
16.485: Visual Navigation for Autonomous Vehicles (VNAV) Fall 2020 

Lecture 7 
Lecturer: Luca Carlone Scribes: Luca Carlone, Markus Ryll 

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. 
They may be distributed outside this class only with the permission of the Instructor(s). 

This lecture introduces the principles of two standard and well-known quadrotor controllers. First, we dis-
cuss an almost globally-stable geometric controller, which provides a state-of-the-art approach to perform 
aggressive maneuvers with quadrotors. The second controller is a lightweight cascaded Proportional Deriva-
tive (PD) controller, which works well near hovering. Reading the section about the near-hovering controller 
is optional and such controller is only reviewed as an example of “old-style” quadrotor control design. 

In the following we will refer to the variable names depicted in Fig. 7.1. 
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Figure 7.1: Quadrotor - most important variables are labeled. The figure shows the world frame w, the 
current quadrotor body frame B, and the desired quadrotor frame d (this is where we want our drone to go 
to). Note that we cannot simultaneously control the position/velocity and roll and pitch, so we only attempt 
to track a desired yaw direction (indicated by the vector x̃d), rather than the full attitude Rw 

d . The rotations 
won the left are a reminder that the columns of the rotation R correspond to the axis of the body frameB 

w); the same holds for the rotation Rw 
d .(e.g., xB) expressed in the reference frame w (hence xB 

7.1 Notation and definitions 

In the rest of these lecture notes, the subscript [·]d will indicate that [·]d is the desired value of [·], e.g. pw
d 

refers to the desired position while pw is the current position (in the world frame). 
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Figure 7.2: The geometric control loops for position and attitude control. 

Also in this lecture we will use the common model with the reference frame rotated by 45◦ with respect to 
the quadrotor propeller axes (see Fig. 7.1). This definition is more common as we can align the x-axis with 
a camera frame (with the camera standing between two quadrotor arms), in a way that is not occluded by 
the quadrotor arms. This is the same model used in the Lab 3 exercises. 

7.2 Geometric Controller 

This section reviews the geometric controller presented in [3] that we adapt to our reference frame conventions 
(Fig. 7.1). 

A quadrotor has 4 control inputs (the speed of the 4 rotors) but has 6 degrees of freedom (3 for its translation 
and 3 for its rotation). Since we have less inputs than controls, we will not be able to control independently 
all the degrees of freedom. Intuitively, if the quadrotor has a pitch or roll angle, its dynamics will force it 
to move, hence the quadrotor cannot simultaneously keep a desired position and a desired roll and pitch. 
Therefore, in this lecture we will only discuss how to control 4 degrees of freedom, and in particular the 

w wquadrotor position p and the yaw angle ψ. We denote with p and ψd the desired position and the desiredd 
wyaw. We equivalently define the yaw angle with a vector in the horizontal plane x̃ = [cos(ψ) sin(ψ) 0]T .d 

In the following, we first present the control law and then provide some intuition about its effectiveness. 

7.2.1 Tracking Errors and Control Design 

In Lecture 6 we have seen that the quadrotor dynamics satisfy: � � � � � � 
w Rw 
= + Fw (7.1) 

mp̈ −mge3 B 0 
J ω̇B −ωB × J ωB 0 I3 

Noting that the first two rows of F are always zero in our quadrotor model, we rewrite eq. (6.9) in Lecture 
6 as follows: � � 

fB 
z ¯ = Fw (7.2)

τ B 

¯ ¯where F is now a 4 × 4 invertible matrix. Since F is constant, we can always move back and forth from w 
to [fB ; τ B ] and for this reason in the following we will directly think about [fB ; τ B] as our control inputs z z 
and write (7.1) as: � � � � � � � � 

w wmp̈ −mge3 zB 0 fz 
B 

= + (7.3)J ω̇B −ωB × J ωB 0 I3 τ B 
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7.2.2 Tracking Errors 

One might think about the geometric controller as a PD (Proportional Derivative) controller, but with error 
metrics that respect the Lie group structure of the rotations. The errors are defined as follows: 

w ep = p w − p (position error) (7.4)d
w ev = v w − v (linear velocity error) (7.5)d

1 � �∨w− (RB )
TRw 

d 
Tw w(R ) Rd B 

B w−ω (R= B 

(rotation error) (7.6)eR = 
2 

)TRw 
d ωd (angular velocity error) (7.7)eω

The position and (linear) velocity errors are quite straightforward and indeed resemble what one would use 
w win a standard PD controller; again p and v are the desired position and velocity which is assumed tod d 

be given1 . However, the expressions of the rotation and angular velocity errors are more involved. While, 
we are going to provide some intuitions about these tracking error in the following paragraph, we can 
think about the rotation and angular velocity errors as carefully-designed vectors where eR measures the 

wmismatch between the quadrotor rotation Rcurrent B and the desired rotation Rw 
d , and where eω measures 

wthe Lie lectures, mentioned that the angular distance between rotations Rtwo group we B 

the mismatch between the current body-frame quadrotor angular velocity ωB and the desired body-frame 
angular velocity ωd. 

Intuition for the rotation error: Let us discuss the intuition behind the rotation error in (7.6). In 
and Rw 

d can be 
computed as: 

w wdist (R R,θ d B 
Tw wk) log((R ) R= d B )

∨k (7.8) 

Therefore, develop the log inside the angular distance (7.8) as:we can 

B 

It turns out that the logmap for SO(3) can be simply computed as (see, 
e.g., https://en.wikipedia.org/ wiki/Axis%E2%80%93angle_representation):� 

0 if R = I3log(R) = (7.9)θ [R − RT] otherwise2 sin θ 

where θ is the rotation angle. 

θ − (Rw)∨ )TRw 
d ]
∨Tw wlog((R ) Rd B 

Tw w[(R ) Rd B (7.10)= 
sin θ 

wand the actual rotation RB 

from which it should be clear that the rotation error in (7.6) is simply a vector parametrization of the relative 
error between the desired rotation Rw 

d (up to scale). 

wshould them in the reference frame. In (7.7), the (Rtermwe express same B 

wbody frame “ ” (via the multiplication by (RB B 

ω

Intuition for the angular velocity error: The intuition behind the angular velocity error in (7.7) is 
even simpler. The basic observation is that the desired angular velocity ωd and the current angular velocity 

B live in two different reference frames. The vector ωB lives in the body frame of the quadrotor, while ωd
lives in the desired body frame of the quadrotor (cf. Fig. 7.1). For these two quantities to be comparable, 

)TRw 
d ωd has the effect of first 

expressing ωd in the world frame “w” (via the multiplication by Rw) and then transform it to the current d 
)T = RB 

w). 

1In Lecture 9-11 we will discuss how to obtain the desired positions and velocities using trajectory optimization 
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7.2.3 Controller 

w wWe can now introduce the geometric controller. For given desired state pd , x̃ (and the corresponding d 
tracking errors ep, ev, eR, eω), and some positive constants kp, kv , kR, kω, the control inputs fB , τ B are chosen z 
as follows: 

wfB = (−kpep − kvev + mge3 + mp̈ d ) · Rw e3, (7.11)z B 

τ B = −kReR − kωeω + ωB × J ωB − J ([ωB ]×(R
w)TRd 

wωd − (Rw)TRwω̇ d), (7.12)B B d 

w w w w w(z ×x̃ )×z ×x̃ddd z
where the desired attitude Rw is computed as Rw 

d d 
w] ∈ SO(3), and:d 

d d= [ , z,w w w w wk(z ×x̃ k kz ×x̃ k)×zd d d d d 

w−kpep − kvev + mge3 + mp̈ w d z = Rw 
d e3 = , (7.13)d k − kpep − kv ev + mge3 + mp̈wkd 

Here, we assume that the denominator of (7.13) is non-zero, 

wk − kpep − kvev + mge3 + mp̈ d k 6= 0, (7.14) 

and that the desired trajectory satisfies 

k − mge3 + mp̈ dk < B (7.15) 

for a given positive constant B. 

The control moment τ B given in (7.12) corresponds to a tracking controller on SO(3). For the attitude 
dynamics of a rigid body described by eq. (7.3), (in both the rotational part) this controller exponentially 
stabilizes the zero equilibrium of the attitude tracking errors. Similarly, the expression in the parentheses 
in (7.11) corresponds to a tracking controller for the translational dynamics on R3 . The total thrust fB 

z 
wand the desired direction z of the third body-fixed axis are chosen so that –if there is no attitude tracking d 

Rwerror– the control input term fz 
B

B e3 reduces the position and velocity errors. Therefore, the trajectory 
tracking error will converge to zero provided that the attitude tracking error is identically zero. Certainly, 
the attitude tracking error may not be zero at any instant. As the attitude tracking error increases, the 
direction of the control input term fBRwe3 of the translational dynamics deviates from the desired direction z B 

of Rd 
we3. This may cause instability on the complete dynamics. In (7.11), we carefully design the total 

thrust fB so that its magnitude is reduced when there is a larger attitude tracking error. The expression ofz 
fB wincludes the dot product of the desired third body-fixed axis z = Rd 

we3 and the current third body-fixed z d 
w = Rwaxis zB B e3. Therefore, the magnitude of f

B is reduced when the angle between those two axes becomes z 
larger. A stability proof can be found in [3]. 

Intuition about the design of the thrust fB and the desired rotation Rw: Let us consider thez d 
translational dynamics in eq. (7.3): 

w mp̈ = −mge3 + RB 
wfB (7.16) 

Of course, if we compare (7.16) with (7.3) we realize that we can only apply a force fB along the local z of 
the quadrotor, but let’s put that aside for a moment. In the ideal case where we had the freedom to apply 
forces in any direction, an ideal force to apply would be: 

wf B = RB (−kpep − kvev + mge3 + mp̈ d ) (7.17)ideal w 

since when we substitute such force into (7.16) we get: 

w w mp̈ = −mge3 − kpep − kvev + mge3 + mp̈ ⇐⇒ (7.18)d 
w w mp̈ = −kpep − kvev + mp̈ ⇐⇒ (7.19)d 

(using ev = ėp and p̈w − p̈ d = ë p) (7.20) 

më p = −kpep − kvėp (7.21) 
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which is now a simple linear system describing the dynamics of the position errors. By suitable tuning of 
the gains kp and kv we can ensure that this system converges to zero position (and velocity) error. 

Since the drone dynamics restrict the thrust to be along the local body zw 
B of the quadrotor, the basic idea 

w 
Bof the geometric controller is to project the “ideal” thrust force (7.22) along the local body z 

¨ d ) · z w 

to get: 

fB = (−kpep − kvev + mge3 + mz 
w w = (−kpep − kv ev + mge3 + m w p̈ d ) · RB e3 (7.22)p B 

which matches the thrust design in eq. (7.11). 

Note that fB matches the “ideal” force fB 
z ideal when the local body zw 

B 

w 

points in the direction of −kpep − 

d , see 

w+mge3 +mp̈wkv ev This is indeed the rational for choosing this vector as the desired local body z in (7.13).d . d 
w 
d and yw 

d are built such that the yaw angle matches the desired yaw angle x̃The desired local body x 
Fig. 7.1, and the axis are orthogonal. 

Intuition about the design of the torque τ B: Similarly to the previous case, we can substitute the 
torque τ B in eq. (7.12) back into the rotational dynamics (7.3): 

)TR )TRJ ω̇B = −ωB × J ωB − kReR − kωeω + ωB × J ωB + J (−[ωB ]×(R 
w 

w 

w 

ww 

d ωd + (R 

J ω̇B = −kReR − kωeω + J (−[ωB]×(R d ωd + (R 

d ωd − (R 

d ωd − (R d [ωd]×ωd − (R 

w w wω̇ d) ⇐⇒ (7.23)dB B 

)TR w 
B )

TRw w 
d ω̇ d) (7.24) B 

Now we observe that: 

d − (Ṙ Ṙw)TRd ωd) = w)TRd ωd − (R )T )TR(ωB ωB˙− (Rw 
B 

w w w w ėω = ω̇ d (7.25)= dB B Bdt 
[ωB]×)

TR )TR )TRω̇ B − (Rw w w wω̇ d = (7.26)dB B B 

w 

(recalling that [ωB]T = −[ωB]× and [ωd]×ωd = 0) (7.27)× 

d ωd − (R)TR )TRω̇ B + [ωB]×(R
w w wω̇ d = (7.28)dB B 

Noting that this expression matches terms present in (7.24), eq. (7.24) can be written as: 

J ėω = −kReR − kωeω (7.29) 

which again is a simple linear system describing the rotation and angular velocity error dynamics. By suitable 
tuning of the gains kR and kω we can ensure that this system converges to zero rotation and angular velocity 
error. 

7.3 Near-Hovering Controller 

This section is optional and is given as an example of how quadrotor controllers were designed before the 
geometric controller was proposed. The presentation is mostly based on [4]. 

The aerial robot is controlled by nested feedback loops as shown in Fig. 7.3. The inner attitude control 
loop usually utilizes an onboard IMU with accelerometers and gyroscopes to control the roll φ, pitch θ, and 
yaw ψ and runs typically at a high frequency (200 Hz – 2 kHz), while the outer position control loop uses 
estimates of position and velocity of the center of mass to control the trajectory in three dimensions. The 
controllers are derived by linearizing the equations of motion at an operating point that corresponds to the 
nominal hover state, pw = pw

0 , θ = φ = 0, ψ = ψ0, ṗw = 0, and ˙ ˙θ̇ = φ = ψ = 0, where the roll and pitch 
angles are small (cos(φ) ≈ 1, cos(θ) ≈ 1, sin(φ) ≈ φ, and sin(θ) ≈ θ). 
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Figure 7.3: The nested control loops for position and attitude control. 

At this hover state, the nominal thrusts from the propellers must satisfy 

wmg
Ti,0 = − , (7.30)

4 
wmeaning that the thrust of each propeller is in charge of compensating for 1/4 of the gravity force mg . 

In order to produce this torque, at hovel, the motor speeds must be set to: r 
mg

ωi,0 = ωh = , (7.31)
4cf 

where g = kgwk (≈ 9.81m/s2). 

q 

7.3.1 Attitude Control 

q⎡ 

We will now discuss the attitude controller to track trajectories in SO(3) that are close to the nominal hover 
state where the roll φ and pitch θ angles are small. Using the rotational part of the Newton-Euler equation 
(see eq. (6.8) in the previous lecture), with angular velocities of the rotors w = [w1|w1| w2|w2| w3|w3| w4|w4|]T , 
yields to 

J ω̇ B = −ωB × J ωB + τ B ⇐⇒ (7.32) 

ωB = −ωB × J ωB + τ BJ ˙ drag + τ B 

2 2 2 

⇐⇒ (7.33)thrust ⎤⎡⎤q q q 
w1|w1|
w2|w2|
w3|w3|
w4|w4| 

1 1 1 1 cf ||ρB 
1 || cf ||ρB 

2 || cf ||ρB 
3 || cf ||ρB 

4 ||− −⎢⎢⎣ 
⎢⎢⎣ 

⎥⎥⎦ 
⎥⎥⎦ 

2q q q
ωBJ ˙ = −ωB × J ωB (7.34)+ 1 1 1 1 cf ||ρB 

1 || cf ||ρB 
2 || cf ||ρB 

3 || cf ||ρB 
4 ||− −2 2 2 2 

−cd cd −cd cd 

where we assumed that the arms are mounted at 45◦ as in Fig. 7.1. 

r 

Let us call the rotational velocity components ωB = [p, q, r]. Assuming that ||ρB 
1 || = ||ρ2 

B|| = ||ρ3 
B|| = 

4 || = ||ρB || and that J is a diagonal matrix with J = diag[Jxx Jyy Jzz], we can reformulate (7.34) as||ρB 

r 

1 Jxx ṗ = cf ||ρB||(w1|w1| + w2|w2| − w3|w3| − w4|w4|) − qr(Jzz − Jyy)
2 

(7.35) 

1 Jyy q̇ = cf ||ρB||(−w1|w1| + w2|w2| + w3|w3| − w4|w4|) − pr(Jxx − Jzz)
2 

(7.36) 

Jzz ̇r = cd(−w1|w1| + w2|w2| − w3|w3| + w4|w4|) − pq(Jyy − Jxx). (7.37) 
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The last term in eq. (7.37) is small, since Jxx ≈ Jyy because of the symmetry. Additionally, we assume the 
component of the angular velocity in the zB direction, r, is small so the rightmost terms in (7.35) and (7.36) 
which are products involving r are also small compared to the other terms. 

Before using the expressions above, we reparametrize the vector of desired rotor speeds in terms of the 
nominal motor speed ωh and the deviations ΔωF , Δωφ, Δωθ, Δωψ: ⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡ 

d
1 

d
11 1 −1 −1 ωh +ΔωF ωh +ΔωF 1 1 1 1w w ⎢⎢⎣ 

⎥⎥⎦ = 
⎢⎢⎣ 
1 1 1 1 
1 −1 1 −1 

⎢⎢⎣ 
⎥⎥⎦ 

Δωφ 

Δωθ 

⎥⎥⎦ ⇐⇒ 
⎢⎢⎣ 

Δωφ 

Δωθ 

⎥⎥⎦ = 
1 
4 

⎢⎢⎣ 
1 1 −1 −1 
−1 1 1 −1 

⎢⎢⎣ 
⎥⎥⎦ 

⎥⎥⎦ (7.38) 
d
2 

d
2w w 

d
3 

d
3w w 

d
4 

d
41 −1 −1 1 Δωψ Δωψ −1 1 −1 1w w 

where the nominal rotor speed required to hover in steady state is ωh (see eq. (7.31)), and the deviations 
from this nominal vector are ΔωF , Δωφ, Δωθ, and Δωψ . The term ΔωF results in a net force along the zB 

axis, while Δωφ, Δωθ, and Δωψ produce moments causing roll, pitch, and yaw, respectively. 

Now we linearize (7.35), (7.36) and (7.37) about the hovering operating point and write the desired angular 
accelerations in terms of the new control inputs 

1 
2 

1 
2 

q 

q 

cf ||ρB ||ωh 

Jxx 

4 
ṗ d = Δωφ, (7.39) 

||ρB ||ωh4 
q̇ d = Δωθ, (7.40)

Jyy 

4cdωh 
ṙd = Δωψ. (7.41)

Jzz 

˙ 

As near the nominal hover state φ̇ ≈ p, θ̇ ≈ q, and ψ̇ ≈ r, we use proportional derivative control laws that 
take the form 

Δωφ = kp,φ(φd − φ) + kd,φ(pd − p) 

Δωθ = kp,θ(θd − θ) + kd,θ(qd − q) (7.42) 

Δωψ = kp,ψ (ψd − ψ) + kd,ψ (rd − r) . 

where φd, θd, ψd are the desired roll, pitch, and yaw angles. Substituting (7.42) into (7.38) yields the desired 
rotor speeds. 

7.3.2 Position Control 

The 3D position controller is used to follow three-dimensional trajectories with modest accelerations so the 

pd 

w wnear-hover assumptions hold. Let’s define again, p as the desired position and p as the current position d 
w 

be t̂w(both in the world frame). Let the unit vector tangent to the trajectory at point p and the= d w||ṗ ||d 

desired velocity vector be ṗw 
d . We define the position and velocity errors as 

ep = ((p w 
d 

W− p w) · n̂)n̂ + ((p + p) · b̂)b̂ 
T (7.43) 

and 
ev = ṗw 

d − ṗw . (7.44) 

where n̂ and b̂ are unit vectors orthogonal to t̂. Note that the position error ep ignores the error in the 
tangent direction t̂  and only considers the position error in the normal directions n̂ and b̂. 
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We calculate the commanded acceleration, p̈, from PD feedback of the position and velocity errors: 

w p̈ = kpep + kdev + p̈ (7.45)d 

This and very similar control approaches have been presented in [1, 2, 4], which also show how to convert 
this desired acceleration into the desired roll, pitch, and yaw angles φd, θd, ψd. 
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