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Today 

https://arxiv.org/abs/1606.05830 

( ) 

C. Cadena et al., "Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age," in IEEE Transactions on Robotics, vol. 32, no. 6, pp. 1309-1332, Dec. 2016, doi: 10.1109/TRO.2016.2624754. © IEEE.
All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/
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SLAM & SfM: Engineered Solutions / Applications 
Kuka’s Navigation Solution Roomba 980  

Vacuum Cleaner 

Mars 
Rovers 
(VO) 

Source: public domain.
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SLAM & SfM: Engineered Solutions / Applications 
Google street viewPrecision agriculture 

Monitoring of historical sites 
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SLAM & SfM: Engineered Solutions / Applications 
© Tesla. All rights reserved. This content is excluded from our Creative Commons license. For more information, see© Skydio, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see

Skydio R1 drone Tesla’s autopilot https://ocw.mit.edu/help/faq-fair-use/https://ocw.mit.edu/help/faq-fair-use/

© Nintendo. All rights reserved. This content is excluded from our Creative Commons 
license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

© Google. All rights reserved. This content is excluded from our Creative Commons 
license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

© Facebook. All rights reserved. This content is excluded from our Creative Commons 
license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

Oculus Rift Goggles Pokemon Go Google Tango 

Reinvented as   
ARCore in 2017 6
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SLAM & SfM: Engineered Solutions / Applications 

Source: public domainDARPA Subterranean Challenge 7
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Robustness to noise 

non-convex optimization 

Iterative methods (e.g., gradient descent)
may get stuck into bad minima 

Initial guess gets worse when noise is large 17 17 



Robustness to noise (convergence) 
• Analysis: number of minima,   
basin of attraction of iterative solvers (Gauss-Newton),  
factors impacting quality of solution 

• Initialization   
Techniques 

non convex problem convex relaxation 
• Global 

Solvers 

18 
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What if place recognition fails? 

19
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What if place recognition fails? 

x4x3 

x5 
x6x7 

x2x1 

outliers: completely incorrect 
measurements  

(Perceptual Aliasing) 

0 outliers 5 outliers 20 outliers 

20

20 



Robustness to outliers 
[courtesy: Olson & Agarwal] 

correct but noisy outliers (completely 

least-square SLAM 
estimators 
catastrophically fail if 
outliers are not 
carefully handled 

measurements wrong measurements) 

“Google employs a
small army of human
operators to manually
check and correct the 
maps” [Wired] 

21

21 

© Olson and Agarwal. All rights reserved. This content is excluded 
from our Creative Commons license. For more information, see 
https://ocw.mit.edu/help/faq-fair-use/
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Robustness to dynamic scenes 

22 
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Robustness to missing data 

. Zhang, M. Kaess and S. Singh, "On degeneracy of optimization-based state estimation problems," 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 2016, pp. 809-816, doi: 10.1109/ICRA.2016.7487211 © IEEE All rights reserved. 
This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

[Zhang, Kaess, Singh, On Degeneracy of Optimization-based State Estimation] 
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Efficiency and Miniaturization 

>10 W < 5 W < 200 mW 

Human vision Machine vision 

Data stream 108 - 109 bits/second 5 . 108 bits/second (stereo) 

Performance parse scene: 13ms 
object detection: 22ms (GPU) 

SLAM: >100ms 

Power 20W 250 W (Titan X GPU) 26



 

Algorithms-and-hardware co-design 

4mm 

Desktop Embedded Xilinx Navion 
CPU CPU FPGA chip 

latency 50 ms 200ms 50 ms 22msimage processing 
latency  80 ms 400ms 200ms 30msMAP estimation 

power 26.1 W 2.33 W 1.46 W 24mW 

accuracy 16cm 16cm 19cm 23cm 

http://navion.mit.edu/ 27 27

http://navion.mit.edu/
http://navion.mit.edu/


Efficiency and Miniaturization 
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Mind the Gap with Human Perception 

Sparse 
or 

Dense 
Point 

Clouds 
Object-
based 
Maps  
[Salas-
Moreno, 

CVPR’13] 
.. lines, voxels, meshes 
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© Salas-Moreno, CVPR '13. All rights reserved. This content is excluded from our Creative Commons license. For more 
information, see https://ocw.mit.edu/help/faq-fair-use/
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High-level Understanding: Opportunities 

[Garcia-Garcia et al., 2017] 

The deep learning revolution! 31



Sparse Object-level SLAM

[Sunderhauf and Milford, 2017]
Figure 3 in Lachlan Nicholson, Michael Milford, and Niko Su ̈ nderhauf, "QuadricSLAM: Dual Quadrics from Object Detections as Landmarks in Object-oriented SLAM." IEEE ROBOTICS AND AUTOMATION LETTERS © IEEE. All rights reserved. This content is excluded from 
our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/
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Dense Metric-Semantic SLAM on GPU 

[McCormac et al., SemanticFusion] 33



Dense Metric-Semantic SLAM on CPU 

Kimera 

Fast multi-threaded open-source 
code: https://github.com/MIT-

SPARK/Kimera 

A. Rosinol, M. Abate, Y. Chang, L. Carlone, Kimera: an Open-Source Library for Real-Time Metric-Semantic Localization and Mapping. IEEE Intl. Conf. on Robotics and Automation (ICRA), 2020. arXiv:1910.02490 © IEEE. All rights reserved. This content is excluded from our 
Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

Rosinol, Abate, Chang, Carlone. Kimera: an open-source library for real-
time metric-semantic localization and mapping. ICRA 2020. 

34
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High-level Understanding: 3D Scene Graphs 

Directed graph, where: 
• nodes are spatial

concepts (i.e., concepts 
grounded in 3D)  

• edges represent
spatio-temporal 
relations between 
concepts (e.g., agent “i” 
in room “j” at time t) 

Figure 1 in Antoni Rosinol et al, "3D Dynamic Scene Graphs: Actionable Spatial Perception with Places, Objects, and Humans." Robotics: Science and Systems 2020 Corvalis, Oregon, USA, July 12-16, 2020 © Antoni Rosinol et al. All rights reserved. This content is excluded 
from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

[Armeni et al., 3D scene graph: A structure for unified semantics, 3D space, and camera. ICCV’19] 
[Rosinol et al., 3D Dynamic Scene Graphs: Actionable Spatial Perception with Places, Objects, and Humans, RSS’20] 
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High-level Understanding: 3D Scene Graphs 

- From SLAM algorithms to a Spatial Perception engINe (SPIN),
that infers geometry, semantics, a hierarchy of high-level spatial
concepts and their relations Figure 1 in Antoni Rosinol et al, "3D Dynamic Scene Graphs: Actionable Spatial Perception with Places, Objects, and Humans." Robotics: Science and Systems 2020 

Corvalis, Oregon, USA, July 12-16, 2020 © Antoni Rosinol et al. All rights reserved. This content is excluded from our Creative Commons license. For more 
information, see https://ocw.mit.edu/help/faq-fair-use/

[Rosinol, Gupta, Abate, Shi, Carlone, 3D Dynamic Scene Graphs: Actionable 
Spatial Perception with Places, Objects, and Humans, RSS’20] 
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Layer 2: Objects and Agents 

- Humans:
- 3D dense shape reconstruction from monocular images [2]
- Robust Pose Graph Optimization to track human poses over time

- Objects:
- Euclidean clustering (when shape is unknown)
- TEASER++ (when shape is known)

Figure 1 in Antoni Rosinol et al, "3D Dynamic Scene Graphs: Actionable Spatial Perception with Places, Objects, and Humans." Robotics: Science and Systems 2020 Corvalis, Oregon, USA, July 12-16, 2020 © Antoni Rosinol et al. All rights reserved. This content is excluded 
from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

[1] Rosinol et al., 3D Dynamic Scene Graphs: Actionable Spatial Perception with Places, Objects, and Humans, RSS’20.
[2] Kolotouros, Pavlakos, Daniilidis, Convolutional mesh regression for single-image human shape reconstruction, CVPR’19.
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Layer 3: Places and Structures 

- Places: obstacle-free locations in the map, such that there is line-of-sign
between pairs of nodes (suitable for fast path planning), using [2]

- Structures: separators between free space (walls, ground floor, ceiling)
Figure 1 in Antoni Rosinol et al, "3D Dynamic Scene Graphs: Actionable Spatial Perception with Places, Objects, and Humans." Robotics: Science and Systems 2020 Corvalis, Oregon, USA, July 12-16, 2020 © Antoni Rosinol et al. All rights reserved. This 
content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

[1] Rosinol et al., 3D Dynamic Scene Graphs: Actionable Spatial Perception with Places, Objects, and Humans, RSS’20.
[2] Oleynikova, Taylor, Siegwart, Nieto, Sparse 3D topological graphs for micro-aerial vehicle planning, IROS’18.
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Layer 4: Rooms 

- Rooms:
- extracted from graph of places using graph clustering

- Remark: traversability described at the level of rooms, places, and in the
mesh: this is a “feature”, rather than a “bug” (-> hierarchical planning)

Figure 1 in Antoni Rosinol et al, "3D Dynamic Scene Graphs: Actionable Spatial Perception with Places, Objects, and Humans." Robotics: Science and Systems 2020 Corvalis, Oregon, USA, July 12-16, 2020 © Antoni Rosinol et al. All rights reserved. This content is excluded 
from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

[1] Rosinol et al., 3D Dynamic Scene Graphs: Actionable Spatial Perception with Places, Objects, and Humans, RSS’20. 39
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