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Compute 3D point P
from known poses

Recall ...

Motion estimation

- - /1/02 Time 1 Time 2 Time 3
In the previous lecture:

* Perception problem can systematically formulated using estimation theory

* Estimation theory: P(y1,...yn|x)
(1) Maximum likelihood (ML) estimate, ; 1 N

(2) Maximum a-postiriori (MAP) estimate

Which is this? ML or MAP?



Compute 3D point P
from known poses

Recall ...

Motion estimation

/o Time 1 Time 2 Time 3

G
In the previous lecture:

* Perception problem can systematically formulated using estimation theory

* Estimation theory: | ]P)(yl? R ?JN|$)

(1) Maximum likelihood (ML) estimate,

(2) Maximum a-postiriori (MAP) estimate

e Abstract Model:

yi = fi(x) +ny if n; ~N(0,%;)

and independent across 7

€T state variable

Y; measurements

&= argmin Y [|y; — fi(2)]3,
1

Nn; noise
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Compute 3D point P
from known poses

Recall ...

Motion estimation

o2 /l/o' Time 1 Time 2 Time 3

In the previous lecture:

1——
e

* Perception problem can systematically formulated using estimation theory

e Estimation theory:

(1) Maximum likelihood (ML) estimate,

|z||ls = V2T S~ 1z

is called Mahalanobis distance.

(2) Maximum a-postiriori (MAP) estimate

e Linear Model:

Y; = AZQZ‘ + n; If n; ~ N(U,Ei)

and independent across 7

€T state variable

Y;  measurements

Nn; noise
7



Today

* Nonlinear least squares problem

* Gauss-Newton Method

A quick detour

Nonlinear optimization

Convexity

Optimality conditions

Gradient descent and Newton’s method



Nonlinear Least Squares Problem

Minimize ||r(z)||* = Zm
r € R"

¢ r:R®™ = R™ and r(z) = [ri(x),r(x),...rm(x)]*

« 7;(x) is the residual function



Nonlinear Least Squares Problem

Minimize ||r(z)]|* = Z 7 (x
r € R"

¢ r:R®™ = R™ and r(z) = [ri(x),r(x),...rm(x)]*

« 7;(x) is the residual function

* For our abstract model y; = fi(x) + n;
1
ri(e) = %; * (yi — fi(x))
* Linear model y; = A +n;

N

ri(x) =%, 2 (y; — Asx)

)
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« 7;(x) is the residual function

e if r(x) = Az — b we call it linear least squares problem



Nonlinear Least Squares Problem

Minimize ||r(z)]|* = Z 7 (x
r € R"

© P R S R and r(2) = [ra (o), ra(e). .. v (@)]
« 7;(x) is the residual function

e if r(x) = Az — b we call it linear least squares problem

Question: How do we solve this?
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Nonlinear Least Squares Problem

m Nonlinear
Minimize ||r(z)|]> = |ri(z)]’ optimization
; problem
xr € R™ 1=1

© P R S R and r(2) = [ra (o), ra(e). .. v (@)]
« 7;(x) is the residual function

e if r(x) = Az — b we call it linear least squares problem

Question: How do we solve this?
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Nonlinear Optimization Problem

* Unconstrained nonlinear optimization problem:

Minimize ¢g(x)
r € R"

local minimum

g:R*" — R

* Global minimum: global minimum

*

x* is global minimum iff g(x*) < g(x) for all z € R"

e Local minimum:

*

x* is a local minimum iff 3 r > 0 s.t. g(z*) < g(x) for all x € B(x*,r)

B(x,r)={z€eR" |||z —z||<r} .



Nonlinear Optimization Problem

* Unconstrained nonlinear optimization problem:
Minimize ¢g(x)
r e R"

local minimum

g:R*" — R

* Necessary conditions for local minimum global minimum

x is a local minimum = g¢'(z) =0 and ¢"(x) > 0
* Sufficient conditions for local minimum g:R—>R

g'(r) =0and ¢"(x) >0 = = is a local minimum of g
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Nonlinear Optimization Problem

* Unconstrained nonlinear optimization problem:

Minimize ¢g(x)
r € R"

local minimum

g:R*" — R
* Necessary conditions for local minimum
z is a local minimum = Vg(z) = 0 and V?g(z) = 0

e Sufficient conditions for local minimum

Vg(z) =0 and V3g(xz) = 0 = z is a local minimum of g

global minimum
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Nonlinear Optimization Problem

Unconstrained nonlinear optimization problem:

Minimize ¢g(x)
r € R"

local minimum

g:R*" — R

Necessary conditions for local minimum

z is a local minimum = Vg(z) = 0 and V?g(z) = 0

Sufficient conditions for local minimum

Vg(z) =0 and V3g(xz) = 0 = z is a local minimum of g

Gradient descent converges to local minimum  Z¢41 = Tt — othg(:L‘t)

global minimum
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Nonlinear Optimization Problem

* Unconstrained nonlinear optimization problem:

Minimize ¢g(x)
r € R"

local minimum

g:R*" — R

* Necessary conditions for local minimum global minimum

z is a local minimum = Vg(z) = 0 and V?g(z) = 0
e Sufficient conditions for local minimum

Vg(z) =0 and V3g(xz) = 0 = z is a local minimum of g

Finding global minimum is hard!! ... possible with an added structure of convexity



Convex Problems

* Convex optimization problem:
Minimize ¢g(x)
r e R"

local minimum

g:R*" — R
. ¢ is convex iff for all z1,z2 € R™ and 6 € [0, 1] we have global minimum

g(0z1 + (1 — O)az) < Og(z1) + (1 — 0)g(x2)

1 Ox1 + (1 —6)as 22 20



Convex Problems

* Convex optimization problem:

Minimize g¢(z)
r e R"

local minimum Not convex!

g:R*" — R
. ¢ is convex iff for all z1,z2 € R™ and 6 € [0, 1] we have global minimum

g(0z1 + (1 — O)az) < Og(z1) + (1 — 0)g(x2)

Z1 Ox1 + (1 —6)as 2 o



Convex Problems

* Convex optimization problem:

Minimize ¢g(x)

r e R"”
g:R*" — R

. g is convex iff for all z1,22 € R™ and 6 € [0, 1] we have
g(0z1 + (1 — O)az) < Og(z1) + (1 — 0)g(x2)

« g is convex iff for all z,y € R®  g(y) > g(z) + Vg(x)! (y — )
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Convex Problems

* Convex optimization problem:

Minimize ¢g(x)

r e R"”
g:R*" — R

. g is convex iff for all z1,22 € R™ and 6 € [0, 1] we have
g(0z1 + (1 — O)az) < Og(z1) + (1 — 0)g(x2)

« g is convex iff for all z,y € R®  g(y) > g(z) + Vg(x)! (y — )

. ¢ is convex iff for all z € R" Vig(x) =0
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Convex Problems

* Convex optimization problem:

Minimize ¢g(x)
r € R"

Z1 Oz + (1 —6)as x2

g:R" —- R

Local minima is also a global minima

Necessary and sufficient condition

r is a global minima < Vg(x) =0 and VZg(z) = 0

Gradient descent converges to global minima

Tt4+1 = Tt — ath(ac‘t)

24



Back to Nonlinear Least Squares Problem

Minimize ||r(z)||* = Zm
r € R"

© P R S R and r(2) = [ra (o), ra(e). .. v (@)]
« 7;(x) is the residual function

e if r(x) = Az — b we call it linear least squares problem



Linear Least Squares Problem

Minimize ||Az — b||?
r e R"

A e R™X™ gnd b € R™

The objective function is convex!
Vig(x) =24ATA =0

Gradient descent algorithm converges to the global minimum

Lit+1 — Lt — QO{tAT(ALUt — b)

But, we can do much better (computationally) by exploiting the problem structure
and using the optimality conditions

26



Linear Least Squares Problem

Minimize ||Az — b||?
r e R"

e Ac R™*" gand b € R™

* The objective function is convex!
Vig(z) =2ATA =0

* Recall: z is a global minima < Vg(z) = 0 and V?g(z) = 0

27



Linear Least Squares Problem

Minimize ||Az — b||?
r e R"

A e R™X™ gnd b € R™

The objective function is convex!

V2g(z) =24TA = 0 _/\

Recall: x is a global minima < Vg(x) =0 andw 0

« Vg(z) = AT Ax — ATh

z is a global minima < AT Az = ATb

28



Linear Least Squares Problem

Minimize ||Az — b||?

A e R™X™ gnd b € R™

r € R"

The objective function is convex!

Vig(z) =2ATA =0

—— \

Recall: x is a global minima < Vg(x) =0 andw 0

Vg(z) = AT Az — ATh

x 1s a global minima <

AT Ax = AT

suffices to solve this linear
system of equations

29



Linear Least Squares Problem

Minimize ||Az — b||?

A e R™X™ gnd b € R™

r € R"

The objective function is convex!

Vig(z) =2ATA =0

—— \

Recall: x is a global minima < Vg(x) =0 andw 0

Vg(z) = AT Az — ATh

x 1s a global minima <

AT Ax = AT

suffices to solve this linear
system of equations

Do not invert!
30



Cholesky Solver
(AT A)x = Al

e Assuming AT A - 0



Cholesky Solver o

- - L = U1 Lo
(A" A)x = A" D 5
l31 {32
. Assuming AT A-0 lllustrative example

* Cholesky decomposition of AT A
ATA=LL"T

where L is a lower triangular and thus L? is an upper triangular matrix

32



Cholesky Solver w0 o)

L — 1?21 222 ; 0
(AT Az = AT ——
- a1 l32 L33 :}
. Assuming AT A-0 lllustrative example

* Cholesky decomposition of AT A
ATA=LL"T

where L is a lower triangular and thus L? is an upper triangular matrix

* We now have tosolve LLT 2 = ATh. We solve it in two steps.

33



Cholesky Solver o
I . pzz
(AT A)x = Al |
l31 {32
. Assuming AT A-0 lllustrative example

Cholesky decomposition of A1 A
ATA=LL"T

where L is a lower triangular and thus L? is an upper triangular matrix

We now have to solve LIz = ATh. We solve it in two steps.

Forward substitution: Ly = ATb and obtain

Backward substitution: L'z = y and obtain x

34



QR Solver

(AT A)x = Al



QR Solver
(AT A)x = Al

« Perform QR factorization of AT A
ATA=QR

where Q € R™*" s.t. QTQ =TI and R € R™*" is upper triangular
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QR Solver
(AT A)x = Al

« Perform QR factorization of AT A
ATA = QR
where Q € R™*" s.t. QTQ =TI and R € R™*" is upper triangular

« Have to now solve QRz = A”b
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QR Solver
(AT A)x = Al

« Perform QR factorization of AT A
ATA=QR
where Q € R™*" s.t. QTQ =TI and R € R™*" is upper triangular

« Have to now solve QRz = A”b multiply both sides by Q*
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QR Solver
(AT A)x = Al

« Perform QR factorization of AT A
ATA=QR

where Q € R™*" s.t. QTQ =TI and R € R™*" is upper triangular

* Have to now solve QRx = ATb — / multiply both sides by Q"

 Equivalent to solving Rx = QT AT
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QR Solver
(AT A)x = Al

« Perform QR factorization of AT A
ATA=QR

where Q € R™*" s.t. QTQ =TI and R € R™*" is upper triangular

* Have to now solve QRx = ATb — / multiply both sides by Q"

 Equivalent to solving Rx = QT AT

can be solved by backward substitution

40



Cholesky vs QR Solver
(AT A)x = Al

* QR is slower than Cholesky
* QR gives better numerical stability than Cholesky

41



Linear Least Squares Problem

Minimize ||Az — b||?

A e R™X™ gnd b € R™

r € R"

The objective function is convex!

Vig(z) =2ATA =0

—— \

Recall: x is a global minima < Vg(x) =0 andw 0

Vg(z) = AT Az — ATh

x 1s a global minima <

AT Ax = AT

Donell

42



Back to Nonlinear Least Squares Problem

Minimize ||r(z)||* = Zm
r € R"

© P R S R and r(2) = [ra (o), ra(e). .. v (@)]
« 7;(x) is the residual function

« Linear least square if r(x) = Az — b. Solved!!



Back to Nonlinear Least Squares Problem

Minimize ||r(z)]|* = Z 7 (x
r € R"

© P R S R and r(2) = [ra (o), ra(e). .. v (@)]
« 7;(x) is the residual function

« Linear least square if r(x) = Az — b. Solved!!

What if we linearize r(x) and solve it as a linear least square?
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Minimize ||r(z)||?

Linear Approximations e RN

e 7r:R"™ 5 R™ gnd ’I“(.Cl?) — [?“1(33),7°2(37)3 . -Tm(x)]T

« First-order Taylor approximation
ri(z) &~ ri(z0) + Vri(zo)! (x — 29) for everyi=1,2,...m
compile them to get /Vfrl (a:o)T\

VTQ(CITO)T
r(x) = r(xo) + J(xo)(x — x0) where  J(xg) = .

\V?“m .(iCo)T)

Holds for any xg € R™

45



Nonlinear Least Squares Problem

I /

Minimize ||r(x) Minimize ||r(zq) + J(z0)(x — z0)||?
x € R"” x € R"

for any g € R"

¢ 7:R" 5 R™ and r(z) = [r(x),r2(2),...7m(x)]T

« 7;(x) is the residual function



Nonlinear Least Squares Problem

/j substitute d = (x — xg)
|7

Minimize ||r(x) Minimize ||r(xq) + J(ato)(-fl?//lll‘o)HQ
r € R r € R"

for any g € R"

¢ 7:R" 5 R™ and r(z) = [r(x),r2(2),...7m(x)]T

« 7;(x) is the residual function



Nonlinear Least Squares Problem

I /

Minimize ||r(x) Minimize ||r(zo) + J(z0)d||”
xr € R"” d e R"

for any g € R"

* r:R” -5 R™ and r(x) = [ri(x),r2(x), .. 'Tm(x)}T Get solution d*

« 7;(x) is the residual function

Solution will be x = g + d*



Nonlinear Least Squares Problem

Minimize ||r(x)
r € R"

* r:R" - R"™ and r(x) = [ri(x), r2(x), . .

« 7;(x) is the residual function

I /

T ()]

Minimize ||r(z0) + J(20)d||?
deR"

for any g € R"

T
Get solution d*

Solution will be x = g + d* Will it? Yes or No?

49



Nonlinear Least Squares Problem

I /

Minimize ||r(x) Minimize ||r(zo) + J(z0)d||”
xr € R"” d e R"

for any g € R"

* r:R” -5 R™ and r(x) = [ri(x),r2(x), .. 'Tm(x)}T Get solution d*

« 7;(x) is the residual function

—Seolttion—wil-be#—2a20+d* No!!



Nonlinear Least Squares Problem

I /

Minimize ||r(x) Minimize ||r(x;) + J(erﬁ)d||2
r € R" d e R"

* r:R" - R"™ and r(x) = [T1($)7T2(x);---rm(x)}T

Get solution df

« 7;(x) is the residual function

 Iterate over x4y 1 = x; + df



Nonlinear Least Squares Problem

Minimize ||r(x)
r € R"

* r:R" - R"™ and r(x) = [ri(x), r2(x), . .

« 7;(x) is the residual function

I /

 Iterate over x4y 1 = x; + df

T ()]

Linear least square

Minimize ||r(z¢) 4+ J(z¢)d||?
d e R"

T
Get solution df

52



Nonlinear Least Squares Problem

/ Linear least square
I

Minimize ||r(z¢) 4+ J(z¢)d||?
r e R"” dcR"

Minimize ||r(x)

* r:R" - R"™ and r(x) = [ri(x), r2(x), . . 'Tm(x)}T Get solution df
t

« 7;(x) is the residual function

o Iterate over 441 = x; + d;

This is called the Gauss-Newton Method



Gauss-Newton Method P

Minimize ||r(x)

1. Start with an innitial guess xg r € R"

For t =0, 1, 2, ...until convergence \/

54



Gauss-Newton Method P

Minimize ||r(x)

1. Start with an innitial guess xg r € R"

For t =0, 1, 2, ...until convergence \/

2. Linearize the residual function r(x) at z;

r(xy +d) ~r(x) + J(x)d
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Gauss-Newton Method P

Minimize ||r(x)

1. Start with an innitial guess xg r € R"

For t =0, 1, 2, ...until convergence \/

2. Linearize the residual function r(x) at z;

r(xy +d) ~r(x) + J(x)d
3. Solve the linear least squares problem to obtain the minimum d;

Minimize ||r(x¢) + J(x;)d||? A= Jw) > J(x) T J(x)d = —J () r(zy)
d € R” b=—r(z)
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Gauss-Newton Method P

Minimize ||r(x)

1. Start with an innitial guess xg r € R"

For t =0, 1, 2, ...until convergence \/

2. Linearize the residual function r(x) at z;

r(xy +d) ~r(x) + J(x)d
3. Solve the linear least squares problem to obtain the minimum d;

Minimize ||r(x¢) + J(x;)d||? A= Jw) > J(x) T J(x)d = —J () r(zy)
d € R” b=—r(z)

4. Update Li41 — Ty + dt

57



Gauss-Newton Method P

Minimize ||r(x)

1. Start with an innitial guess xg r € R"

For t =0, 1, 2, ...until convergence \/

2. Linearize the residual function r(x) at z;

r(xy +d) ~r(x) + J(x)d
3. Solve the linear least squares problem to obtain the minimum d;

Minimize ||r(x¢) + J(x;)d||? A= Jw) > J(x) T J(x)d = —J () r(zy)
d € R” b=—r(z)

4. Update Li41 — Ty + Oétdt

58



Nonlinear Least Squares Problem

m

Minimize ||r(z)|]? = Z i ()]
x € R? =1

PiRY 5 R and r(@) = [ry(2), ra(a). ... rin(@)]
« 7;(x) is the residual function

e Gauss-Newton Method

« Local convergence. Cannot ensure global convergence.
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Summary

* Nonlinear least squares problem

* Linear least squares problem
* Gradient descent
* Cholesky solver
* QR solver

 Gauss-Newton Method

A quick detour

Nonlinear optimization

Convexity

Optimality conditions

Gradient descent

Minimize ||r(x)

I

Minimize ||Az — b||? (AT A)x = ATb
ATA=LLT
ATA=QR

J(x) T J(2)d = —J(x)Tr ()

Tiy1 = Ty + apdy

60



Summary

Minimize ||r(z)||?

* Nonlinear least squares problem

* Linear least squares problem Minimize ||Az — bl||? (AT A)x = ATb
* Gradient descent
e Cholesky solver ATA=LLT
* QR solver
a ATA = QR

 Gauss-Newton Method
J([Et)TJ(.’Et)d = —J(.CCt)TT‘({Et) Tt41 — Tt + Oitdt

A quick detour Next

Nonlinear optimization e Issues with Gauss-Newton Method

Convexity * Levenberg-Marquardt Method

Optimality conditions * Nonlinear least squares on Riemannian

Gradient descent Manifolds
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