Cardiovascular Response to Gravitational Stress

Thomas Heldt and Roger G. Mark

Goals

- Synthesize concepts developed last week to understand cardiovascular response to gravitational stress
- Briefly review spaceflight-related cardiovascular problems
- Consider modeling approach to understand post-flight orthostatic intolerance

Hydrostatic Pressure

adapted from: Clark, Hooker, Weed. Am. J. Physiol. 109:166, 1934.

Hydrostatic Pressure in the Circulation

adapted from: L.B. Rowell (1986) Human Circulation. Regulation during Physical Stress.

adapted from: L.B. Rowell (1986) Human Cardiovascular Control.

Venous Pooling

Pressure-Volume relation for both legs

adapted from: Gauer and Stone. Handbook of Physiology, 1965.

Venous Return Curve

(no control)

Intact Circulation

(no control)

Is a 50%-reduction in CO a lot?

Remember Ohm's law:

$\Delta V = R \cdot I \qquad \Leftrightarrow \qquad \Delta P = TPR \cdot CO$

Since TPR = const (no control), a 50 %-reduction in CO leads to a 50%-reduction in perfusion pressure.

Autonomic Failure

(disorder of the autonomic nervous system)

Head-up tilt to 70° in 6 patients with pure autonomic failure.

BP recorded at heart-level:

MAP ≈ 50 mmHg

BP expected at eye-level:

MAP = 50 mmHg - ρgh ≈ 20-30 mmHg

Blackouts occur!

adapted from: Wieling et al. Clin Sci 1998; 94: 347.

Preliminary Conclusions

- Gravity imposes a SERIOUS stress upon the cardiovascular system.
- To withstand this stress, control of circulatory parameters is imperative.

Circulatory Control

- Arterial Baroreflex
- Cardiopulmonary reflex
- Effector mechanisms: heart rate, venous tone, cardiac contractility, and arteriolar resistance

Effects on the cardiac output curve of different degrees of sympathetic and parasympathetic stimulation.

Sympathetic Stimulation

Effects of Control

Normal Physiology

Head-up tilt to 70° in 6 patients with pure autonomic failure (dotted lines) and 6 normal volunteers (solid lines).

BP recorded at heart-level:

MAP ≈ 90 mmHg

BP expected at eye-level:

MAP = 90 mmHg - ρgh ≈ 60-70 mmHg

adapted from: Wieling et al. Clin Sci 1998; 94: 347.

Steady-state responses

Steady-state responses

Steady-state responses

Conclusions

- Several cardiovascular control mechanisms allow for short term and rapid adaptation to gravitational stress.
- In the intact, controlled circulation, mean arterial blood pressure at the level of the heart rises when standing up.
- Longer term adaptation (endocrine, fluid balance) also play important roles.

What about the Giraffe?

Venous Pooling?

Venous Pooling?

... Giraffes come with their own anti-g suits:

Thick skin and tight fascia (connective tissue) surround dependent blood vessels. Leg veins and lymphatics have one-way valves to reduce venous pooling and allow muscle pumping.