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Robustness to noise
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non-convex optimization
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Iterative methods (e.g., gradient descent)
may get stuck into bad minima

Initial guess gets worse when noise is large
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Robustness to noise (convergence)

- Analysis: number of minima,
basin of attraction of iterative solvers (Gauss-Newton),
factors impacting quality of solution

 Initialization
Techniques

non convex problem convex relaxation

« Global
Solvers
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What if place recognition fails?




What if place recognition fails?

L3 L4
outliers: completely incorrect
measurements

(Perceptual Aliasing)
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Robustnhess to outliers

[courtesy: Olson & Agarwal]

mmssmss  coOrrect but noisy = outliers (completely
© Olson and Agarwal. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see m easu re m entS Wro n g m eas u rem entS)
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least-square SLAM

“Google employs a

eSt| mators small army of human
catastrophically fail if operators to manually
check and correct the

outliers are not maps” [Wired]
carefully handled
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Robustness to dynamic scenes
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Robustness to missing data

. Zhang, M. Kaess and S. Singh, "On degeneracy of optimization-based state estimation problems," 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 2016, pp. 809-816, doi: 10.1109/ICRA.2016.7487211 © IEEE All rights reserved.
This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/

[Zhang, Kaess, Singh, On Degeneracy of Optimization-based State Estimation]
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Efficiency and Miniaturization

<5W < 200 mW

Machine vision

Data stream 108 - 109 bits/second 5108 bits/second (stereo)

object detection: 22ms (GPU)

Performance parse scene: 13ms SLAM: >100ms

Power 20W 250 W (Titan X GPU)..




Algorithms-and-hardware co-design

Desktop Embedded Xilinx

CPU CPU FPGA
. latency . 50 ms 200ms 50 ms 22ms
image processing
latency
MAP estimation 30 ms 400ms 200ms 30ms
power 20.1T W 2.33 W 1.40 W 24mW
accuracy 16cm 16cm 19cm 23CM

http://navion.mit.edu/
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Mind the Gap with Human Perception

Sparse
or
Dense
Point
Clouds

Object-
based
Maps
|Salas-

Moreno,
CVPR’13]

.. lines, voxels, meshes

© Salas-Moreno, CVPR '13. All rights reserved. This content is excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/fag-fair-use/
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High-level Understanding: Opportunities

2.1. COCO Detection Challenge

3. Places Challenges

[Garcia-Garcia et al., 2017]
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Sparse Object-level SLAM

Figure 3 in Lachlan Nicholson, Michael Milford, and Niko Su” nderhauf, "QuadricSLAM: Dual Quadrics from Object Detections as Landmarks in Object-oriented SLAM." IEEE ROBOTICS AND AUTOMATION LETTERS © IEEE. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/

[Sunderhauf and Milford, 2017] .
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Dense Metric-Semantic SLAM on GPU

[McCormac et al., SemanticFusion]



Dense Metric-Semantic SLAM on CPU

Fast multi-threaded open-source

code: https://github.com/MIT-
SPARK/Kimera

A. Rosinol, M. Abate, Y. Chang, L. Carlone, Kimera: an Open-Source Library for Real-Time Metric-Semantic Localization and Mapping. IEEE Intl. Conf. on Robotics and Automation (ICRA), 2020. arXiv:1910.02490 © IEEE. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/

Rosinol, Abate, Chang, Carlone. Kimera: an open-source library for real-
time metric-semantic localization and mapping. ICRA 2020.
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High-level Understanding: 3D Scene Graphs

Directed graph, where:

e nodes are spatial
concepts (i.e., concepts
grounded in 3D)

e edges represent
spatio-temporal
relations between
concepts (e.g., agent

134

in room “” at time t)
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Figure 1 in Antoni Rosinol et al, "3D Dynamic Scene Graphs: Actionable Spatial Perception with Places, Objects, and Humans." Robotics: Science and Systems 2020 Corvalis, Oregon, USA, July 12-16, 2020 © Antoni Rosinol et al. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/
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High-level Understanding: 3D Scene Graphs

- From SLAM algorithms to a Spatial Perception engiNe (SPIN),
that infers geometry, semantics, a hierarchy of high-level spatial

Figure 1 in Antoni Rosinol et al, "3D Dynamic Scene Graphs: Actionable Spatial Perception with Places, Objects, and Humans." Robotics: Science and Systems 2020

C O n C e ptS a n d t h e i r re | at i O n S Qorvalis, Oregon, USA, July 12-16, 2020 © Antoni Rosinol et al. All rights reserved. This content is excluded from our Creative Commons license. For more

information, see https://ocw.mit.edu/help/fag-fair-use/
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Layer 2: Objects and Agents

]

- Humans:

- 3D dense shape reconstruction from monocular images (2]

- Robust Pose Graph Optimization to track human poses over time
- Objects:

- Euclidean clustering (when shape is unknown)

- TEASER++ (when shape is known)

Figure 1 in Antoni Rosinol et al, "3D Dynamic Scene Graphs: Actionable Spatial Perception with Places, Objects, and Humans." Robotics: Science and Systems 2020 Corvalis, Oregon, USA, July 12-16, 2020 © Antoni Rosinol et al. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/
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Layer 3: Places and Structures

- Places: obstacle-free locations in the map, such that there is line-of-sign
between pairs of nodes (suitable for fast path planning), using [2]
- Structures: separators between free space (walls, ground floor, ceiling)

igure 1 in Antoni Rosinol et al, "3D Dynamic Scene Graphs: Actionable Spatial Perception with Places, Objects, and Humans." Robotics: Science and Systems 2020 Corvalis, Oregon, USA, July 12-16, 2020 © Antoni Rosinol et al. All rights reserved. This

content is excluded from our Creative Commons license. For more information, see https:/ocw.mit.edu/help/faq-fair-use/
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Layer 4: Rooms

- Rooms:
- extracted from graph of places using graph clustering
- Remark: traversability described at the level of rooms, places, and in the
mesh: this is a “feature”, rather than a “bug” (-> hierarchical planning)

Figure 1 in Antoni Rosinol et al, "3D Dynamic Scene Graphs: Actionable Spatial Perception with Places, Objects, and Humans." Robotics: Science and Systems 2020 Corvalis, Oregon, USA, July 12-16, 2020 © Antoni Rosinol et al. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/
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