

Computational Model of the Cardiovascular System for Analysis of Spaceflight-Induced Orthostatic Intolerance

Thomas Heldt, Eun B. Shim, Roger D. Kamm, and Roger G. Mark

Harvard University – MIT Division of Health Sciences and Technology

Background:

- Cardiovascular problems following spaceflight have been encountered since the Mercury missions
- Drastically increased heart rates have been noted in upright tilt-table testing during the Gemini missions
- Post-spaceflight orthostatic intolerance was noted in Apollo astronauts for up to 3 days after landing
- Skylab (1970s) mission explored human physiology during long-term space missions
- Spacelab (1980s) provided a framework for studying human physiology with emphasis on various organs systems
- Neurolab (1998) explored several hypotheses regarding the the mechanisms underlying post-spaceflight OI.

Orthostatic Intolerance Syndrome:

Presenting symptoms:

- Lightheadedness
- Palpitations
- Fatigue
- Blurred Vision
- Dizziness
- Syncope

Drop in Mean Arterial Pressure

• DRAMATIC Increase in Heart Rate

... upon assumption of the upright posture.

Clinical Findings:

Background:

- Cardiovascular problems following spaceflight have been encountered since the Mercury missions
- Drastically increased heart rates have been noted in upright tilt-table testing during the Gemini missions
- Post-spaceflight orthostatic intolerance was noted in Apollo astronauts for up to 3 days after landing
- Skylab (1970s) mission explored human physiology during long-term space missions
- Spacelab (1980s) provided a framework for studying human physiology with emphasis on various organs systems
- Neurolab (1998) explored several hypotheses regarding the the mechanisms underlying post-spaceflight OI.

Problems:

- High variability in individual responses
- Small number of subjects studied
- Environmental effects unclear
- Conflicting experimental observations

Cardiovascular Problems Associated with Spaceflight:

- Orthostatic Intolerance upon Re-entry
- Arrhythmias
- Loss of Cardiac Mass
- Reduced Exercise Capacity
- Manifestation of Pre-Existing Cardiovascular Diseases

Transition from 1g to 0g:

Loss of gravitational gradients:

- Redistribution of volume
- Loss of intravascular volume
- Lack of regular exercise
- Lack of constant stimulation of reflex mechanisms

Hypotheses:

- Cardiac Atrophy
- Hypovolemia
- Downregulation of Effector mechanisms
- Muscle Atrophy / Changes in Properties of Leg Circulation
- •

Rationale for Modeling:

 Provides rational framework to interpret experimental results and test hypotheses

 Aids in predicting benefits of specific countermeasures

Goals:

- Simulate the short term (10 15 mins) response to orthostatic stress in normals and microgravity adapted individuals
- Test hypotheses concerning mechanisms of orthostatic intolerance
- Simulate effects of countermeasures

The Hemodynamic Model:

Thirteen compartment lumped-parameter hemodynamic model

The Hemodynamic Model:

Control System:

- Arterial Baroreflex
- Cardiopulmonary reflex;
- Individual gains adjustable
- Effector mechanisms: heart rate, venous tone, cardiac contractility, and arteriolar resistance

Control System:

Control System:

 $\Delta \mathbf{P} = \mathbf{P}_{\text{trans}}^{-} \mathbf{P}_{\text{set}}$

Heart Rate Contractility Venous Tone Art. Resistance

 $\left[\mathsf{P}_{eff}(\mathsf{t}\mathsf{-}\mathsf{k}) \{\alpha \mathsf{p}(\mathsf{k}) + \beta \mathsf{s}(\mathsf{k})\} \mathsf{d}\mathsf{k}\right]$

Model Performance:

Parameter	Model	Normal Value*
Pressures (mm Hg)		
LVP	131/6	130/7
ABP	130/80	130/70
CVP	5/3	7/5
RVP	28/1	24/4
Stroke Vol. Ind. (ml/beat per m ²)	50	47
Cardiac Index (I/min per m ²)	3.2	3.4

* Based on: Hurst's The Heart, RW Alexander (ed.), vol.1, 9th ed.

Tilt Table Simulation:

 Account for fluid shifts into dependent venous compartments by varying bias pressures at C_{II} and C_{AB}

 Account for blood plasma leakage from capillaries by reducing overall blood volume over time

 Account for gravitational effect on sensed carotid sinus pressure

 $P_{\text{bias}} = P_0 \sin(\alpha(t))$

 $P_{CS} = \rho gh sin(\alpha(t))$

Tilt Table Simulation:

Sudden tilts from horizontal Mean values (3-5 min) after tilt

Young males (20-29 y), N=15
Older males (40-49 y), N=16

Data taken from: Smith et al. Physiologist, 27, 210, 1984.

Tilt Table Simulation:

Sudden tilts from horizontal Mean values (3-5 min) after tilt

• Young males (20-29 y), N=15

Data taken from: Smith et al. Physiologist, 27, 210, 1984.

• Older males (40-49 y), N=16

Transient Response to Tilt:

Features taken from: Rossberg et al. Europ. J. Physiol., 50, 291, 1983.

Data taken from: Rossberg et al. Europ. J. Physiol., **50**, 291, 1983.

Stand-Test Simulation:

Pre-Spaceflight

Testing of Hypotheses:

- Simulate response to orthostatic stress test for different sets of hemodynamic and/or control parameters
- Compare simulation to experimental observation based on some "measure"
- Repeat simulation with different sets of parameters until "best fit" is achieved

Astronaut Stand Tests:

Pre-Spaceflight

Source of data: J. Fritsch-Yelle, Johnson Space Center

Stand-Test Simulation:

Pre-Spaceflight

Cardiovascular Adaptation During Space Flight

Observations:

- Reduction in plasma volume by about 15%
- Reduction in baroreflex heart rate gain by 15%
- Increase in venous leg compliance by 26% 45%

Hypothesis:

Down-regulation of splanchnic venous receptors

Testing Hypotheses

∆Total Blood Volume

∆Heart Rate Gain

∆ Resistance Gain

Source of data: J. Fritsch-Yelle, Johnson Space Center

∆Venous Tone Gain

Combining Hypotheses

Hypovolemia ↓ Venous Feedback ↓ Arteriolar Feedback

Simulation of Midodrine

Source of data: J. Fritsch-Yelle, Johnson Space Center

Conclusions:

- Even after 30+ years of research, OI is still poorly understood.
- Current efforts rely on ground-based analogs such as bedrest.
- Computational models can:
 - help interpret experimental observations
 - test hypotheses
 - simulate the effects of countermeasures.

Computational Models will save the world!