
16.485: Visual Navigation for Autonomous Vehicles (VNAV) Fall 2020

Lecture 2-3
Lecturer: Luca Carlone Scribes: -

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor(s).

This lecture introduces basic geometric concepts, including translations, rotations, and poses. In particular,
we will cover:

• coordinate frames

• positions and translations

• attitude representation

• pose representation

2.1 Coordinate Frames

A coordinate frame is a set of orthogonal axes attached to a body that serves to describe position of points
relative to that body. The axes meet at a single point, which is called the origin of the coordinate frame.
In this course we mainly attach coordinate frames to:

• our robot (robot frame “r”)

• each sensor on our robot (e.g, camera frame “c”)

• a fixed location in the world (world frame “w”)

• external bodies (e.g., other robots, objects in the world)

In other robotics applications (e.g., manipulation), the robot has multiple articulated parts, and one attaches
a reference frame to each part.

In robotics, we use right-handed coordinate frames, where the direction of the axes is chosen according to
the right-hand rule. Consider a 3D coordinate frame r with axis xr, yr, zr; then different mnemonics that
describe a right-handed coordinate frame are as follows:

• using your right hand, your thumb points along the zr axis in the positive direction and the curl of
your fingers represents a motion from the xr axis to the yr axis.

• using your right hand, the positive xr axis points along your index finger, the positive yr axis points
along your middle finger, and the positive zr points long the thumb.

• using your left hand (!), the positive xr axis points along your middle finger, the positive yr axis points
along your index finger, and the positive zr points long the thumb.

2-1

1

2-2 Lecture 2: September 4, 9

Figure 2.1: Coordinate frames. (left) Robot frame, (right) Camera frame and Image frame

Example 2.1.1 (Robot frame convention). We use the following standard convention:

• Origin: the center of mass.

• Axes: xr forward, yr to the left, and zr up.

Example 2.1.2 (Camera and Image frame conventions). We use the following standard conventions:

Camera frame (3D)

• Origin: center of the camera.

• Axes: xc to the right, yc down, zc looking at the scene.

Image frame (2D)

• Origin: top-left corner of the camera image.

• Axes: looking at the camera image, xc to the right, yc down.

2.2 Points, positions, and translations

The advantage of defining a reference frame is that it allows representing points using linear algebra con-
structs. For instance, we can represent the position of a 3D point p with respect to the world frame “w”
using a 3D vector: ⎡ ⎤

wp ⎣ x ⎦w p = w (2.1)py
wpz

∈ R are scalars, called the coordinates of p in the coordinate frame w. The coordinates w w wwhere p , p , p y z
w w w are equal to the projections of the point p to the axes xw, yw, zw of the reference frame w.p , p , p y z

2

x

x

2-3 Lecture 2: September 4, 9

p
1
wp

2
wp

12
wp

y
wp

x
wp

z
wp

wx

wy

wz

w

Figure 2.2: Point coordinates.

We can also use linear algebra to compute the displacement or translation between 2 points p1 and p2:

w w w p = p − p (2.2)12 2 1

wor, equivalently, compute the position of the second p2 given point p1 and the displacement p12:

w w w p = p + p (”composition”) (2.3)2 1 12

Clearly, it holds:
w w p = −p (”inverse”) (2.4)12 21

Note that we use a slightly different notation for positions and translations. In particular, the subscript
wof a translation p stresses the fact that the translation is between point 1 and 2 and it is expressed with12

wrespect to the world frame w; on the other hand, we use a single subscript for positions, e.g., p1 , where it
is implicit that the position is with respect to the origin of the coordinate frame w.

In other words, we can rephrase geometric concepts (positions, displacement) into algebraic ones (vectors).
Note that in all these expressions we keep the superscript w, since the vectors are meaningless if we do not
specify a frame for the coordinates in the vector.

In general, we represent positions and translations using vectors in Rd , where d = 2 for planar problems and
d = 3 in three-dimensional problems.

2.3 Attitude and rotations

The tools described in the previous section allow using vectors to describe positions of points in a given
coordinate frame. In robotics, however, we are interested in modeling objects that can assume arbitrary
positions and orientations.

We assume to deal with rigid bodies, whose position and orientation is fully described by the corresponding
coordinate frame. Therefore, the question we address in this section is: how can we represent the orientation
of a frame, e.g., r, with respect to another frame, e.g., w?

In this section we assume that the two coordinate frames have the same origin but potentially different
orientations and we discuss alternative representations for the orientation of a frame. Then, in Section 2.4
we reconcile positions and orientations in a unified representation.

Terminology: the terms “orientation”, “attitude”, and “rotation” are used interchangeably to define the
intuitive notion of orientation of a 3D body (although the term attitude is more rarely found in 2D problems).

3

2-4 Lecture 2: September 4, 9

2.3.1 Rotation matrix representation

A very naive way (that indeed will prove to be very clever later on) to represent the attitude of a frame
r with respect to a frame w is as follows: treat the tip of each axis xr, yr, zr as a point, and stack the
coordinates of each point with respect to the frame w as columns of a matrix. Let us consider a couple of
examples to clarify this matrix representation.

Example 2.3.1 (2D rotation matrix). In the 2D example in Fig. 2.3, it is easy to see that the coordinates
of the tip of the axis xr with respect to the frame w are: � �

cos(θ) − sin(θ)
Rw = (2.5)r sin θ cos(θ)

where θ is the angle shown in the figure.

Example 2.3.2 (3D rotation matrix). As in the previous example, we can form a matrix by filling in each
column with the coordinates of the axes of r expressed in the coordinate frame w: � �

Rw w w w= x y z (2.6)r r r r

θ

wx

wx

wz

rx

rx

wy

wy

ry

ryrz

Figure 2.3: 2D and 3D Rotations.

The matrix Rw is called a rotation matrix (in aerospace, it is sometimes referred to as the Direction Cosiner
Matrix, DCM). Clearly, this is not a generic matrix, since its columns represent orthogonal unit-length axis
that satisfy the right-hand rule. Therefore, any rotation matrix Rw has to satisfy:r

w w w• orthogonality : the axes x , y , z have unit length and are orthogonal to each other (independently r r r
on the reference frame they are expressed in), therefore:

w w wk2 k2 k2kx = 1 ky = 1 kz = 1 (unit length) (2.7)r 2 r 2 r 2
w w w w w w(x)T y = 0 (x)Tz = 0 (y)T z = 0 (orthogonal vectors) (2.8)r r r r r r

These relations can be rewritten directly as:

(Rw)TRw = Id (orthogonality) (2.9)r r

where Id is the identity matrix of size d (as before, d = 2 in 2D problems and d = 3 in 3D). A matrix
satisfying (2.9) is said to be orthogonal and it’s easy to see that such a matrix satisfies:

(Rw)−1 = (Rw)T (2.10)r r

4

2-5 Lecture 2: September 4, 9

w w w• right-handedness: the 3D axes x , y , z have to satisfy the right-hand rule, which implies thatr r r
w w wx × y = z where × denotes the cross product between vectors. Since these are unit-length vectors, r r r
the following relations hold:

w w w w w w x × y = z ⇐⇒ (z)T (x × y) = +1 ⇐⇒ det(Rw) = +1 (2.11)r r r r r r r

where in the last equality we noticed that the determinant of a 3 × 3 matrix can be computed as a
triple product [https://en.wikipedia.org/wiki/Triple_product#Scalar_triple_product] of the
columns. In, particular given three vectors a, b, c ∈ R3: �� ��

a · (b × c) = det a b c and (2.12)

a · (b × c) = −c · (b × a) = c · (a × b) (2.13)

Hence a rotation matrix Rw has to satisfy:r

det(Rw) = +1 (determinant +1) (2.14)r

2.3.1.1 Operations involving rotations

Now that we have (at least one) way to represent the orientation of a frame, we would like to ask few natural
questions that will be crucial to relate quantities measured in different coordinate frames:

• rotating points: given the coordinates of a point in a frame r and the attitude of r with respect to a
frame w, how can we compute the coordinates of the point in the frame w?

• composition: given the attitude of a frame r with respect to a frame w and the attitude of a frame c
with respect to a frame r, how can we compute the attitude of the frame c with respect to the frame
w? Intuitively, this is “similar” to (2.3), where we computed the position of a point given the position
of another point and the displacement between the two points;

• inverse: given the attitude of a frame r with respect to a frame w, how can we compute the attitude
of w with respect to frame r? Intuitively, this is “similar” to (2.2);

We address each question in the following subsections.

Expressing points in a rotated frame.

rLet us assume we are given the coordinates of a point in the frame r, namely p , and the attitude of r with
respect to a frame w, namely Rw , where the frames w and r share the same origin. This section addressesr

wthe following question: how can we compute the coordinates p of the point in the frame w?

It is possible to show that the following relation holds:

w r p = Rw p (2.15)r

wProof. From Fig. 2.4 we can see that the coordinates of p can be obtained as a sum of vectors vectors. In
wthe general 3D case, p is given by: ⎡ ⎤

rp� �
w w w ⎣ x ⎦ = Rw

r p r (2.16)w w r w r w r r+ y + z px y zp = x pr p p = x r y r z r r r y
pr
z

5

https://en.wikipedia.org/wiki/Triple_product#Scalar_triple_product

2-6 Lecture 2: September 4, 9

θ

w

r

p

x
rp

y
rp

Figure 2.4: Expressing points in rotated frame.

Note: our notation helps us transform points using the correct rotation, and one is only “allowed” multiplying
a rotation matrix by a vector when the subscript of the rotation matches the superscript (coordinate frame)
of the vector.

Rotation composition.

Let us assume we are given the attitude of a frame r with respect to a frame w, namely Rw
r , and the attitude

of a frame c with respect to a frame r, namely Rr .c This section addresses the following question: how can
w
c ?we compute the attitude of the frame c with respect to the frame w, i.e., R

crc

It is possible to show that we can compose rotations as follows:

Rw = Rw Rr (2.17)

Proof. � � � � � �
Rw Rr = Rw

rcr c = Rw

Note 1 : our notation helps us to compose rotations in the correct order, and one is only “allowed” composing
two rotations only if the subscript of the first rotation matches the superscript of the subsequent one.

= R

rxc
r
c

r
c

w
r

r
c

w
r

r
c

w
r

r
c

w
c

w
c

w
cR R R (2.18)y z = x y z = x y z

w
r

r
c

r
c

w
r6Note 2 : rotation composition is not commutative in general, hence in general: R R R .

Inverse of a rotation.

w
rLet us assume we are given the attitude of a frame r with respect to a frame w, namely R . This section

r
w?

rrw

w

addresses the following question: how can we compute the attitude of w with respect to frame r, i.e., R

It is possible to show that Rr

Rr = (Rw = (Rw

can be computed as follows:

)−1)T (2.19)

where the second equality follows from the orthogonality of the rotation matrix.

w
w = Id. Moreover,

rrw

Proof. By definition the attitude of a frame with respect to itself is the identity matrix: R

Rr = (Rw = (Rw
wr

using rotation composition we get:

RwRr = Rw
w = Id =⇒)−1Id)−1 (2.20)

6

2-7 Lecture 2: September 4, 9

Note: in Example 2.3.2 we observed that the columns Rr describes the coordinates of the unit vectors w
defining the frame r with respect to the frame w. The relation Rr = (Rw)T above suggests that the rows ofw r
Rr represent the unit vectors defining the frame w with respect to to the frame r.w

2.3.2 Elementary rotations and Euler angles representation

A representation has to serve different purposes: (i) it allows storing information efficiently (e.g., keep track
of the rotation of a frame), (ii) it can be used to perform calculations without too much overhead, and (iii)
in many cases it must be understandable for a human (e.g., for debugging or monitoring).

The rotation matrix Rw is an excellent representation to perform calculations (Section 2.3.1.1), but is notr
very “readable” for a human. Moreover, the representation is clearly redundant: in 2D we intuitively need
a single angle to represent the orientation of a frame, while a 2D rotation matrix stores 4 scalars. Similarly,
one may wonder if we really need 9 scalars to represent a 3D rotation. The following result tells us that we
only need 3 parameters to represent an arbitrary 3D rotation.

Theorem 1 (Euler’s rotation theorem, 1775). Any rotation can be written as the product of no more than
three elementary rotations (no two consecutive rotations along the same axis), where the elementary rotations
are defined as follows:

Figure 2.5: Elementary rotations.

Theorem 1 ensures that we only need three parameters, generally called the Euler angles to represent a 3D
rotation. However, the theorem leaves freedom on the order of the elementary rotations. For instance, one
can parametrize the same rotation Rw as:r

Rw = Rx(φ1) Ry(θ1) Rx(ψ1) (2.21)r

or
Rw = Rx(φ2) Ry (θ2) Rz(ψ2) (2.22)r

resulting in 2 different sets of angles describing the same rotation. This created a plethora of different
convention, where each convention adopts a different order.

A particularly popular choice of Euler angles adopt the following order:

Rw = Rz (γ) Ry(β) Rx(α) (2.23)r

where γ is called the yaw angle, β is called the pitch angle, and α is called the roll angle.

The popularity of the roll-pitch-yaw (RPY) angle representation stems from the fact that:

7

2-8 Lecture 2: September 4, 9

• when the frame w is chosen wisely, these angles assume a very intuitive meaning.

• they provide a minimal representation for a rotation: we use 3 parameters to represent 3 rotational
degrees of freedom (a rotation matrix uses 9 parameters).

On the downside, RPY and Euler angles in general have 3 main drawbacks:

• conventions: there exist multiple conventions and specifying the angles without being precise about
the convention may create problems.

• operations: while we saw that operations with rotations matrices (rotating points, composition, inverse)
reduce to matrix products and transposes, operations with Euler angles typically involve trigonometric
functions, which may be slower to compute and more difficult to analyze.

• singularities: Euler angles suffer from singularities: some attitudes do not have a unique Euler angle
representation. For instance, there is an infinite number of RPY angles representing the attitude of a
body with π/2 pitch angle. In other words, the following product produces the same rotation matrix
for any choice of the angle δ:

R = Rz (δ) Ry (π/2) Rx(α + δ) (2.24)

Proof. Let us proceed by inspection and compute the product Rz(δ) Ry(π/2): ⎡ ⎤⎡ ⎤ ⎡ ⎤
cos(δ) − sin(δ) 0 0 0 1 0 − sin(δ) cos(δ)

Rz(δ) Ry(π/2) = ⎣ sin(δ) cos(δ) 0 ⎦⎣ 0 1 0 ⎦ = ⎣ 0 cos(δ) sin(δ) ⎦ (2.25)
0 0 1 −1 0 0 −1 0 0

Now doing the overall multiplication: ⎡ ⎤⎡ ⎤
0 − sin(δ) cos(δ) 1 0 0

Rz(δ) Ry(π/2) Rx(α + δ) = ⎣ 0 cos(δ) sin(δ) ⎦⎣ 0 cos(α + δ) − sin(α + δ) ⎦ =
−1 0 0 0 sin(α + δ) cos(α + δ)⎡ ⎤

0 − sin(δ) cos(δ + α) + cos(δ) sin(δ + α) sin(δ) sin(δ + α) + cos(δ) cos(δ + α) ⎦ (from trigonometry) ⎣ 0 sin(δ) sin(δ + α) + cos(δ) cos(δ + α) sin(δ) cos(δ + α) − cos(δ) sin(δ + α) =
−1 0 0 ⎡ ⎤ ⎡ ⎤

0 sin((δ + α) − δ) cos((δ + α) − δ) 0 sin(α) cos(α)⎣ 0 cos((δ + α) − δ) − sin((δ + α) − δ) ⎦ = ⎣ 0 cos(α) − sin(α) ⎦

−1 0 0 −1 0 0

which is independent from δ, proving the claim.

Therefore we say that the RPY has a singularity for pitch angle equal to π/2 (same happens for −π/2).
This singularity is also called Gimbal lock.

An excellent interactive tool to visualize and understand RPY angles is the “tripleangle” script in Peter
Corke’s robotics toolbox (tested: release 10.2, Matlab 2016b). In particular, one can use the tool to
gain a better understanding of:

– the meaning of the RPY angles

– the notion of singularity

It is known that any 3 parameter representation cannot be free of singularities [4]. Singularities occur
when the second Euler angle aligns the first and the third rotation axes which causes the loss of a degree
of freedom. Depending on the order of the Euler angles, singularities occur at {0, π} or {+π/2, −π/2}
angles for the second rotation.

8

2-9 Lecture 2: September 4, 9

2.3.3 Axis-angle representation

Another theorem from Euler implicitly suggests a different parametrization for rotations:

Theorem 2 (Euler’s rotation theorem, 1776). Every rotation can be described as a rotation of an angle θ
around an axis u (with kuk = 1), not necessarily aligned with the Cartesian axes.

This suggests the axis-angle representations, which encodes a 3D rotation using the pair (u, θ). This repre-
sentation is very important since

• can be easily visualized and understood

• only stores 4 parameters (3 if we use kuk = 1)

• has interesting relations with Lie group theory (next lecture).

However, it has few drawbacks (the notation R(u, θ) denotes a rotation of an angle θ around the axis u):

• operations (composition, rotating points) with the axis-angle representation typically involve trigono-
metric functions, which may be slower to compute and more difficult to analyze. The inverse of a
rotation, however, is easy to compute: R(u, θ)−1 = R(u, −θ) = R(−u, θ)

• the representation is not unique, e.g., R(u, θ) = R(u, θ + 2kπ) for any integer k.

Conversions.

• From axis-angle to rotation matrix (Rodrigues’ rotation formula): given a rotation angle θ and a ro-
tation axis u that describe the attitude of the frame r with respect to the frame w (with u expressed
in the frame w), the rotation matrix Rw can be computed as:r

TRw = cos(θ)I3 + sin(θ)[u]× + (1 − cos(θ))uu (2.26)r

where ⎡ ⎤
0 −uz uy .

[u]× = ⎣ uz 0 −ux ⎦ (2.27)
−uy ux 0

is a skew symmetric matrix (the cross product matrix). Note that the cross product matrix allows
writing the cross product between 2 vectors v1 and v2:

v1 × v2 = [v1]×v2 (2.28)

Eq. (2.26) is also known as the Rodrigues’ rotation formula.

• From rotation matrix to axis-angle: given a rotation matrix Rw that describes the attitude of the frame r
r with respect to the frame w, the corresponding axis-angle representation (u, θ) can be computed as:

– angle: using (2.26), we note that

tr (Rw) = 1 + 2 cos(θ) (2.29)r

which can be used to compute the rotation angle: � �
tr (Rw) − 1rθ = arccos (2.30)

2

9

2-10 Lecture 2: September 4, 9

• axis: it we try to rotate a vector equal to the axis u, then this vector does not change. In mathematical
terms:

Rw u = u (2.31)r

which means that u can be computed as the eigenvector corresponding to the eigenvalue 1 of the
rotation matrix. Therefore, we can compute the axis by computing the eigenvectors of the matrix Rw .r

Interestingly, it turns out that the three eigenvalues of a 3D rotation matrix are always {1, cos θ±i sin θ}.
By inspection (i.e., looking at the characteristic polynomial), one can also see that a 2D rotation matrix
has always eigenvalues {cos θ ± i sin θ}.

2.3.4 Quaternion representation

If 3-parameter representations are ideal for storage (but have singularities and requires trigonometry) and
rotation matrices are singularity-free (but largely over-parametrize the attitude), the natural question is: is
there a representation that is singularity free and uses less parameters than a rotation matrix?

W.R. Hamilton provided a positive answer to this question in 1843, by introducing the quaternion represen-
tation. Depending on the context a quaternion is denoted as a column vector ⎤⎡

q =
⎢⎢⎣

q1

q2

q3

q4

⎥⎥⎦ (2.32)

or as an ipercomplex number, i.e., q = iq1 + jq2 + kq3 + q4, with i, j, k satisfying:

i2 = j2 = k2 = ijk = −1
ij = −ji = k jk = −kj = i ki = −ik = j

TA quaternion can be also written as q = [v s]T , where the first element v ∈ R3 is the vector part of the
1quaternion, while the last element s is the scalar part.

Unit quaternions, i.e., quaternions having unit norm, are compact representations for rotations and have
been used in several applications of computer vision and 3D navigation (examples of use in navigation
problems are [1–3, 5]). The basic insight behind the quaternion representation is to “rearrange” the axis-
angle parametrization (u, θ) as follows: ��

sin(θ/2)u
q = (2.33)

cos(θ/2)

It is possible to show that the rotation matrix corresponding to a unit quaternion q is given by: ⎤⎡
2 2 2 2q1 −q2 −q3 +q 2(q1q2 − q3q4) 2(q1q3 + q2q4)4⎣ 2 2 2 22(q1q2 + q3q4) −q1 +q2 −q3 +q 2(q2q3 − q1q4)4

⎦R(q) = (2.34)
2 2 2 22(q1q3 − q2q4) 2(q2q3 + q1q4) −q1 −q2 +q3 +q4

Clearly, (2.33) stores all the information we need to represent a 3D attitude (e.g., we can easily extract an
axis-angle representation from (2.33)). The remaining questions are then: does this representation exhibit

1Also in the case of quaternions, multiple conventions exist. We adopt the somehow unusual convention of putting the scalar
part as last entry in the quaternion (most commonly it is put first) to keep some similarity with the homogeneous coordinates
discussed in below.

10

2-11 Lecture 2: September 4, 9

singularities? does this representation make computation easy? Surprisingly, quaternions do not have
singularities. The only ambiguity follows from the fact that, if we denote with R(q) the rotation matrix
corresponding to the quaternion q, then q and −q result in the same rotation matrix:

R(q) = R(−q) (2.35)

hence each attitude can be represented by both a quaternion q and its negation −q.

Proof. Clearly a rotation of an angle θ and of an angle θ +2π produce the same attitude, hence, the following
. Tquaternion describes the same attitude of q = [sin(θ/2)u cos(θ/2)]T: ������

sin((θ + 2π)/2)u sin(θ/2 + π)u (some trigonometry) − sin(θ/2)u
= = = −q (2.36)

cos(θ + 2π) cos(θ/2 + π) − cos(θ/2)

Quaternion composition. Given two quaternions qa = [qa,1 qa,2 qa,3 qa,4]
T and qb = [qb,1 qb,2 qb,3 qb,4]

T ,
we define the quaternion product qc = qa ⊗ qb, which can be computed as: ⎤⎡⎤⎡

qa,4 −qa,3 qa,2 qa,1 qb,1 ⎢⎢⎣
⎢⎢⎣

⎥⎥⎦
⎥⎥⎦qa,3 qa,4 −qa,1 qa,2

−qa,2 qa,1 qa,4 qa,3

qb,2

qb,3
= (qa) qbqc =

−qa,1 −qa,2 −qa,3 qa,4 qb,4

or, equivalently, as: ⎤⎡⎤⎡
qb,4 qb,3 −qb,2 qb,1 qa,1 ⎢⎢⎣

⎢⎢⎣
⎥⎥⎦

⎥⎥⎦
−qb,3 qb,4 qb,1 qb,2

qb,2 −qb,1 qb,4 qb,3

qa,2

qa,3
= ̄(qb) qaqc =

−qb,1 −qb,2 −qb,3 qb,4 qa,4

We can now discuss how to compose rotations using unit quaternions. Let us first go back to our original
wnotation and denote with q the quaternion describing the attitude of frame r with respect to frame w.r

Also, let us assume we are given the attitude of a frame r with respect to a frame w as a quaternion, namely
w rq , and the attitude of a frame c with respect to a frame r, namely q . How can we compute the attituder c

wof the frame c with respect to the frame w, i.e., q ?c

It turns out that we can compose rotations using the quaternion product introduced above:

w w r q = q ⊗ q (2.37)c r c

Inverse of a quaternion. Let us assume we are given the attitude of a frame r with respect to a frame w
win quaternion notation, namely q . This section addresses the following question: how can we compute ther

rattitude of w with respect to frame r, i.e., q ?w

It turns out that computing the inverse notation in quaternion form is straightforward and can be computed
as (proof hint, think about inverse rotation in axis-angle representation): ��

w
r −vr . w)−1 q = = (q (2.38)w w rsr

w w wwhere v and s are the vector and the scalar part of q , respectively. In the last equality in (2.38) we r r r
defined the “inverse” of a quaternion to be the operation that switches the sign of the vector part of a
quaternion.

11

2-12 Lecture 2: September 4, 9

It also holds:
−1 −1 −1 −1(qa ⊗ qb ⊗ . . . ⊗ qN) = q ⊗ . . . ⊗ q ⊗ qN b a

Expressing points in a rotated frame. Let us assume we are given the coordinates of a point in the
r wframe r, namely p , and the attitude of r with respect to a frame w in quaternion notation, namely q ,r

where the frames w and r share the same origin. This section addresses the following question: how can we
wcompute the coordinates p of the point in the frame w?

rThe following expression expresses point p in the reference frame w: � � � �
r r

w w p w)−1 Rr
wp

p = (q) ⊗ ⊗ (q = (2.39)r r1 1

An alternative expression is given as follows: � � � �
r r

w w p w)−1 Rr
wp

p = (q) ⊗ ⊗ (q = (2.40)r r0 0

Interestingly, we can augment a 3D position with an extra entry (1 or 0) and use quaternion product and
inverse to express points in a different reference frame. As we will see in Section (2.4), stacking an entry
equal to 1 to a position or translation produces a representation known as homogeneous coordinates.

Are quaternions the “best” representation for rotations? Quaternions are the minimal representation
of a rotation that does not have singularities (we already observed that all 3-parameter representations are
affected by singularities), hence they are excellent to store data. Moreover, the allow to perform computation
without resorting to trigonometry. In particular, while rotation matrix multiplication (composition) involves
27 products of the entries of the matrices, quaternion multiplication (composition) only involves 16 products
of entries; this computational advantage makes quaternion an excellent representation for computer graphics,
where one has to transform many points quickly for 3D rendering.

A minor drawback is that they are slightly harder to parse (for a human) with respect to Euler angles. Then,
are quaternions the “best” representation for rotations?

In the next lecture, we will see that a very subtle issue due to the sign ambiguity in eq. (2.35) may create
some difficulties in certain estimation problems, hence, while being a very powerful estimation tool, we will
mostly prefer to use rotation matrices.

2.4 Poses and rigid-body transformations

In Section 2.2 we observed that we can describe the position of a point using a 3D vector, while in Section 2.3.1
we observed that we can describe the orientation of a frame using a rotation matrix. Therefore, we are now
ready to fully characterize the position and attitude of a frame r (attached to a body) with respect to another
frame w. In particular, if we call tw the position of the origin of r with respect to w and Rw the attitude ofr r
r with respect to w, then the pair:

w(Rw , t) (2.41)r r

fully characterizes the geometry of r with respect to w, or, more precisely, the pose (i.e., position and
orientation) of r with respect to w. A pose is fully defined by 6 parameters (3 for the translation and 3 for
the attitude). In the following section, we will see that it is actually convenient to assemble the rotation and
the translation defining a pose into a suitable matrix: � �

Rw tw

T w r r= (2.42)r 0T 1d

12

2-13

c

Lecture 2: September 4, 9

where d = 2 in 2D problems and d = 3 in 3D.

Rigid-body transformations.

While in Section 2.3.1 we discussed how to transform points between rotated coordinate frames (sharing the
same origin), we now discuss expressing points in reference frames with arbitrary pose (i.e., not necessarily

r of a point p, expressed in the referencesharing the same origin). Assume we are given the coordinates p

= Rw
r

frame r and that we know the relative pose of the reference frame r with respect to the frame w, namely
w
rT . Then the position of point p with respect to frame w is given by:

w r w (2.43)+ tp p r

Figure 2.6: Rigid-body transformations.

We can write (2.43) more succinctly by introducing the homogeneous coordinate representation for a 3D
point pr , which is simply obtained by concatenating a “1” to the vector containing the coordinates of the

r

point: � �
rp

(2.44)p̃ =
1

r
r

w

Using homogeneous coordinates we can write (2.43) in matrix form as: � � � �

= T w
w
r

w
r

rR t p
(2.45)p̃ = p̃T

d 10 1

hence generalizing the pure rotation case (2.15).

Pose composition. Let us assume we are given the pose of a frame r with respect to a frame w, namely
Tw
r , and the pose of a frame c with respect to a frame r, namely T r

c . This section addresses the following
w
cquestion: how can we compute the pose of the frame c with respect to the frame w, i.e., T

= T w

?

crc

Similarly to the rotation case, we can compose poses by matrix multiplication:

T w = T w T r (2.46)

cr

Proof. � � � � � � � �

T w T r
w
r

w
r

r
c

r
c

w
r

r
c

w
r

r
c

w
c

w
cR R R R R Rt t t t

(2.47)= = = T
d

T
d

T
d

T
d0 1 0 1 0 1 0 1

13

2-14 Lecture 2: September 4, 9

Inverse of a pose.

w
rLet us assume we are given the pose of a frame r with respect to a frame w, namely T . This section

r
waddresses the following question: how can we compute the pose of w with respect to frame r, i.e., T ?

It is possible to show that T r
w can be computed as follows: � �

T r = (T w

0T
3

rw
)T)Tw

r
w
r

w
r−(R(R t

)−1 (2.48)=
1

Note that unlike the rotation-only case, when dealing with poses, the inverse is no longer the transpose,
since the matrix T r

w is not an orthogonal matrix in general.

Proof. Instead of using the compact notation twr , let us use t
w
wr to stress the fact that this vector represents

the translation between the origin of frame w and r expressed with respect to frame w. Then we can develop
(Tw

r)
−1

33

as: � � � � � � � �

0T 0T 0T 0T
33

)T)T r
w

r
wt

w
wr

r
w −tr

wr
r
w tr

rw
w
r

w
r tw

wr −R−(R R R R(R
(2.49)= = =

1 1 1 1

where in the last equality we used eq. (2.4). Noting that tr is what we typically call trw
r
w, we can recognize

the last matrix to be T r
w, concluding the proof.

References

[1] W.G. Breckenridge. Quaternions - proposed standard conventions. In JPL, Tech. Rep. INTEROFFICE
MEMORANDUM IOM 343-79-1199, 1999.

[2] E.J. Lefferts, F.L. Markley, and M. D. Shuster. Kalman filtering for spacecraft attitude estimation.
Journal of Guidance, Control, and Dynamics, 5(5):417–429, 1982.

[3] M.D. Shuster. A survey of attitude representations. Journal of the Astronautical Sciences, 41(4):439–517,
1993.

[4] J. Stuelpnagel. On the Parametrization of the Three-Dimensional Rotation Group. SIAM Review,
6(4):422–430, 1964.

[5] N. Trawny and S.I. Roumeliotis. Indirect kalman filter for 3D attitude estimation. Mars Lab, Technical
Report Number 2005-002, Rev. 57, 2005.

14

MIT OpenCourseWare
https://ocw.mit.edu/

16.485 Visual Navigation for Autonomous Vehicles (VNAV)
Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

15

https://ocw.mit.edu/terms
https://ocw.mit.edu

	Coordinate Frames
	Points, positions, and translations
	Attitude and rotations
	Rotation matrix representation
	Operations involving rotations

	Elementary rotations and Euler angles representation
	Axis-angle representation
	Quaternion representation

	Poses and rigid-body transformations

