

16.485: VNAV - Visual Navigation for Autonomous Vehicles

Lecture 8: Trajectory Optimization

Luca Carlone

Path is a sequence of waypoints (in the obstacle-free space), without *time labels or information about velocity or higher order of derivatives*.

DOES NOT ACCOUT FOR DYNAMICS

Path is a sequence of waypoints (in the obstacle-free space), without *time labels or information about velocity or higher order of derivatives*.

DOES NOT ACCOUT FOR DYNAMICS

Trajectory is the sequence of movements the robot should make. ACCOUNTS FOR DYNAMICS

Path is a sequence of waypoints (in the obstacle-free space), without *time labels or information about velocity or higher order of derivatives*.

DOES NOT ACCOUT FOR DYNAMICS

Trajectory is the sequence of movements the robot should make.

ACCOUNTS FOR DYNAMICS

MUST BE COLLISION FREE

Path is a sequence of waypoints (in the obstacle-free space), without *time labels or information about velocity or higher order of derivatives*.

DOES NOT ACCOUT FOR DYNAMICS*

*Can account for dynamics but can be slow (Bry et al., IJRR '15)

Trajectory is the sequence of movements the robot should make.

ACCOUNTS FOR DYNAMICS

MUST BE COLLISION FREE

Planning algorithms

- Open-source libraries
 - Open Motion Planning Library (OMPL)
 - <u>http://ompl.kavrakilab.org/</u>
 - Motion Strategy Library (MSL)
 - <u>http://msl.cs.uiuc.edu/msl/</u>
 - RRT* Library
 - Sampling Based Planning Library

References

- Howie Choset et al., "Principles of Robot Motion," MIT press, 2005.
- Steven Lavalle, "Planning Algorithms," Cambridge University Press, 2006.

RRT*: Rapidly exploring Random Trees

RRT*: Rapidly exploring Random Trees

Pros

• Finds optimal path (if one exists)

Cons

 Impractical running time *if asked* for path with smooth trajectory (Bry et al., IJRR '15)

Jagged path otherwise

RRT*: Rapidly exploring Random Trees

Pros

• Finds optimal path (if one exists)

Cons

 Impractical running time *if asked* for path with smooth trajectory (Bry et al., IJRR '15)

Difficult to apply for online planning in unknown/dynamic environments

Jagged path otherwise

RRT*: Rapidly exploring Random Trees

Pros

• Finds optimal path (if one exists)

Cons

 Impractical running time *if asked* for path with smooth trajectory* (Bry et al., IJRR '15)

*the simultaneous path+trajectory planning is called **direct trajectory planning**

• Jagged path otherwise

see https://ocw.mit.edu/help/faq-fair-use/

Trajectory Optimization

 Need to enforce "continuity" between segments for smooth trajectory

 Need to enforce "continuity" between segments for smooth trajectory

Trajectory Optimization

- Need to enforce "continuity" between segments for smooth trajectory
- Need to ensure "minimal" motion

Estimation, Control and Planning for Aggressive Flight with a Small Quadrotor with a Single Camera and IMU

Giuseppe Loianno Vijay Kumar Chris Brunner Gary McGrath

Qualcomm Technologies Inc.

Qualcomm Research is a division of Qualcomm Technologies Inc.

cobolies, Automation, Sensing & Perception Lab

www.kumarrobotics.org

2016/2017

- Need to enforce "continuity" between segments for smooth trajectory
- Need to ensure "minimal" motion

- Need to ensure **feasibility; e.g.:**
 - Hit no obstacles
 - Don't saturate your controller

- Need to enforce "continuity" between segments for smooth trajectory
- Need to ensure "minimal" motion

- Need to ensure **feasibility; e.g.:**
 - Hit no obstacles
 - Don't saturate your controller

- Need to enforce "continuity" between segments for smooth trajectory
- Need to ensure "minimal" motion

- Need to ensure **feasibility; e.g.:**
 - Hit no obstacles
 - Don't saturate your controller

- Need to enforce "continuity" between segments for smooth trajectory
- Need to ensure "minimal" motion

- Need to ensure **feasibility; e.g.:**
 - Hit no obstacles
 - Don't saturate your controller

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

16.485 Visual Navigation for Autonomous Vehicles (VNAV) Fall 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.