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Today

e Dense Reconstruction

- 3D representations

- (Some) Multi-view Stereo
- Depth fusion
e Final thoughts

Figure 1in R. A. Newcombe et al., "KinectFusion: Real-time dense surface mapping and tracking," 2011 10th IEEE
International Symposium on Mixed and Augmented Reality, Basel, Switzerland, 2011, pp. 127-136, doi: 10.1109/
ISMAR.2011.6092378. © |IEEE. All rights reserved. This content is excluded from our Creative Commons license. For
more information, see https://ocw.mit.edu/help/fag-fair-use/
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Figure 1: Example output from our system, generated in real-time with a handheld Kinect depth camera and no other sensing infrastructure.
Normal maps (colour) and Phong-shaded renderings (greyscale) from our dense reconstruction system are shown. On the left for comparison

is an example of the live, incomplete, and noisy data from the Kinect sensor (used as input to our system).
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Figure 1 in H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart and J. Nieto, "Voxblox: Incremental 3D Euclidean Signed Distance Fields for
on-board MAV planning,” 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, 2017, pp.
1366-1373, doi: 10.1109/IROS.2017.8202315. © IEEE. All rights reserved. This content is excluded from our Creative Commons license.
For more information, see https://ocw.mit.edu/help/faa-fair-use/

Voxblox: Incremental 3D Euclidean Signed Distance Fields for
On-Board MAV Planning

Helen Oleynikova, Zachary Taylor, Marius Fehr, Roland Siegwart, and Juan Nieto
Autonomous Systems Lab, ETH Ziirich

Abstract— Micro Aerial Vehicles (MAVs) that operate in
unstructured, unexplored environments require fast and flexible
local planning, which can replan when new parts of the map are
explored. Trajectory optimization methods fulfill these needs,
but require obstacle distance information, which can be given
by Euclidean Signed Distance Fields (ESDFs).

We propose a method to incrementally build ESDFs from
Truncated Signed Distance Fields (TSDFs), a common implicit
surface representation used in computer graphics and vision.
TSDFs are fast to build and smooth out sensor noise over
many observations, and are designed to produce surface meshes.
Meshes allow human operators to get a better assessment of
the robot’s environment, and set high-level mission goals.
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Geometric Primitives

Point, lines, planes

(a) Raw data map (using a high-accuracy range finder)

1 i L .

[Kaess 2015]

Figure 1in Michael Kaess, "Simultaneous Localization and
Mapping with Infinite Planes." June 2015Proceedings - IEEE
International Conference on Robotics and Automation
2015:4605-4611. © IEEE. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/fag-fair-use/

[Thrun et al.
2004]

{c) Plane boundaries

[Lu et al. 2015] ~~

© Lu et al. All rights reserved. This content is excluded from
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Object-based Maps
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Strasdat, P. H. J. Kelly and A. J. Davison, "SLAM++:
Simultaneous Localisation and Mapping at the Level of
Objects," 2013 IEEE Conference on Computer Vision
and Pattern Recognition, Portland, OR, USA, 2013, pp.
1352-1359, doi: 10.1109/CVPR.2013.178 © |IEEE. All
rights reserved. This content is excluded from our
Creative Commons license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/
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Volumetric Methods: Voxels/Octrees

Dataset: EuRoC

Voxel Size: 0.20 m
: Color By: Normals
SR Playback: 10x

[Oleynikova, ICRA'17] &8

© Oleynikova et al. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/

Map Filters

~ : S S :
representation 3D Topology~ Lightweight* Noise/Outliers? Semantics? Generality
Point Clouds X ‘//x X ‘//x v
No, if Dense No, if Sparse
primitives & objects X v v J/)( X
No, if Sparse
Voxels v vIX v vIX Voo

No, if small voxel No, if large


https://ocw.mit.edu/help/faq-fair-use/

Meshes

Filters
: Lightweight? Noise/
representation Outliers?
| VX
Point Clouds X No. if Dense
primitives &
objects X Y ‘
Voxels v /X Y

No, if small voxel

3D Mesh v 4 X

Semantics?

viX
No, if Sparse

vIX
No, if Sparse

v /X

No, if large voxel

4

Generalit

10 10



Today

Multi-View Stereo: A

e Dense Reconstruction

- 3D representations

Some) Multi-view Stereo

- Depth fusion
e Final thoughts

Figure 1in R. A. Newcombe et al., "KinectFusion: Real-time dense surface mapping and tracking," 2011 10th IEEE
International Symposium on Mixed and Augmented Reality, Basel, Switzerland, 2011, pp. 127-136, doi: 10.1109/
ISMAR.2011.6092378. © IEEE. All rights reserved. This content is excluded from our Creative Commons license. For
more information, see https://ocw.mit.edu/help/fag-fair-use/

KinectFusion: Real-Time Dense Surface Mapping and Tracking*

Richard A. Newcombe
Imperial College London

David Kim
Microsoft Research
Newcastle University
Andrew Fitzgibbon

Microsoft Research

Shahram lzadi
Microsoft Research

Otmar Hilliges

Microsoft Research

David Molyneaux
Microsoft Research
Lancaster University

Steve Hodges

Microsoft Research

Jamie Shotton
Microsoft Research

Pushmeet Kohli
Microsoft Research

Andrew J. Davison
Imperial College London

2011

Figure 1: Example output from our system, generated in real-time with a handheld Kinect depth camera and no other sensing infrastructure.
Normal maps (colour) and Phong-shaded renderings (greyscale) from our dense reconstruction system are shown. On the left for comparison
is an example of the live, incomplete, and noisy data from the Kinect sensor (used as input to our system).
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Figure 1 in H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart and J. Nieto, "Voxblox: Incremental 3D Euclidean Signed Distance Fields for
on-board MAV planning,” 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, 2017, pp.
1366-1373, doi: 10.1109/IROS.2017.8202315. © IEEE. All rights reserved. This content is excluded from our Creative Commons license.
For more information, see https://ocw.mit.edu/help/fag-fair-use/

Voxblox: Incremental 3D Euclidean Signed Distance Fields for
On-Board MAV Planning

Helen Oleynikova, Zachary Taylor, Marius Fehr, Roland Siegwart, and Juan Nieto
Autonomous Systems Lab, ETH Ziirich

Abstract— Micro Aerial Vehicles (MAVs) that operate in
unstructured, unexplored environments require fast and flexible
local planning, which can replan when new parts of the map are
explored. Trajectory optimization methods fulfill these needs,
but require obstacle distance information, which can be given
by Euclidean Signed Distance Fields (ESDFs).

We propose a method to incrementally build ESDFs from
Truncated Signed Distance Fields (TSDFs), a common implicit
surface representation used in computer graphics and vision.
TSDFs are fast to build and smooth out sensor noise over
many observations, and are designed to produce surface meshes.
Meshes allow human operators to get a better assessment of
the robot’s environment, and set high-level mission goals.
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Multi-view Stereo

From previous lectures: we know how to use SLAM to
get a good estimate of the poses of the cameras
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Multi-view Stereo

Towards Internet-scale
Multi-view Stereo

CVPR 2010
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Multi-view Stereo

The Visual Turing Test for Scene Reconstruction
Supplementary Video
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Multi-view Stereo
Patch-based
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Figure 2. Definition of a patch (left) and of the images associated
with 1t (right). See text for the details.

Estimate normal and center of patch to maximize
photometric consistency:

Projection
To camera

¥ Example of matching score:

Cij(p) = p(Li(Qmi(p))), L;(m;(p))))

1_ Z |W1(:Ea y) o WQ(SEa y)|2
l \ T,y
Y. Furukawa and J. Ponce, "Accurate, Dense, and Robust Multi-View Stereopsis," 2007
. . |IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA,
Matching Image  Rectangular 3D point corient & excuded from otr Creative Commens fcanse. Fof more farmaton.see
S C O re | n te n S |ty PatC h https://ocw.mit.edu/help/fag-fair-use/

[Furukawa and Ponce, “Accurate, Dense, and Robust Multi-View Stereopsis”, 2007] R £
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Multi-view Stereo

Enforcing regularity: Markov Random Fields
Find depth kp of point “p” such that point is photo-consistent and

depth changes smoothly..

E({k}) = S0k + S Wik ky)

/ (P:Q)EN \

Unary potentials Pairwise potentials
(similar to previous slides)
¢(k, = d) = min(7,,1 — C(p,d))

U(k, = di, kg = d2) = min(7p, |d1 — d2|)

Depth is typically discretized
before solving..

16



How Accurate is Multi-view Stereo?

laser scan = Space Carving Results: African Violet

Input Image (1 of 45) Reconstruction

TLe
Reconstruction

Space Carving Results: Hand

Comparison: 90% of points
within 0.128 m of laser scan

(building height 51m)

Input Image
(10f 100)

M. Goesele, N. Snavely, B. Curless, H. Hoppe, S. Seitz, Multi-View Stereo for
Community Photo Collections, ICCV 2007 Views of Reconstruction

Figure 7 in M. Goesele, N. Snavely, B. Curless, H. Hoppe and S. M. Seitz, "Multi-View Stereo for Community Photo Collections," 2007 IEEE 11th International Conference on Computer Vision, Rio de Janeiro, Brazil, 2007, pp. 1-8, doi: 10.1109/
ICCV.2007.4408933. © IEEE. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https:/ocw.mit.edu/help/fag-fair-use/

Many methods: volumetric stereo, space carving,
Shape from silhouettes, carved visual hull T
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Today

Multi-View Stereo: A

e Dense Reconstruction
- 3D representations

- (Some) Multi-view Stereo

- Depth fusion

e Final thoughts

Figure 1in H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart and J. Nieto, "Voxblox: Incremental 3D Euclidean Signed Distance Fields for
on-board MAV planning," 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, 2017, pp.
1366-1373, doi: 10.1109/IROS.2017.8202315. © IEEE. All rights reserved. This content is excluded from our Creative Commons license.
For more information, see https://ocw.mit.edu/help/fag-fair-use/
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Figure 1: Example output from our system, generated in real-time with a handheld Kinect depth camera and no other sensing infrastructure.
Normal maps (colour) and Phong-shaded renderings (greyscale) from our dense reconstruction system are shown. On the left for comparison

is an example of the live, incomplete, and noisy data from the Kinect sensor (used as input to our system).
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Figure 1in H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart and J. Nieto, "Voxblox: Incremental 3D Euclidean Signed Distance Fields for
on-board MAV planning," 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, 2017, pp.
1366-1373, doi: 10.1109/IROS.2017.8202315. © |EEE. All rights reserved. This content is excluded from our Creative Commons license.
For more information, see https://ocw.mit.edu/help/fag-fair-use/

Voxblox: Incremental 3D Euclidean Signed Distance Fields for
On-Board MAV Planning

Helen Oleynikova, Zachary Taylor, Marius Fehr, Roland Siegwart, and Juan Nieto
Autonomous Systems Lab, ETH Ziirich

Abstract— Micro Aerial Vehicles (MAVs) that operate in
unstructured, unexplored environments require fast and flexible
local planning, which can replan when new parts of the map are
explored. Trajectory optimization methods fulfill these needs,
but require obstacle distance information, which can be given
by Euclidean Signed Distance Fields (ESDFs).

We propose a method to incrementally build ESDFs from
Truncated Signed Distance Fields (TSDFs), a common implicit
surface representation used in computer graphics and vision.
TSDFs are fast to build and smooth out sensor noise over
many observations, and are designed to produce surface meshes.
Meshes allow human operators to get a better assessment of
the robot’s environment, and set high-level mission goals.
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Surfels

ElasticFusion: Dense SLAM Without A Pose Graph

Thomas Whelan, Stefan Leutenegger, Renato Salas-Moreno, Ben Glocker, Andrew Davison

Imperial College London

note: still based on RGB-D (contrarily to multi-view stereo)



A Gentle Start: 2D Occupancy Grid Maps

[1=free [ = obstacle = unknown
NS
AN
SN
AN
AR
1
e discretize the environment into cells
e Each cell holds real number [0,1], representing

the probabillity of the cell being occupied

Map posterior p(fT | Z1.4,X1.¢)
Unknown KNnown sensor

Map Depth and robot poses



A Gentle Start: 2D Occupancy Grid Maps

Probability
p(m | z1.4,T1.¢) » p(m; | 214, T1:¢) of cell
l being occupied

Binary value
(free/occupied)

Bayes rule (omitting “x” for simplicity):
PZeyq | m)p(m; | z;.,)

p(m;) \
Uninformative

Prior

p(mi ‘ Z1:t+1) —

Log-odd representation is typically
used to avoid numerical instabilities

p(mt ‘ ’Zl:t? xl:t) * p(mt ‘ Zl:tgﬁ:l:t)
) ltﬂ; — lOg

1 _p(mz ‘ Z1:ts L1t 1 _p(mi ‘ Zl:t-;ﬂl:t)



Truncated Signed Distance Function (SDF)

e Store distance to
nearest obstacle
(with sign)

e Only update around
obstacle itself

(implicit surface model)

Update rule:

©ACM AII gh d Th I d d from our Creative Commons license. For more

dxp.s) = [p—x|sign((p—x)e(p—s) (1) “HEEEELE
wconst(x p) = 1 (2)
W;(x)D;(x) + w(x, p)d(x,
Divi(x.p) — (x)Di(x) + w(x, p)d(x, p) 3) |
Wi(x) + w(x,p) [Curless and Levoy, “A Volumetric
Witi1(x,p) = min (W;(x)+w(x,p), Wmax) (@) Method for Building ComplexModels

from Range Images”, 2007]
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Kinect Fusion (2011)

SIGGRAPH Talks 2011
KinectFusion:

Real-Time Dynamic 3D Surface
Reconstruction and Interaction
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GPU, memory ...



Kintinuous (2013)
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VoxBlox (2017)

Voxblox:
Building 3D Signed DistancCe Fields for Planningms,

Helen Oleynikova, Zachary Taylor, Marius Fehr, Juan Nieto, and Roland SieQwan
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From Voxels to Meshes

Marching cubes

https://www.youtube.com/watch?v=B xk71YopsA
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Kimera (2020)

Kimera-VIO tracks sparse 3D landmarks for fast and accurate state estimation

Rosinol, Abate, Chang, Carlone. Kimera: an open-source library for real-time metric-

semantic localization and mapping. ICRA, 2020.



Metric-semantic 3D Reconstruction
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- Depth fusion

e Fin al thOug htS ElasticFusion: Dense SLAM Without A Pose Graph
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Figure 1in H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart and J. Nieto, "Voxblox: Incremental 3D Euclidean Signed Distance Fields for
on-board MAV planning," 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, 2017, pp.
1366-1373, doi: 10.1109/IROS.2017.8202315. © IEEE. All rights reserved. This content is excluded from our Creative Commons license.
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Helen Oleynikova, Zachary Taylor, Marius Fehr, Roland Siegwart, and Juan Nieto
Autonomous Systems Lab, ETH Ziirich

Abstract— Micro Aerial Vehicles (MAVs) that operate in

2 O 1 1 unstructured, unexplored environments require fast and flexible

local planning, which can replan when new parts of the map are

explored. Trajectory optimization methods fulfill these needs,

but require obstacle distance information, which can be given
by Euclidean Signed Distance Fields (ESDFs).

We propose a method to incrementally build ESDFs from
Truncated Signed Distance Fields (TSDFs), a common implicit
surface representation used in computer graphics and vision.
TSDFs are fast to build and smooth out sensor noise over
many observations, and are designed to produce surface meshes.
Meshes allow human operators to get a better assessment of
the robot’s environment, and set high-level mission goals.

Figure 1: Example output from our system, generated in real-time with a handheld Kinect depth camera and no other sensing infrastructure.
Normal maps (colour) and Phong-shaded renderings (greyscale) from our dense reconstruction system are shown. On the left for comparison
is an example of the live, incomplete, and noisy data from the Kinect sensor (used as input to our system).
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