, hygiene, and nutrition

• COMPLETED EVA • FUTURE ISS EVA

514 EVAs to APOLLO 1967-72 35 EVA SKYLAB 1973-75 20 EVA SALYUT 6 1977-82 6 EVA INTERNATIONAL SPACE VOSKHOD GEMINI SOYUZ 1983-86 26 EVA 1981-PRESENT 149 EVA 1961-65 I EVA 1965-66 9 EVA 2001-PRESENT 218 EVA 108 TO DATE / 110 ANTICIPATED 967-PRESENT 2 EVA Date 1028 MARS MERCURY M-20 PRESSURE SUIT **GEMINI G4C EVA SUIT** APOLLO A7L/B SHUTTLE / ISS EMU DRI AN-M **EVAs**

Revolutionary Design: Bio-Suit System

Bio-Suit multiple components:

- Mechanical Counter Pressure (MCP) Bio-Suit layer
- A pressurized helmet
- Gloves and boots
- Possible hard frame
- A modular life support backpack

Systems Engineering: req's., design life, model, interchangeable components

Idea: Custom-fit *skin suit* to an individual human/digital model

- $\Delta W = \Delta W p + \Delta W e$
 - ΔWp Minimize through MCP design
 - ΔWe Bending (design) and Strain Energy (min. or max E)

Results → MCP Requirements

MCP Tension

~2 kN/m

0.8 kN/m

Knee Surface Area

16%

In knee region, when leg flexes from 0 to 90 degrees

Knee Volume

18%

In knee region, when leg flexes from 0 to 90 degrees

Skin Strain Field Mapping Circumferential Strain

Bio-Suit Skin Strain Model

Circumferential Strain (Subject 1)

Results: MCP Initial Prototypes

D-AF

Results: Minimum Energy Bio-Suit

- Maximizing mobility
- Minimizing energy
 - (Strain energy, stress and modulus)

Results: MCP Elastic Bindings

- Maximum mobility
- Active materials (de-couple donning/doffing)
- Shape memory polymers (large max. strain)

- Varying circumferential tension gives
 constant pressure as leg radius changes.
- Donning time ~5 minutes

•Knee flexion angle ~140°

Pressure Distribution Generated by the Elastic Bindings Varies from the Target Value

Prototype MCP generated on calf using Elastic Bindings

Successfully protected a human leg from the effects of external underpressure

ELASTIC BAND PROTOTYPES

Human MCP Garment Trials in Low-Pressure Chambers

Note: * Excludes pressure ramp-down and ramp-up times

Technology Roadmap: Design

Application of Full-Body Electrospun Bio-Suit Technology Developed at Natick Soldier Center Artwork by Cam Brensinn

3D Laser Scanning

- D 1980 Patented 3D rapid digitizing technology
- M 1990 General purpose 3D scanning systems
- 2005 Bio-Suit analysis technique for skin strain field mapping P

3D and Conductive Textiles

- D 1950 3D knitting machine for gloves
- M 1990 3D knit stockings produced, wearable computing proposed
- 2008 3D full body garments, conductive polymer wearable clothing P

Electrospinlacing

- D 1940 Electrospinlacing proposed and patented
- M 2003 Electrospun nano-fibers realized, anisotropic spray capability proposed
- 2015 3D electrospun polymer Bio-Suit garment with specified mechanical properties P

Design from Nature

- D 4 Billion BC Evolution on Earth, Nature's mysteries unfold
- M 2000 Biomimetic design enthusiasm, multidisciplinary approaches
- 2020 Realization of giraffe counterpressure mechanism for g-suits & Bio-Suit P

Technology Roadmap: Pressure

No.

Smart Materials: Shape-Changing Polymers (Artificial Muscles)

- D 2000 Promising dielectric elastomers, electroactive (EAP), and mechano-chemical polymers
- M 2010 Actuator success, polyaniline, & intrinsically conductive polymers available
- P 2020 Human-force capable polymers, local control of suit fabrics, Bio-Suit MCP integration

Ferromagnetic Shape Memory Alloys (SMA)

- D 1960 Shape memory effect observed in Ni-Ti alloy
- M 2000 Nitinol widely available, high temperature alloy actuators.
- P 2015 fSMA technology demonstrated at human force equivalents

Technology Roadmap: 2010

Smart Gels & Fluid Filled Bladders

- D 1970-80 Radio Frequency (RF) welding for polyurethane bladders, smart gels discovered
- M 2005 Thermal control for divers, MEMS valves and actuators make pressure bladders practical
- P 2010 Electronically activated smart gels and bladders for Bio-Suit body concavities

Biomedical Monitoring

- D 1990 Prototypes for MEMS medical "Lab-on-a-chip"
- M 2005 Perfusion monitors used in BioSuit prototype to assess edema formation
- 2015 Astronaut specific miniaturized monitoring systems embedded in Bio-Suit

Human Power Harvesting

- D 1998 Shoe designs incorporate piezoelectrics to generate 10 mW average power
- M 2001 EAP energy harvesting boot generates 2 W of power
- P 2010 Energy harvesting becomes more mature, integrated into Bio-Suit for power assist

Bio-Suit Mock Up

THE NEW

Outreach: Knowledge Station

Explore Space!

The Knowledge Station is an educational portal where you can Explore, Interact, and Learn.

Explore the International Space Station (ISS), Mars, and Europa.

Interact through the gestural interface to exercise on the ISS, explore Mars with Max in an advanced spacesuit, or teleoperate M. Tallchief (a robot) on Jupiter's moon of Europa.

Learn about the world of NASA and NSBRI's science and technology breakthroughs.

Virtually Travel in the Knowledge Station – an educational environment with freestanding mobility designed for museums and public outreach. Our outreach vehicle is designed for 1-2 users and shares a global vision for peaceful space exploration and hopes to inspire the imaginations of future astronauts.

Outreach and Education

Explore Space: Knowledge Station

- Interactive Multimedia Station
- High-Impact Design
- 1-2 users
- Bio-Suit System Theme: Max the Martian Explorer
 - Life on Mars?
 - Moby Music
- Deployment at MIT, museums & public spaces
- Educational assessment

Visualizations and Press

Men's Journal (centerfold) Metropolis National Geographic Film NPR New Scientist Popular Science (cover) Space.com Technology Review Numerous newspapers and on-line ABC BBC/RDF Boston Business Forward Boston Globe CNN Discovery Film Folha de S.Paulo GEO (German design) Russian GEO Leonardo Harvard-MIT Connector

References

 Frazer, A.L., Pitts, B.M., Schmidt, P.B., Hoffman, J.A., and D.J. Newman, "Astronaut Performance Implications for Future Spacesuit Design," 53rd International Astronautical Congress, Houston, TX, October 2002.

報

- 2. Carr, C.E., Newman, D.J., and Hodges, K.V., **"Geologic Traverse Planning for Planetary EVA**," 33rd International Conference on Environmental Systems, Vancouver, Canada, 2003.
- 3. Saleh, J.H., Hastings, D.E., Newman, D.J. "Flexibility in system design and implication for aerospace systems," Acta Astronautica 53 (2003) 927-944.
- 4. Newman, D.J., Bethke, K., Carr, C.E., Hoffman, J., Trotti, G., "Astronaut Bio-Suit System to Enable Planetary Exploration," International Astronautical Conference, Vancouver, B.C., Canada, 4-8 Oct 2004.
- 5. Bethke, K., Carr, C.E., Pitts, B.M., Newman, D.J. "**Bio-Suit Development: Viable Options for Mechanical Counter Pressure?**" 34th International Conference on Environmental Systems, Colorado Springs, Colorado, July, 2004.
- 6. Saleh, J.H., Hastings, D.E., Newman, D.J. "Weaving time into system architecture: satellite cost per operational day and optimal design lifetime," Acta Astronautica 54 (2004) 413-431.
- Sim, L., Bethke, K., Jordan, N., Dube, C., Hoffman J., Brensinger, C., Trotti, G., Newman, D.J.
 Implementation and Testing of a Mechanical Counterpressure Bio-Suit System. # 2005-01-2968, AIAA and SAE International Conference on Environmental Systems (ICES 2005), Rome, Italy, July 2005.
- 8. Carr, C.E, Newman, D.J. When is running more efficient than walking in a space suit? #2005-01-2970, AIAA and SAE International Conference on Environmental Systems (ICES 2005), Rome, Italy, July 2005.
- Jordan, N.C., Saleh, J.H. and Newman, D.J. The Extravehicular Mobility Unit: Case Study in Requirements Evolution and the Need for Flexibility in the Design of Complex Systems. IEEE Conference on Requirements Engineering, Paris, France, August 2005.
- 10. Trevino, L. and Carr, C.E. A First-Order Design Requirement to Prevent Edema in Mechanical Counter-Pressure Space Suit Garments. Submitted to *Aviat Space Environ Med*, June 2005.