

Ι C		Spaceflight Bone Loss in Humans				
Flight / Study	Finding	References				
Gemini 4, 5, and 7	4-14 days; Calcaneus and metacarpal bone density losses of 2-4% for 5 astronauts, and 9% for sixth	Vose, 1974				
Soyuz 9	18 days; 8-10% decrease in calcaneus density for both cosmonauts	Birykov and Krasnykh, 1970				
Apollo 17	12.6 days; mean Ca loss of 0.2% of total body and mean Phosphorus loss of 0.7% of total body through increased urinary and fecal excretion	Rambaut, et al., 1975				
Skylab 2 Mission	No significant bone mineral content changes in arm; calcaneus loss returned to normal by 87th day postfl.	Vogel & Whittle, 1976				
Long Term Follow-Up of Skylab Bone Demin.	Statistically significant loss of os calcis mineral in nine Skylab crewmembers, 5 years after flight	Tilton, et al., 1980				
Combined U.S. / U.S.S.R. Study of Long Term Flight	QCT of spine; Up to 8 months; No loss in vertebral bodies, but 8% loss in posterior elements (4% loss in volume of attached muscles); exercise countermeasures only partially successful	Oganov, et al., 1990				
Mir 366-Day Mission	One cosmonaut averaged 10% loss of trabecular bone from L1, L2, L3; measured by QCT	Grigoriev, et al., 1991				
Mir 4.5-6 Month Flights	QDR assessment of BMD; total body mineral losses averaged 0.4%; most marked local loss was in femoral neck and greater trochanter up to 14%	Oganov, et al., 1992				
Mir 1 and 6 Month Flights	pQCT; noticeable loss of trabecular and cortical bone in tibia after 6 months	Collet, et al., 1997				
NASDA Study of 2 NASA	42 y.o. female and 32 y.o. male; short flight; negative	Miyamoto, et al., 1998				

Prof	Dava	Newman
1101.	Dava	1 NC WILLIAM

16.423J/HST515J/ESD.65J Space Biomedical Engineering and Life Support Systems

6

Spaceflight Bone Loss in Animals

Flight / Study	Finding	References
Cosmos 605	Rats; Bone formation reduced in metaphyses of long bones	Yagodovsky, et al., 1976
Cosmos 782	Rats; 40% reduction in length of primary spongiosa due to reduced formation and increased resorption	Asling, 1978
Cosmos 782?	Rats; Osteoblast differentiation in <i>non-weight-bearing</i> site suppressed during weightlessness	Roberts, 1981
Cosmos 936	Rats; 30% decrease in femoral breaking strength of femora with recovery of normal properties after 25d	Spector, et al., 1983
Cosmos 782 & 936	Rats; Arrest line separating bone formed during and post-spaceflight; defective and hypomineralized bone	Turner, et al., 1985
Rat Tail Suspension, 1984	Up to 15 days; Calcium content: tibia = 86.2 +/- 2.5%, vertebra = 75.5 +/- 3.5% of control	Globus, et al., 1984
Cosmos 1514	Primates; 5 days; resorption increased during flight	Cann, et al., 1986
Cosmos 1667, 1887, 2044	Primates; 13 days; lower mineralization rate and less bone mineralized; longitudinal growth slowed	Cann, et al., 1990
Cosmos 1667	Rats; 7d spaceflight vs 7d tail-suspension; loss of trabecular bone in prox tibial metaph more extensive in flight rats	Vico, et al., 1991
Cosmos 2044	Rats; Fracture repair process impaired during flight	Kaplansky, et al., 1991
Cosmos 2229	Primates; 11.5 days; tendency toward decreased BMC during flight; only partial recovey 1 month after	Zerath, et al., 1996
Rat Tail Suspension, 1998	Unloaded bones display reduced osteoblast number, growth, and mineralization rate in trabecular bone	Morey-Holton and Globus, 1998

Bedrest / Hypokinesia Studies Models for Weightlessness of Spaceflight					
Study	Finding	References			
5-36 Weeks Bedrest	90 healthy young men; 5% loss of calcaneal minerla each month; mechanical and biochemical countermeasures not successful	Schneider and McDonald, 1984			
120-day Bedrest	Mineralization rate slowed; contradictory results demonstrate difficulties of bedrest as space analog	Vico, et al., 1987			
17-week Bedrest	6 healthy young males; 6 months of reambulation; BMD % change (p < .05): femoral neck (FN) -3.6, trochanter (T) -4.6; % / week (p < .05): FN21 +/05, T27 +/05; Reambulation % recovery: FN 0.00 +/-	LeBlanc, et al., 1990			

.06, T 0.05 +/- .05 (prox. femur did not recover well)

Highest losses in foot bones; remedial measures

delay osteoporosis but do not completely exclude it;

results obtained by different methods often conflicting

16.423J/HST515J/ESD.65J Space Biomedical Engineering and Life Support Systems

7

Zaichick and Morukov,

1998

Prof. Dava Newman

370-day Antiorthostatic

Hypokinesia Test

Prof. Dava Newman 16.423J/HST515J/ESD.65J Space Biomedical Engineering and Life Support Systems 12
Effectors of the Motor System
The major output of the elaborate information processing that takes place in our brain is the generation of a contractile force in our skeletal muscles.
Muscle fasciculus

Muscle fasciculus
Myofibril
Sarcomere

Each muscle fiber is innervated by only one motor neuron, although each motor neuron innervates a number of muscle fibers
The motor neuron and all the fibers it innervates is called a motor unit (the smallest functional unit controlled by the motor system)

