DYNAMIC SYSTEM ANALYSIS & WHY DO WE CARE?

PHILIP FERGUSON SBE - 2006 DYNAMICS LECTURES (03/21/06 & 03/23/06)

LEARNING OBJECTIVES

Introduce the

What is Dynamics Useful For? Have a little Fun!

Equilibrium Point Hypothesis

DYNAMICS VS. KINEMATICS

Dynamics:

Propagation of motion due to forces / torques

 Kinematics:
Movement from one pose to another

Greek 101

dynamís: power

kíneín: to move

EXAMPLE

Kinematics

Position and velocity of mass over time.

 $\dot{x}(t), x(t)$

Dynamics

Forward: Position and velocity of mass resulting from applied force.

Inverse: Force required to generate specific position and velocity profile.

 $F(t) = M\ddot{x}(t) + B\dot{x}(t) + Kx(t)$

er

WHAT'S THE BIG DEAL?

- Force input can look very different from desired trajectory
- Simple trajectories can require complicated driving forces and vice versa
- Sexample: Multi-limb dynamics

$$\tau = H(\theta)\ddot{\theta} + C(\theta,\dot{\theta})\dot{\theta} + D(\theta,\dot{\theta})\dot{\theta} + G(\theta)\dot{\theta}$$

TWO-LINK ARM DYNAMICS

TWO-LINK ARM DYNAMICS

 $cos(heta_2)) + I_2$

Imagine the complexity for more than two links!

 $= \begin{bmatrix} -2h\theta_2 & -h\theta_2 \\ h\dot{\theta_1} & 0 \end{bmatrix}$

 $G(\theta) = \left[\begin{array}{cc} g_1 & g_2 \end{array} \right]$

IMPACT ON CONTROL STRATEGY

- Complicated control strategies may be difficult or undesirable to realize
 - Oynamic Cost Functions:
 - Minimum Joint Torque
 - Minimum Torque Change
 - Minimum Jerk (Snap, Crackle, Pop?)

- Cannot be described by kinematics alone
- But, are dynamics really a part of human movement control?

- Predicts multi-joint motion based on programmable springs and dampers at each joint
- Stiffness and damping adjusted such that equilibrium point of arm matches desired position
- Trajectory formed out of time varying equilibrium points

$$\tau(t) = K_p[\theta_{ep}(t) - \theta(t)] + K_d[\dot{\theta}_{ep}(t) - \dot{\theta}(t)]$$

ADVANTAGES

- Very simple form
 - Does not require computation of full nonlinear dynamics
- Excellent performance shown in deafferented monkeys as well as humans [Flash, Hogan, Bizzi]
- Simple joint PD was very common in early "pick-andplace" robotics [Slotine and Li]
- Architecture of spinal cord lends itself to "natural" PD control
 - Avoids large transport delays to / from cortex

DRAWBACKS

- Joint PD controllers NOT good at complicated tracking problems [Slotine & Li]
 - Most experiments supporting EPH use very simple trajectories
- Subjects reaching for objects in rotating rooms have end-point errors [DiZio & Lackner]
 - Also adapt to trajectory
- Astronauts on-orbit show remarkable adaptation to micro-gravity [Newman]
 - Not predicted by the equilibrium point hypothesis
- Counter-intuitive that humans with large mental capacity would opt for sub-optimal (in the performance sense) tracking controllers

- Reaching in rotating room
 - Coriolis forces applied without mechanical arm contact
 - Velocity dependent so no force at end of trajectory

- Equilibrium point hypothesis would predict no endpoint error
 - Also would not predict any adaptation

Credit DiZio & Lackner, Brandeis University 1994.

SIMULATION RESULTS

Computed torques due to rotation using Lagrangian Dynamics:

$$\tau_i = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i}$$

- 3-link manipulator assumed to compute coriolis and centripetal torques
 - Link lengths, angular displacement of first link set to zero
 - Terms depending on angular velocity of first joint were thus related to coriolis and centripetal accelerations

TIP TRAJECTORY

Credit DiZio & Lackner, Brandeis University 1994.

VIRTUAL ROTATION

- Similar experiments carried out with virtual reality helmets
 - Subjects felt like they were rotating
- Arm trajectories deviated in the direction opposite to where the coriolis force would have been
- Suggests knowledge of arm dynamics in control strategy
- Interesting addition to experiment
 - Subjects did NOT exhibit errors immediately after rotation stoppage (unlike previous rotating room expts.)

FORCE APPLICATION

 Equilibrium trajectory placed within a stiff wall

 Force computed by measuring insertion depth into wall

Requires STIFF ODE solvers.

EPH FORCE APPLICATION

 Another control possibility is to use the manipulator Jacobian to track the tip position ... not the joint position

$$\tau = J^T \left(K \tilde{x} + B \dot{\tilde{x}} \right)$$

More complicated controller (requires some kinematic knowledge)

WITH TIP CONTROL

JUMPING EXPERIMENTS

- False platform jumps
 - Sometimes floor is present, other times, substantially lower
- Astronaut jumps post-flight

- Observation: Subjects develop internal model predicting landing times
 - Astronauts not "ready" for floor when it arrives
- Why?

$$g_{internal} < g_{true} \Rightarrow \hat{T}_{impact} > T_{true}$$

- Common argument against EPH is that it requires high arm stiffnesses
 - But human arm stiffnesses measured by Gomi and Kawato are quite low
- So, how can we make accurate, fast motions if the EPH is true?

STORY SO FAR ...

Shown tole of dynamics in human motion Current Abay Artweet Story dynamics play

• What else is dynamic aberul for?

DYNAMIC ESTIMATION

- Lots of (noisy) data
- Indirect measures
- Complicated dynamics
- Must understand control strategy

THOUGHT EXAMPLE

Distorted

THOUGHT EXAMPLE

Distorted

Known Dynamics

Weight estimates based on confidence of measures

State Vector

- Quantity to be estimated
- \odot Covariance P
 - Sigma Squared" variance of estimate
- Measurement Variance

- Sigma Squared" noise on measurements
- Measurement Equation

$$\mathbf{y} = HX$$

Relates measurements to state vector

"Cost"

$$J = \left(\mathbf{y} - HX\right)^T R^{-1} \left(\mathbf{y} - HX\right)$$

First Variation

$$\frac{\partial J}{\partial X} = (\mathbf{y} - HX)^T R^{-1} (0 - H) = 0$$

Stationary Point

$$X = \left(H^T R^{-1} H\right)^{-1} H^T R^{-1} \mathbf{y}$$

Circular Vehicle Motion

Kalman Measurement Update

$$\begin{array}{lcl} S_k &=& H_k P_k^- H_k^T + R_k \\ K_k &=& P_k^- H_k^T S_k^{-1} \\ \hat{X}_k^+ &=& \hat{X}_k^- + K_k \left(z_k - H_k \hat{X}_k^- \right) \\ P_k^+ &=& \left(\mathbf{1} - K_k H_k \right) P_k^- \end{array}$$

Kalman Time Update

$$\hat{X}_{k+1}^{-} = \Phi_k \hat{X}_k^+$$
$$P_{k+1}^{-} = \Phi_k P_k^+ \Phi_k^T + Q_k$$

KALMAN FILTER BASICS

- Assumes measurements and dynamics tainted by Gaussian white noise
 - Need estimates of noise variances before starting
 - Initial process (dynamics) noise variances go on *diagonal* of initial covariance matrix (P)
 - Measurement variances (usually constant) go on *diagonal* of the measurement variance matrix (R)
- Must also start with an initial state estimate (does not need to be very good)
- Oynamics need to be linearized and discretized
 - State transition matrix: Takes state at time step *i* and propagates to time step (*i* + 1)

KALMAN STEPS TO SUCCESS

- 1. Define the state we wish to estimate.
- 2. Identify process and measurement noise and create P and R matrices.
- 3. Define, then linearize and discretize state dynamics.
- 4. Define the measurement equation.
- 5. Run the Kalman filter in a loop.
- 6. If running in simulation, plot the estimation error on the same axes as the square roots of the covariance matrix diagonals (to verify proper filter operation).
- 7. Brag to your friends that you know how to write a Kalman filter.

ADVANCED EXAMPLE

- Joint Angles (Kinematics)
 - Video Analysis

$\tau = H(\theta)\ddot{\theta} + C(\theta,\dot{\theta})\dot{\theta} + D(\theta,\dot{\theta})\dot{\theta} + G(\theta)$

Function of joint angles, rates, accelerations

Nonlinear Dynamics

Nonlinear Measurements

Acceleration State Required

What are the acceleration dynamics?

Observability

STRATEGY

- Oynamic equation known
 - But not control inputs!
- "One-Step" torque estimator required
- Estimate accelerations → compute torques <</p>
- Torques can be used in 2-step estimator to improve angle and rate estimates

NEWTON-RAPHSON

Taylor Series

Χ

OBSERVABILITY

Measurement Information Content

$$Y = H^T R^{-1} H$$

Shows up in Least Squares Estimator

- Full state observability requires full rank
 - Increase rank?
 - Increase measurements
 - Decrease state size

Augment cost to include prior estimates

 $J = (X - X_0)^T P_0^{-1} (X - X_0) + (y - h(X))^T R^{-1} (y - h(X))$

Nonlinear Least Squares with Prior Information

Initial State Guess

UNSCENTED KALMAN FILTER

- Extended Kalman Filter permits nonlinear measurements & dynamics
 - Still requires linearization of dynamics for covariance propagation
- Unscented Kalman Filter incorporates nonlinear covariance propagation

Astronaut Rotation Dynamics

Philip Ferguson

Adapted from SBE-2003 term project by P. Ferguson and K. Bethke

March 23, 2006

Motivation: Why Self-Rotation?

EVA separation danger

- I emergency predicted for every 1,000 hours of EVA
- Attitude-hold thrusters are inadequate
- IVA training / adaptation

Propulsive Devices

Ed White using HHMMU (NASA)

Bruce McCandless using MMU (NASA)

Background

- Astronauts experimenting with self-rotation for years! (largely undocumented).
- Kulwicki outlined several body motions in 1962.
- Kane provided an "optimal" analysis in 1968.
- Frohlich provided further insight, linking divers, cats and astronauts in 1980.
- No substantial scientific link between astronaut EVA operations and dynamics.

Momentum

Linear

- Velocity vector always parallel to momentum
- Zero momentum implies zero velocity
- Mass dependent
- Remains constant if no force (and constant mass)

Angular

- Velocity vector not always parallel to momentum
- Zero momentum does not imply zero velocity
- Inertia dependent
- Remains constant if no torque (and constant mass)

 $\mathbf{h} = I\omega$

$$\mathbf{p} = m\mathbf{v}$$
Some Mathematics ...

Rotation Matrix

- Relates two coordinate frames at different rotations
- Permits us to easily express a vector in multiple frames

 $cos(\theta) = -st$

Vector v expressed in frame a Rotation matrix rotating frame b to frame a

Vector v expressed in frame b

NOTE: A vector does NOT depend on the frame it is expressed in! Using rotation matrices, a single vector can be expressed in ANY reference frame.

More Mathematics ...

Vector Calculus

- Often convenient to express quantities in rotating frames
- But, Newton's laws must be applied in "Newtonian" (inertial) frames
 - Non accelerating, non rotating
- Must express vector derivatives in inertial frames

 $\dot{\mathbf{v}} = \dot{\mathbf{v}} + (\boldsymbol{\omega} \times \mathbf{v})$

Derivative in inertial frame

Derivative as seen in rotating frame Rotational rate of rotating frame with respect to inertial frame

Equations of Motion

Linear Motion

- Consider astronaut floating in space
- How can the astronaut translate?
- Where can external forces come from?

$$\dot{\mathbf{p}} = \mathbf{F}$$

$$m\dot{\mathbf{v}} = \mathbf{F}$$

- No assumptions made on reference frames
- What frame makes the most sense to report the forces in?
 - What if the astronaut is rotating?

Equations of Motion

Rotational Motion

0

- Always express rotation rate in body frame
 - I.e. Frame that rotates w.r.t. the astronaut

 $h = \tau$

 $\dot{I}\omega + I\dot{\omega} = \tau$

Now, assume all quantities are in the body frame

 $I_{body}\omega_{body} + I_{body}\dot{\omega}_{body} + \omega_{body} \times (I_{body}\omega_{body}) = \tau_{body}$

IMPORTANT: In a given expression, once a reference frame has been chosen, ALL terms MUST be expressed in the same frame!

Conservation of Angular Momentum

Basic Attitude Regulation

But astronauts have no momentum wheels, so how can they do this?

50

Also, what about h=0?

- Easy to imagine re-orientations when starting with non-zero momentum
 How do astronauts do this when they start from rest?
 - If h=0, how can ω be anything but 0?

$$\mathbf{h} = I\omega$$

Answer: I is a tensor and the human body is made of several attached segments!

Astronaut Pitch

Astronaut Yaw

How did they do that?

Two separate techniques:

- Change of Inertia tensor
 - Makes one body segment resistant to rotation
 - Astronaut then applies torque between segments

$$\theta_{\Delta} = (\theta_t - \theta_l) \left[\frac{I_{l_1}}{I_{t_1} + I_{l_1}} - \frac{I_{l_2}}{I_{t_2} + I_{l_2}} \right]$$

- Mimic momentum wheels
 - Common because similar to swimming
 - Uses both arms and legs
 - Constant motion required
 - Practical for EVA? (stay tuned)

Self-Rotation Simulation

Other Z-axis motions

Discrete Inertia Changes	Continuous Momentum-wheel Motion
"Cat Reflex"	"Lasso"
Twist torso, feet pointed opposite shoulders. Increase upper moment of inertia by extending arms straight out. Untwist torso to achieve net displacement. Lower arms.	Extend one or both arms straight up over head. Continuously revolve arm(s) about the z-axis. Arm(s) trace cone with shoulder at apex. Make cone as wide as possible.
"Bend and Twist"	"Pinwheel"
Bend at waist to one side and extend arms overhead. Rotate upper body to other side, keeping back horizontal and arms out. Draw arms down and unbend at waist.	With body straight and hands on hip, continuously rotate the entire upper part of the body in a conical motion. The upper body draws out a cone with its apex at the waist.