The Heart as a Pump

Prof. Roger Mark

Blood Flow in the Heart

Filament Arrangement in Skeletal Muscle

Myosin Molecule

FIGURE 11–11

(a) The heavy chains of myosin molecules form the core of a thick filament. The myosin molecules are oriented in opposite directions in either half of a thick filament. (b) Structure of a myosin molecule. The two globular heads of each myosin molecule extend from the sides of a thick filament forming a cross bridge.

Troponin and Tropomyosin

access of cross bridges to binding sites on actin.

The Cross-bridge Cycle

FIGURE 11-12

Chemical and mechanical changes during the four stages of a cross-bridge cycle. In a resting muscle fiber, contraction begins with the binding of a cross bridge to actin in a thin filament—step 1. (M* represents an energized myosin cross bridge.)

Skeletal Muscle Anatomy

From Vander

(a) Diagrammatic representation of the sarcoplasmic reticulum, the transverse tubules, and the myofibrils. (b) Anatomical structure of transverse tubules and sarcoplasmic reticulum in a single skeletal-muscle fiber. X

Calcium Dynamics in Contraction and Relaxation

Length-Tension Relationship in Skeletal Muscle

Cardiac vs. Skeletal Muscle

Pump Function: Toward a Model

Isolated Cardiac Muscle Experiments

a. Experimental Apparatus

b. Relation between Force (Tension) and Length for ne Cat Papillary Muscle (Reproduced from Downing and Sonnenblick⁹⁵ with the Permission of the Publisher).

active

passive

13

The Two-State Spring Model

Isovolumetric Contraction: Dog Ventricle

LV Pressure Volume Curves: Human

Model of Ventricle

Estimates of Systolic and Diastolic Capacitances

Approximate Values for Capacitances and V_ds for Dog and Man

	Dog	Man
V _d	5 cc	15 cc
CD	4 ml/mmHG	15 ml/mmHg
Cs	0.1 ml/mmHg	0.4 ml/mmHg

Cardiac cycle with constant preload, Pf, and constant afterload, Pa

Left ventricular (LV), aortic, and left atrial (LA) pressure versus time

Pressure vs Time With Aortic Load

The LV pressure-volume loop when the heart is attached to the aorta

Pressure vs Volume

Ventricular Model with Constant Preload and Afterload

Cardiac Cycle in the P-V Plane

Varying Pre- and Afterloads

Varying Pre- and Afterloads

Varying Pre- and Afterloads

PV Loops(dog): fixed contractility

Pressure Volume Loops in Human Using Impedance Catheter

Cardiac Cycle in the P-V Plane

Ventricular Output Curve

$$\begin{split} \text{V.O.} &= f \Big(\text{C}_{\text{D}} \text{P}_{\text{f}} - \text{C}_{\text{S}} \text{P}_{\text{a}} \Big) & \text{if } \frac{\text{P}_{\text{a}} \text{C}_{\text{S}}}{\text{C}_{\text{D}}} < \text{P}_{\text{f}} \leq \frac{\text{V}_{\text{max}}}{\text{C}_{\text{D}}} \\ &= f \Big(\text{V}_{\text{max}} - \text{C}_{\text{S}} \text{P}_{\text{a}} \Big) & \text{if } \text{P}_{\text{f}} \geq \frac{\text{V}_{\text{max}}}{\text{C}_{\text{D}}} \\ &= 0 & \text{if } \text{P}_{\text{f}} < \frac{\text{P}_{\text{a}} \text{C}_{\text{S}}}{\text{C}_{\text{D}}} \end{split}$$

Ventricular Output vs. Preload and Afterload (computational model)

Contractility

LV Diastolic Pressure-Volume Curves

Changing Inotropic State Revealed by P-V Loops

P-V Loops in Man Using Impedance Catheter a) Control b) Dobutamine

P-V Loops in Man Using Impedance Catheter a) Control b) Epinephrine

