
Dynamic System
Analysis

&
Why do we Care?

Philip Ferguson
SBE - 2006 Dynamics Lectures

(03/21/06 & 03/23/06)



Power of
Dynamic Modeling

&
Estimation

Learning Objectives 

What is 
Dynamics 

Useful For?

Equilibrium
Point

Hypothesis

Have a little
Fun!

Introduce the 



Dynamics vs. Kinematics 

Dynamics: 

Kinematics: 

pose to another 

dynamis: 
power 

kinein: 
to move 

Propagation of motion 
due to forces / torques 

Movement from one 

Greek 101 



Example 

Mass

Damper
(B)

Spring
(K)

Force (F)

Kinematics 

Position and velocity of mass 
over time. 
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1 Introduction

Some equations

F (t) = Mẍ (t) + Bẋ (t) + Kx (t) (1)

ẋ (t) , x (t) (2)

1

Dynamics 

Forward: Position and velocity 

Inverse: 
generate specific position and 
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1 Introduction

Some equations

F (t) = Mẍ (t) + Bẋ (t) + Kx (t) (1)

1

of mass resulting from applied 
force. 

Force required to 

velocity profile. 



What’s the Big Deal? 

trajectory 

Example: Multi-limb dynamics 

= Inertia Coriolis Friction Gravity+ + + 
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1 Introduction

Some equations

F (t) = Mẍ (t) + Bẋ (t) + Kx (t) (1)

ẋ (t) , x (t) (2)

τ = H(θ)θ̈ + C(θ, θ̇)θ̇ + D(θ, θ̇)θ̇ + G(θ) (3)

H11 = m1l
2
c1 + I1 + m2

(
l21 + l2c2 + 2l1lc2cos(θ2)

)
+ I2 (4)

H22 = m2l
2
c2 + I2 (5)

H12 = m2l1lc2cos(θ2) + m2l
2
c2 + I2 (6)

h = m2l1lc2sin(θ2) (7)
g1 = m1lc1cos(θ1) + m2l1cos(θ1 + θ2) (8)
g2 = m2lc2cos(θ1 + θ2) (9)

H(θ) =
[

H11 H12

H12 H22

]
(10)

C(θ, θ̇) =
[
−2hθ̇2 −hθ̇2

hθ̇1 0

]
(11)

G(θ) =
[

g1 g2

]T (12)

1

Force input can look very different from desired 

Simple trajectories can require complicated 
driving forces and vice versa 

Control 
Torques Torques Torques Torques Torques 



Two-Link Arm Dynamics 

Asada & Slotine, 1986 



Two-Link Arm Dynamics 
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H11 = m1l
2
c1 + I1 + m2

(
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)
+ I2 (4)

H22 = m2l
2
c2 + I2 (5)

H12 = m2l1lc2cos(θ2) + m2l
2
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H(θ) =
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H11 H12

H12 H22

]
(10)

C(θ, θ̇) =
[
−2hθ̇2 −hθ̇2

hθ̇1 0

]
(11)

G(θ) =
[

g1 g2

]T (12)

1

Imagine the 
complexity 

for more than 
two links! 
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€

Dynamic Cost Functions: 

Minimum Jerk (Snap, Crackle, Pop?) 

Cannot be described by kinematics alone 

Impact on Control Strategy 

Complicated control strategies may be difficult or 
undesirable to realize 

Minimum Joint Torque 

Minimum Torque Change 

But, are dynamics really a part of human movement 
control? 



€

position 

points 

Equilibrium Point Hypothesis 
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1 Introduction

Some equations

F (t) = Mẍ (t) + Bẋ (t) + Kx (t) (1)

ẋ (t) , x (t) (2)

τ = H(θ)θ̈ + C(θ, θ̇)θ̇ + D(θ, θ̇)θ̇ + G(θ) (3)

H11 = m1l
2
c1 + I1 + m2

(
l21 + l2c2 + 2l1lc2cos(θ2)

)
+ I2 (4)

H22 = m2l
2
c2 + I2 (5)

H12 = m2l1lc2cos(θ2) + m2l
2
c2 + I2 (6)

h = m2l1lc2sin(θ2) (7)
g1 = m1lc1cos(θ1) + m2l1cos(θ1 + θ2) (8)
g2 = m2lc2cos(θ1 + θ2) (9)

H(θ) =
[

H11 H12

H12 H22

]
(10)

C(θ, θ̇) =
[
−2hθ̇2 −hθ̇2

hθ̇1 0

]
(11)

G(θ) =
[

g1 g2

]T (12)

τ(t) = Kp[θep(t)− θ(t)] + Kd[θ̇ep(t)− θ̇(t)] (13)

1

Predicts multi-joint motion based on 
programmable springs and dampers at each joint 

Stiffness and damping adjusted such that 
equilibrium point of arm matches desired 

Trajectory formed out of time varying equilibrium 



Advantages 

well as humans [Flash, Hogan, Bizzi] 

Simple joint PD was very common in early “pick-and-

Very simple form 

Does not require computation of full nonlinear dynamics 

Excellent performance shown in deafferented monkeys as 

place” robotics [Slotine and Li] 

Architecture of spinal cord lends itself to “natural” PD 
control 

Avoids large transport delays to / from cortex 



Drawbacks 

[Slotine & Li] 

Most experiments supporting EPH use very simple trajectories 

[DiZio & Lackner] 

Also adapt to trajectory 

[Newman] 

Joint PD controllers NOT good at complicated tracking problems 

Subjects reaching for objects in rotating rooms have end-point errors 

Astronauts on-orbit show remarkable adaptation to micro-gravity 

Not predicted by the equilibrium point hypothesis 

Counter-intuitive that humans with large mental capacity would opt for 
sub-optimal (in the performance sense) tracking controllers 



Brandeis Rotating Room 



Coriolis Forces 

contact 

Reaching in rotating room 

Coriolis forces applied without mechanical arm 

Velocity dependent so no force at end of trajectory 

Equilibrium point hypothesis would predict no end-
point error 

Also would not predict any adaptation 



DiZio & Lackner’s Results 

Credit DiZio & Lackner, Brandeis University 1994. 
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Simulation Results 

3-link manipulator assumed to compute coriolis and centripetal 

τ i = 
d 
dt 

∂L 
∂q̇i 

 

 
 

 

 
 − 

∂L 
∂qi 

Computed torques due to rotation using Lagrangian Dynamics: 

torques 

Link lengths, angular displacement of first link set to zero 

Terms depending on angular velocity of first joint were thus 
related to coriolis and centripetal accelerations 
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τ coriolis = 
−2ω0m2l1lc 2 sin(q2 ) ̇q2 

2ω0m2l1lc 2 sin(q2 ) ̇q1 

 

 
 

 

 
 

τ centripetal = 
0 

ω0 
2m2l1lc 2 sin(q2 ) 

 

 
 

 

 
 

Ftip = JT( )−1 
τ coriolis + τ centripetal( ) 

Rotational Torques / Forces 



Rotational Torques 



Rotational Forces 



Tip Trajectory 



Experimental Results 

Credit DiZio & Lackner, Brandeis University 1994. 



Virtual Rotation 

Similar experiments carried out with virtual reality helmets 

Subjects felt like they were rotating 

Arm trajectories deviated in the direction opposite to where the 
coriolis force would have been 

Suggests knowledge of arm dynamics in control strategy 

Interesting addition to experiment 

Subjects did NOT exhibit errors immediately after rotation 
stoppage (unlike previous rotating room expts.) 



Force Application 

Equilibrium
trajectory placed 

measuring insertion
depth into wall 

solvers. 

within a stiff wall 

Force computed by 

Requires STIFF ODE 



EPH Force Application 
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Tip Controller 

manipulator Jacobian to track the tip position 
… not the joint position 

kinematic knowledge) 

τ = JT Kx̃ + B ˜̇x( ) 

Another control possibility is to use the 

More complicated controller (requires some 



With Tip Control 



Jumping Experiments 

False platform jumps 

times, substantially lower 

Observation:  Subjects develop internal 

when it arrives 

Why? 

Blah
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τ = H(θ)θ̈ + C(θ, θ̇)θ̇ + D(θ, θ̇)θ̇ + G(θ) (3)

H11 = m1l
2
c1 + I1 + m2

(
l21 + l2c2 + 2l1lc2cos(θ2)

)
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h = m2l1lc2sin(θ2) (7)
g1 = m1lc1cos(θ1) + m2l1cos(θ1 + θ2) (8)
g2 = m2lc2cos(θ1 + θ2) (9)

H(θ) =
[

H11 H12

H12 H22

]
(10)

C(θ, θ̇) =
[
−2hθ̇2 −hθ̇2

hθ̇1 0

]
(11)

G(θ) =
[

g1 g2

]T (12)

τ(t) = Kp[θep(t)− θ(t)] + Kd[θ̇ep(t)− θ̇(t)] (13)

ginternal < gtrue ⇒ T̂impact > Ttrue (14)

1

Sometimes floor is present, other 

Astronaut jumps post-flight 

model predicting landing times 

Astronauts not “ready” for floor 



Low arm stiffness 
produces wavy 

trajectory

What about fast motion? 
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Actual Hand Trajectory

Equilibrium Hand Trajectory

Common argument against EPH is that it requires high arm stiffnesses 

But human arm stiffnesses measured by Gomi and Kawato are quite low 

So, how can we make accurate, fast motions if the EPH is true? 



General Consensus 

Motivation MICR0-G ScienceBackground Results

Neural Control Model

Trajectory Planner

Dynamic 

Adaptation

Dynamic Control

Arm

Biomechanics

Leg / Torso

Biomechanics
Cerebrum

Cerebellum

Dynamics

Engine

Brain Spinal Cord Periphery

Spinal

Reflexes

Spring-like 
muscle 

Equilibrium-
point trajectory 

trackinginternal model properties 

Trajectory generation 
with feed-forward 



ole in control strategiesplay a r 

What else is dynamics useful for? 

Story So Far ... 

Shown role of dynamics in human motion 

Current debate over whether or not dynamics ANALYSIS 



Dynamic 
Estimation
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MICR0-G

Model Astronaut 
Locomotor 
Adaptation

Investigate Dual 
Adaptation

Combine Kinetic and 
Kinematic Data

Develop 
Countermeasures 
to Aid Adaptation



Motivation

Lots of (noisy) data 

Complicated dynamics 

Must understand 

Indirect measures 

control strategy 



Why Estimate?

Measurements

Improved 
Estimate 

Dynamics

ConfidencesControl Inputs



Thought Example 

Out of focus 

Colour blind 

Distorted 

Bad Angle 

Clear View 



Thought Example 

Out of focus 

Colour blind 

Distorted 

Known Dynamics 

Bad Angle 

Clear View 



Weighted Averaging

Weight estimates based on confidence of measures 

Weights Measurements Weighted 
Average 



Definitions

Quantity to be estimated 

Covariance 

State Vector 

“Sigma Squared” variance of estimate 

Measurement Variance 
“Sigma Squared” noise on measurements 

Measurement Equation 
Relates measurements to state vector 



Least Squares

Pseudoinverse?

“Cost” 

First 

Stationary 
Point 

Variation 



Numeric Example 
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Kalman Filter

Measurements Control Inputs

Correct
Estimate

1



Equations



Measurements Only 
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Kalman Results
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Kalman Results
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Kalman Filter Basics 

white noise 

diagonal of 
initial covariance matrix (P) 

diagonal of 

Must also start with an initial state estimate (does not need to 
be very good) 

State transition matrix: i and 
i + 1) 

Assumes measurements and dynamics tainted by Gaussian 

Need estimates of noise variances before starting 

Initial process (dynamics) noise variances go on 

Measurement variances (usually constant) go on 
the measurement variance matrix (R) 

Dynamics need to be linearized and discretized 

Takes state at time step 
propagates to time step (



Kalman Steps to Success 

1. Define the state we wish to estimate. 

2. 
R matrices. 

3. 

4. 

5. Run the Kalman filter in a loop. 

6. 

7. Brag to your friends that you know how to write a 

Identify process and measurement noise and create P and 

Define, then linearize and discretize state dynamics. 

Define the measurement equation. 

If running in simulation, plot the estimation error on the 
same axes as the square roots of the covariance matrix 
diagonals (to verify proper filter operation). 

Kalman filter. 



Advanced 
Example

Control

Torques

Inverse

Dynamics

Filtered

Differentiator

Estimate

Joint

Accelerations

Estimate Joint

Angles, Rates

& Accelerations

Joint

Accelerations

NLSE

Refined

State Estimate

Guess

State
Full

State

UKF

Predict 

Next State

UKF

Correct

Current State

State Estimate

State EstimateUKF

All

Measurements

All

Measurements

Acceleration-

Dependent

Measurements

Angle

Measurements



Modeling

Task:
Estimate Joint
     Control Torques
     Angles
     Rates



Measurements

Link 
Mass 

Link 
Acceleration 

Gravity Link 
Inertia 

Joint 
Acceleration 

Link 
Position 

Forces & Moments (Kinetics) 

Joint Angles (Kinematics) 
Video Analysis 

Forces 



Dynamics

= Inertia Coriolis Friction Gravity+ + + 

Function of joint angles, rates, accelerations 

Blah
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1 Introduction

Some equations
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τ = H(θ)θ̈ + C(θ, θ̇)θ̇ + D(θ, θ̇)θ̇ + G(θ) (3)

H11 = m1l
2
c1 + I1 + m2

(
l21 + l2c2 + 2l1lc2cos(θ2)

)
+ I2 (4)

H22 = m2l
2
c2 + I2 (5)

H12 = m2l1lc2cos(θ2) + m2l
2
c2 + I2 (6)

h = m2l1lc2sin(θ2) (7)
g1 = m1lc1cos(θ1) + m2l1cos(θ1 + θ2) (8)
g2 = m2lc2cos(θ1 + θ2) (9)

H(θ) =
[

H11 H12

H12 H22

]
(10)

C(θ, θ̇) =
[
−2hθ̇2 −hθ̇2

hθ̇1 0

]
(11)

G(θ) =
[

g1 g2

]T (12)

1

Control 
Torques Torques Torques Torques Torques 



Why is this so hard?

Nonlinear Dynamics 

Observability 

Nonlinear Measurements 

Acceleration State Required 

What are the acceleration dynamics? 



Double Differentiate?
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Strategy 

Dynamic equation known 

Estimate accelerations 

angle and rate estimates 

But not control inputs! 

“One-Step” torque estimator required 

compute torques 

Torques can be used in 2-step estimator to improve 



Control Inputs

Propagate
Estimate

2

Measurements

Correct
Estimate

Estimate
Torques

1

3



Torque Estimator

Solution is a function of state 

1

Newton-Raphson 

Non-linear Least-Squares 

Require iterative solution technique 

Nonlinear Measurements 



Newton-Raphson 
1

Update 
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Initial 
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Next 
Guess 

Taylor Series 



Information Content 

full rank 

1

Measurement 

Shows up in Least Squares Estimator 

Full state observability requires 

Increase rank? 

Increase measurements 

Decrease state size 

Observability 



Augment cost to include prior estimates 

Prior Information 
1

with 
Prior Information 

Nonlinear Least Squares 



1

Estimate
Acceleration

State

Estimate
Full

State

Compute
Torques

Parameters 
AllAcceleration 

Initial State 
Guess 

Torque Estimator 

Inertia 
Measurements Measurements 



Control Inputs

Propagate
Estimate

2

Measurements

Correct
Estimate

Estimate
Torques

1

3



Extended Kalman Filter permits nonlinear 

Unscented Kalman Filter incorporates nonlinear 

Unscented Kalman Filter 
2 3

Linear Nonlinear 

measurements & dynamics 

Still requires linearization of dynamics for covariance 
propagation 

covariance propagation 

Julier, ‘04 



Torque Estimation
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Torque Estimation
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Torque Estimation
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Angles and Rates 
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Astronaut Rotation 

Dynamics


Philip Ferguson


Adapted from SBE-2003 

term project by 


P. Ferguson and K. Bethke


March 23, 2006




Motivation: Why Self-Rotation?


	 EVA separation danger

 1 emergency predicted for


every 1,000 hours of EVA


	 Attitude-hold thrusters 
are inadequate 

	 IVA training / adaptation




Propulsive Devices


Ed White using Bruce McCandless using


HHMMU MMU (NASA)


(NASA) SAFER

(NASA) 



Background


	 Astronauts experimenting with self-rotation for years! 
(largely undocumented). 

	 Kulwicki outlined several body motions in 1962.


	 Kane provided an “optimal” analysis in 1968. 

	 Frohlich provided further insight, linking divers, cats and 
astronauts in 1980. 

	 No substantial scientific link between astronaut EVA 
operations and dynamics. 



Momentum


	 Linear

	 Velocity vector always 

parallel to momentum 
	 Zero momentum implies 

zero velocity 
	 Mass dependent

	 Remains constant if no 

force (and constant mass) 

"Angular

"Velocity vector not always 


parallel to momentum

"Zero momentum does not 


imply zero velocity 
"Inertia dependent 
"Remains constant if no 

torque (and constant mass)




Some Mathematics ... 
 Rotation Matrix 

 

 Permits us to easily express a vector in multiple frames 

NOTE: 
is expressed in! Using rotation matrices, a single 

Blah
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1 Introduction

Some equations

F (t) = Mẍ (t) + Bẋ (t) + Kx (t) (1)

ẋ (t) , x (t) (2)

τ = H(θ)θ̈ + C(θ, θ̇)θ̇ + D(θ, θ̇)θ̇ + G(θ) (3)

H11 = m1l
2
c1 + I1 + m2

(
l21 + l2c2 + 2l1lc2cos(θ2)

)
+ I2 (4)

H22 = m2l
2
c2 + I2 (5)

H12 = m2l1lc2cos(θ2) + m2l
2
c2 + I2 (6)

h = m2l1lc2sin(θ2) (7)
g1 = m1lc1cos(θ1) + m2l1cos(θ1 + θ2) (8)
g2 = m2lc2cos(θ1 + θ2) (9)

H(θ) =
[

H11 H12

H12 H22

]
(10)

C(θ, θ̇) =
[
−2hθ̇2 −hθ̇2

hθ̇1 0

]
(11)

G(θ) =
[

g1 g2

]T (12)

τ(t) = Kp[θep(t)− θ(t)] + Kd[θ̇ep(t)− θ̇(t)] (13)

ginternal < gtrue ⇒ T̂impact > Ttrue (14)

R(θ) =
[

cos(θ) −sin(θ)
sin(θ) cos(θ)

]
(15)

va = Rabvb (16)

1
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g2 = m2lc2cos(θ1 + θ2) (9)

H(θ) =
[

H11 H12

H12 H22

]
(10)

C(θ, θ̇) =
[
−2hθ̇2 −hθ̇2

hθ̇1 0

]
(11)

G(θ) =
[

g1 g2

]T (12)

τ(t) = Kp[θep(t)− θ(t)] + Kd[θ̇ep(t)− θ̇(t)] (13)

ginternal < gtrue ⇒ T̂impact > Ttrue (14)

R(θ) =
[

cos(θ) −sin(θ)
sin(θ) cos(θ)

]
(15)

va = Rabvb (16)

1

in frame a in frame b 
Rotation matrix rotating 

frame b to frame a= * 

Relates two coordinate frames at different rotations 

A vector does NOT depend on the frame it 

vector can be expressed in ANY reference frame. 

Vector v expressed Vector v expressed 



More Mathematics ...

	 Vector Calculus


	 Often convenient to express quantities in rotating 
frames 

	 But, Newton’s laws must be applied in 

“Newtonian” (inertial) frames


	 Non accelerating, non rotating 
	 Must express vector derivatives in inertial frames 

Blah

Philip A. Ferguson
Massachusetts Institute of Technology, Cambridge MA

philf@mit.edu

1 Introduction

Some equations

F (t) = Mẍ (t) + Bẋ (t) + Kx (t) (1)

ẋ (t) , x (t) (2)

τ = H(θ)θ̈ + C(θ, θ̇)θ̇ + D(θ, θ̇)θ̇ + G(θ) (3)

H11 = m1l
2
c1 + I1 + m2

(
l21 + l2c2 + 2l1lc2cos(θ2)

)
+ I2 (4)

H22 = m2l
2
c2 + I2 (5)

H12 = m2l1lc2cos(θ2) + m2l
2
c2 + I2 (6)

h = m2l1lc2sin(θ2) (7)
g1 = m1lc1cos(θ1) + m2l1cos(θ1 + θ2) (8)
g2 = m2lc2cos(θ1 + θ2) (9)

H(θ) =
[

H11 H12

H12 H22

]
(10)

C(θ, θ̇) =
[
−2hθ̇2 −hθ̇2

hθ̇1 0

]
(11)

G(θ) =
[

g1 g2

]T (12)

τ(t) = Kp[θep(t)− θ(t)] + Kd[θ̇ep(t)− θ̇(t)] (13)

ginternal < gtrue ⇒ T̂impact > Ttrue (14)

R(θ) =
[

cos(θ) −sin(θ)
sin(θ) cos(θ)

]
(15)

va = Rabvb (16)

v̇ = v + (ω × v) (17)

1

Rotational rate ofDerivative in Derivative as seen rotating frame withinertial frame in rotating frame respect to inertial frame




Equations of Motion


	 Linear Motion 
	 Consider astronaut floating in space 
	 How can the astronaut translate? 
 Where can external forces come from?


ṗ = F (18)
mv̇ = F (19)

ḣ = τ (20)

2

	 No assumptions made on reference frames 
	 What frame makes the most sense to report the forces 

in? 
	 What if the astronaut is rotating?




Equations of Motion 
 Rotational Motion 

 Always express rotation rate in body frame 
 

 

ṗ = F (18)
mv̇ = F (19)

ḣ = τ (20)
İω + Iω̇ = τ (21)

İbodyωbody + Ibodyωbody + ωbody × (Ibodyωbody) = τbody (22)

2

ṗ = F (18)
mv̇ = F (19)

ḣ = τ (20)
İω + Iω̇ = τ (21)

Ibodyωbody + Ibodyωbody + ωbody × (Ibodyωbody) = τbody (22)

2

: In a given expression, once a 

I.e. Frame that rotates w.r.t. the astronaut 

Now, assume all quantities are in the body frame 

IMPORTANT
reference frame has been chosen, ALL terms 
MUST be expressed in the same frame! 



Conservation of 

Angular Momentum




momentum wheels, 

Basic Attitude Regulation 

But astronauts have no 

so how can they do this? 



Also, what about h=0?


 Easy to imagine re-orientations when 

starting with non-zero momentum


 How do astronauts do this when they start 
from rest? 
 If h=0, how can ω be anything but 0?


 Answer: I is a tensor and the human body 

is made of several attached segments!




Astronaut Pitch




Astronaut Yaw




How did they do that?


 Two separate techniques: 
 Change of Inertia tensor 

 Makes one body segment resistant to rotation 

 

 Astronaut then applies torque between segments 

Mimic momentum wheels 
 Common because similar to swimming

 Uses both arms and legs 
 Constant motion required 

 Practical for EVA?  (stay tuned) 



Self-Rotation Simulation




Other Z-axis motions


“Cat Reflex” 

shoulders. Increase upper
moment of inertia by extending
arms straight out. Untwist torso to 
achieve net displacement. Lower 
arms. 

Bend at waist to one side and 
extend arms overhead. Rotate 
upper body to other side, keeping
back horizontal and arms out. 
Draw arms down and unbend at 
waist. 

“Lasso” 
Extend one or both arms straight
up over head. Continuously
revolve arm(s) about the z-axis.
Arm(s) trace cone with shoulder at 
apex. Make cone as wide as 
possible. 

“Pinwheel” 
With body straight and hands on
hip, continuously rotate the entire
upper part of the body in a conical
motion. The upper body draws
out a cone with its apex at the
waist. 

Discrete Inertia Changes Continuous Momentum-wheel Motion 

Twist torso, feet pointed opposite 

“Bend and Twist” 


