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When Gaussian measurement noise, maximum likelihood estimation (MLE) gives: 

Perception as least squares optimization 

Measurements/data 

Estimate 

Residual 

Examples: 

Point cloud registration: 

Rotation + translation Point clouds (data) 
Correspondences between !", !′% 

SLAM: 
Pose 

Relative pose measurement 

Loop closures between &", &% 
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Outliers compromise least squares solutions

But if some !" are outliers, solution of                                   can be wrong:
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Outlier-robust least squares reformulations

min
$ ∈ &

'
(∈ℳ

* + ,, .( , ̅0

L : Robust-cost “least squares” R : Outlier rejection “least squares”

Possible choices for *:

Both L and R and harder than NP-hard

Need for effective approximation algorithms

• Fast
• Finds correct , despite many outliers

min
$ ∈&,1 ⊆ℳ

|1| 4. 6. + ,, .ℳ\1
8 ≤ :
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Today’s focus 

Methods to solve min$ ∈&
∑(∈ℳ* + ,, .(
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Why solving min
$ ∈ &

∑(∈ℳ * + ,, .( can be hard? 

Recall:
Possible choices for *:

Truncated least squares (TLS)

Geman McClure (GM)

Both GM and TLS are NON-convex

Non-convex functions are unpredictable!
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Why solving min
$ ∈ &

∑(∈ℳ * + ,, .( can be hard? 
Example (revisited):

• ,/012 = 0
• Measurements’ model: .5 = , + 789::;8< <=;:> =? @ = 0, A = 1

.C = , + 789::;8< <=;:> =? @ = 0, A = 1

.D = 2, + 789::;8< <=;:> =? @ = 0, A = 1
• Observed measurements: .5 = .C = 0, .D= 10

• .

If we stand here (x = 4), we cannot be sure if 
visible minimum at x = 4.8 is global minimum!
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Solving (optimally) non-convex problems is hard 

No methods exist that guarantee convergence in general:

• Typically rely on good initial guess on ! to converge to optimality 
(e.g., Gauss-Newton (GN))

(i) Decompose ! into " subvectors: ! = (!%, !', … , !))
(ii) Consecutively optimize !+ given current 

!%, … , !+,%, !+-%, … !)

• Alternate direction of optimization:
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Overcoming !’s non-convexity

Intermediate point:

Huber loss:
Still convex!

! " =
1
2 "

&, " ≤ ̅*

̅* " − 12 ̅* , ,. ..
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Overcoming !’s non-convexity

Idea: Start from least squares and gradually go to !-“least squares”:

• For " = 1 becomes GM
• For " = +∞ becomes '(

Similarly for TLS:

• For " = +∞ becomes )(
• For " = 0 becomes TLS

For similar approaches (on GN and graduated non-convexity), see paper 
Iterated Lifting for Robust Cost Optimization by C. Zach ‘14

1. Start with least squares, solve it, take initial estimate for );  call it )+;
2. Use )+ as initial guess to solve via GN a slightly non-least squares problem 
(by starting, e.g., with " = 100), solve it, take )-;
3. Set )+ = )-, and go to Step 2 (using now " = "/2), and so forth, until " = 1.

GN based approaches are fast but not necessarily optimal (can converge to local minima)!
Maybe we can do better at Step 2?
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Optimal solvers and graduated non-convexity

Idea:  Utilize the known optimal solvers for the least squares problem

to solve the outlier-robust cost “least squares” problem of Step 2 in previous slide:

min
$ ∈ &

'
(∈ℳ

*+ , -(, /



14

Optimal solvers and graduated non-convexity

Idea:  “Transform” min$ ∈ &
∑(∈ℳ *+ , -(, / to a least squares problem:

min
$ ∈ &

0
( ∈ℳ

*+ , -(, / = min
$ ∈ &

0
( ∈ℳ

min
23 ∈4

[ 6(,7 -(, / + Φ:; 6( ] ≜ >

Find appropriate set  4 and functionΦ:; such that:

scalar
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Finding Φ"# in the general case 

In the general case, a method to find Φ"# described in

On the Unification of Line Processes, Outlier Rejection, and Robust Statistics 
with Applications in Early Vision 
by Michael J. Black and Anand Rangarajan IJCV ‘96

given that the following conditions hold, where $(&) ≜ )( &):

• For GM:    Φ"# *+ = - ̅/0 *+ − 1
0, where *+ = 4 ̅56

78694 ̅56
0

• For TLS:

• lim=→?$′(&) = 1
• lim=→A$′(&) = 0
• $CC & < 0

,
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Optimal solvers and graduated non-convexity

The steps in previous slide become (substituting GN step 2 with steps 3-5 below):1

2.  Start by solving the least squares                                   and let !(#) be the solution. 

1.  Initialize % ≫ ('. ). , 100) and  - = 0.

3.  Weight update: Update /(#), given the fixed !(#) :

5.  Variable update: Update !(#), given the /(#01) found at Step 3:

4.  - = - + 1.

6.  % = %/2, and go to Step 3 until % = 1.

1 Yang, Antonante, Tzoumas,  Carlone, Graduated Non-Convexity for Robust Spatial Perception: From Non-Minimal Solvers to Global 
Outlier Rejection, IEEE Robotics and Automation Letters (RA-L), 2020, and IEEE ICRA 2020.
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Experimental results
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Experimental results1

3D registration

1 Yang, Antonante, Tzoumas,  Carlone, Graduated Non-Convexity for Robust Spatial Perception: From Non-Minimal Solvers to Global 
Outlier Rejection, IEEE Robotics and Automation Letters (RA-L), 2020, and IEEE ICRA 2020.
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Experimental results
Mesh registration
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Experimental results
Pose graph optimization

CSAIL
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Experimental results
Pose graph optimization

CSAIL
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Experimental results
Pose graph optimization

INTEL
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Experimental results
Shape alignment
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