Outlier-Robust Spatial Perception: Hardness, Algorithms, Guarantees

Vasileios Tzoumas

Research Scientist Laboratory of Decision and Information Systems Massachusetts Institute of Technology

Perception as least squares optimization

When Gaussian measurement noise, maximum likelihood estimation (MLE) gives:

Examples:

Outliers compromise least squares solutions

NBut if some y_i are outliers, solution of $\min_{\boldsymbol{x} \in \mathcal{X}} \sum r^2(\boldsymbol{y}_i, \boldsymbol{x})$ can be wrong:

Outlier-robust least squares reformulations

Today's focus

Methods to solve $\min_{x \in \mathcal{X}} \sum_{i \in \mathcal{M}} \rho(r(x, y_i))$

Why solving $\min_{x \in \mathcal{X}} \sum_{i \in \mathcal{M}} \rho(r(x, y_i))$ can be hard?

Recall:

Why solving $\min_{x \in \mathcal{X}} \sum_{i \in \mathcal{M}} \rho(r(x, y_i))$ can be hard?

Example (revisited):

- $x_{true} = 0$
- Measurements' model: $y_1 = x + gaussian \text{ noise of } \mu = 0, \sigma = 1$

$$y_2 = x + gaussian \text{ noise of } \mu = 0, \sigma = 1$$

$$y_3 = 2x + gaussian \text{ noise of } \mu = 0, \sigma = 1$$

• Observed measurements: $y_1 = y_2 = 0$, $y_3 = 10$

Solving (optimally) non-convex problems is hard

No methods exist that guarantee convergence in general:

- Typically rely on good **initial guess** on *x* to converge to optimality (e.g., Gauss-Newton (GN))
- Alternate direction of optimization:
 - (i) Decompose x into k subvectors: $x = (x_1, x_2, ..., x_k)$

(ii) Consecutively optimize x_i given current $x_1, \dots, x_{i-1}, x_{i+1}, \dots x_k$

Overcoming ρ 's non-convexity

Intermediate point:

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app

Overcoming ρ 's non-convexity

$$\rho_{\mu}(r) = \frac{\mu \bar{c}^2 r^2}{\mu \bar{c}^2 + r^2} \longrightarrow \begin{array}{c} \text{For } \mu = 1 \text{ becomes } \mathbf{G}\mathbf{M} \\ \text{For } \mu = +\infty \text{ becomes } r^2 \end{array}$$

Idea: Start from least squares and gradually go to ρ -"least squares":

1. Start with least squares, solve it, take initial estimate for x; call it x_0 ;

2. Use x_0 as initial guess to solve via GN a slightly non-least squares problem (by starting, e.g., with $\mu = 100$), solve it, take x_1 ;

3. Set $x_0 = x_1$, and go to Step 2 (using now $\mu = \mu/2$), and so forth, until $\mu = 1$.

Similarly for TLS: For similar approaches (on GN and graduated non-convexity), see paper *Iterated Lifting for Robust Cost Optimization* by C. Zach '14

$$\rho_{\mu}(r) = \begin{cases} r^{2} & \text{if } r^{2} \in \left[0, \frac{\mu}{\mu+1}\bar{c}^{2}\right] \\ 2\bar{c}|r|\sqrt{\mu(\mu+1)} - \mu(\bar{c}^{2}+r^{2}) & \text{if } r^{2} \in \left[\frac{\mu}{\mu+1}\bar{c}^{2}, \frac{\mu+1}{\mu}\bar{c}^{2}\right] \\ \bar{c}^{2} & \text{if } r^{2} \in \left[\frac{\mu+1}{\mu}\bar{c}^{2}, +\infty\right) \end{cases} \bullet \quad \text{For } \mu = +\infty \text{ becomes } x^{2} \\ \bullet \quad \text{For } \mu = 0 \text{ becomes } \text{TLS} \end{cases}$$

GN based approaches are fast but not necessarily optimal (can converge to local minima) Maybe we can do better at Step 2?

Optimal solvers and graduated non-convexity

Idea: Utilize the known optimal solvers for the least squares problem

$$\min_{oldsymbol{x}\in\mathcal{X}}\;\sum_{i=1}^N r^2(oldsymbol{y}_i,oldsymbol{x})$$

to solve the outlier-robust cost "least squares" problem of Step 2 in previous slide:

$$\min_{x \in \mathcal{X}} \sum_{i \in \mathcal{M}} \rho_{\mu} \big(r(y_i, x) \big)$$

Optimal solvers and graduated non-convexity

Idea: "Transform" $\min_{x \in \mathcal{X}} \sum_{i \in \mathcal{M}} \rho_{\mu}(r(y_i, x))$ to a least squares problem:

Find appropriate set
$$\mathcal{W}$$
 and function $\Phi_{\rho_{\mu}}$ such that:

$$\min_{x \in \mathcal{X}} \sum_{i \in \mathcal{M}} \rho_{\mu}(r(y_{i}, x)) = \min_{x \in \mathcal{X}} \sum_{i \in \mathcal{M}} \min_{w_{i} \in \mathcal{W}} [w_{i}r^{2}(y_{i}, x) + \Phi_{\rho_{\mu}}(w_{i})] \triangleq E$$
scalar

Finding $\Phi_{\rho_{\mu}}$ in the general case

• For **GM**:
$$\Phi_{\rho_{\mu}}(w_i) = \mu \bar{c}^2 (\sqrt{w_i} - 1)^2$$
, where $w_i = \left(\frac{\mu \bar{c}^2}{r_i^2 + \mu \bar{c}^2}\right)^2$

• For TLS:
$$\Phi_{\rho_{\mu}}(w_i) = \frac{\mu(1-w_i)}{\mu+w_i} \bar{c}^2$$
, $w'_i = \begin{cases} 0 & \text{if } r_i^2 \in \left[\frac{\mu+1}{\mu} \bar{c}^2, +\infty\right] \\ \frac{\bar{c}}{r_i} \sqrt{\mu(\mu+1)} - \mu & \text{if } r_i^2 \in \left[\frac{\mu}{\mu+1} \bar{c}^2, \frac{\mu+1}{\mu} \bar{c}^2\right] \\ 1 & \text{if } r_i^2 \in \left[0, \frac{\mu}{\mu+1} \bar{c}^2\right]. \end{cases}$

In the general case, a method to find $\Phi_{\rho_{\mu}}$ described in

On the Unification of Line Processes, Outlier Rejection, and Robust Statistics with Applications in Early Vision by Michael J. Black and Anand Rangarajan IJCV '96

given that the following conditions hold, where $\phi(z) \triangleq \rho(\sqrt{z})$:

- $\lim_{z \to 0} \phi'(z) = 1$
- $\lim_{z\to\infty}\phi'(z)=0$
- $\phi''(z) < 0$

Optimal solvers and graduated non-convexity

The steps in previous slide become (substituting GN step 2 with steps 3-5 below):¹

- 1. Initialize $\mu \gg (e.g., 100)$ and t = 0.
- 2. Start by solving the least squares $\min_{x \in \mathcal{X}} \sum_{i=1}^{\infty} r^2(y_i, x)$ and let $x^{(t)}$ be the solution.
- 3. Weight update: Update $w^{(t)}$, given the fixed $x^{(t)}$:

$$oldsymbol{w}^{(t)} = rgmin_{w_i \in [0,1]} \sum_{i=1}^N \left[w_i r^2(oldsymbol{y}_i,oldsymbol{x}^{(t)}) + \Phi_{
ho_\mu}(w_i)
ight]$$

4. t = t + 1.

5. Variable update: Update $x^{(t)}$, given the $w^{(t-1)}$ found at Step 3:

$$oldsymbol{x}^{(t)} = rgmin_{oldsymbol{x}\in\mathcal{X}} \sum_{i=1}^N w_i^{(t-1)} r^2(oldsymbol{y}_i,oldsymbol{x})$$

6.
$$\mu = \mu/2$$
, and go to Step 3 until $\mu = 1$.

¹ Yang, Antonante, Tzoumas, Carlone, *Graduated Non-Convexity for Robust Spatial Perception: From Non-Minimal Solvers to Global Outlier Rejection,* IEEE Robotics and Automation Letters (RA-L), 2020, and IEEE ICRA 2020.

Experimental results¹

3D registration

¹ Yang, Antonante, Tzoumas, Carlone, *Graduated Non-Convexity for Robust Spatial Perception: From Non-Minimal Solvers to Global Outlier Rejection,* IEEE Robotics and Automation Letters (RA-L), 2020, and IEEE ICRA 2020.

Mesh registration

Pose graph optimization

CSAIL

Pose graph optimization

CSAIL

Pose graph optimization

INTEL

Shape alignment

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

16.485 Visual Navigation for Autonomous Vehicles (VNAV) Fall 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.