Outlier-Robust Spatial Perception: Hardness, Algorithms, Guarantees

Vasileios Tzoumas

Research Scientist Laboratory of Decision and Information Systems Massachusetts Institute of Technology

This slide has been intentionally left blank.

Perception as least squares optimization

When Gaussian measurement noise, maximum likelihood estimation (MLE) gives:

Estimate
$$\qquad \min_{oldsymbol{x} \in \mathcal{X}} \sum_{i=1}^{N} r^2(oldsymbol{y}_i, oldsymbol{x})$$

Outliers compromise least squares solutions

NBut if some y_i are outliers, solution of $\min_{\boldsymbol{x} \in \mathcal{X}} \sum_{i=1}^{n} r^2(\boldsymbol{y}_i, \boldsymbol{x})$ can be wrong:

Outlier-robust least squares reformulations

L : Robust-cost "least squares"

$$\min_{x \in \mathcal{X}} \sum_{i \in \mathcal{M}} \rho(r(x, y_i), \bar{c})$$

R : Outlier rejection "least squares"

$$\min_{x \in \mathcal{X}, \mathcal{O} \subseteq \mathcal{M}} |\mathcal{O}| \quad s.t. \quad \left\| r(x, y_{\mathcal{M} \setminus \mathcal{O}}) \right\|^2 \le \epsilon$$

• Finds correct *x* despite many outliers

Last lecture's focus

Methods to solve $\min_{x \in \mathcal{X}} \sum_{i \in \mathcal{M}} \rho(r(x, y_i))$

Optimal solvers and graduated non-convexity

Final algorithm (GM case):1

- 1. Initialize $\mu \gg (e.g., 100)$ and t = 0.
- 2. Start by solving the least squares $\min_{\boldsymbol{x} \in \mathcal{X}} \sum_{i=1}^{N} r^2(\boldsymbol{y}_i, \boldsymbol{x})$ and let $x^{(t)}$ be the solution.
- 3. Weight update: Update $w^{(t)}$, given the fixed $x^{(t)}$:

$$\boldsymbol{w}^{(t)} = \operatorname*{arg\,min}_{w_i \in [0,1]} \sum_{i=1}^{N} \left[w_i r^2(\boldsymbol{y}_i, \boldsymbol{x}^{(t)}) + \Phi_{\rho_{\mu}}(w_i) \right]$$

4. t = t + 1.

5. Variable update: Update $x^{(t)}$, given the $w^{(t-1)}$ found at Step 3:

$$oldsymbol{x}^{(t)} = rgmin_{oldsymbol{x}\in\mathcal{X}} \sum_{i=1}^N w_i^{(t-1)} r^2(oldsymbol{y}_i,oldsymbol{x})$$

6.
$$\mu = \mu/2$$
, and go to Step 3 until $\mu = 1$.

¹ Yang, Antonante, Tzoumas, Carlone, *Graduated Non-Convexity for Robust Spatial Perception: From Non-Minimal Solvers to Global Outlier Rejection,* IEEE Robotics and Automation Letters (RA-L), 2020, and IEEE ICRA 2020.

Today's focus

Methods to solve $\min_{x \in \mathcal{X}, \mathcal{O} \subseteq \mathcal{M}} |\mathcal{O}| \quad s.t. \quad ||r(x, y_{\mathcal{M} \setminus \mathcal{O}})||^2 \le \epsilon$

Why min
$$|\mathcal{O}| s.t. ||r(x, y_{\mathcal{M}\setminus\mathcal{O}})||^2 \leq \epsilon$$
 can be hard?

Recall: Possible instances of the problem:

 $\begin{array}{ll} \text{Maximum consensus:} \\ \min_{x \in \mathcal{X}, \mathcal{O} \subseteq \mathcal{M}} |\mathcal{O}| & s.t. & r(x, y_i) \leq \bar{c}, \quad \forall i \in \mathcal{M} \setminus \mathcal{O} \\ \end{array} \qquad (\|\cdot\|_{\infty} \text{ norm above}) \\ \text{(Outlier rejection) "least squares:"} \\ \min_{x \in \mathcal{X}, \mathcal{O} \subseteq \mathcal{M}} |\mathcal{O}| & s.t. & \sum_{i \in \mathcal{M} \setminus \mathcal{O}} r^2(x, y_i) \leq \epsilon. \\ \end{array}$

Guaranteed outlier removal via BnB¹

¹Guaranteed Outlier Removal with Mixed Integer Linear Programs, Chin et al. CVPR 16

We'll develop a method to verify whether a measurement is an outlier

Let's re-write
$$\min_{x \in X, 0 \subseteq M} |\mathcal{O}| \quad s.t. \quad r(x, y_i) \leq \bar{c}, \forall i \in \mathcal{M} \setminus \mathcal{O} \quad as:$$

$$\min_{x} \sum_{i} z_i \qquad \text{large} \\ \text{subject to} \qquad |\mathbf{x}^T \theta_i - y_i| \leq \cdot + z_i M \qquad (\mathsf{P}) \\ z_i \in \{0, 1\}, \qquad (\mathsf{P}) \\ z_i \in \{0, 1\}, \qquad (\mathsf{P}) \\ \mathsf{Subject} = \{0, 1\}, \qquad (\mathsf{P}) \\ \mathsf{Subject} = \{0, 1\}, \qquad (\mathsf{P}) \\ \mathsf{Subject} = \sum_{i \neq k} z_i \\ \mathsf{Subject} = \{0, 1\}, \qquad (\mathsf{AUX-P}) \\ z_i \in \{0, 1\}, \\ |\mathbf{x}^T \theta_k - y_k| \leq \cdot . \end{cases}$$

Guaranteed outlier removal via BnB¹

Guaranteed outlier removal via BnB¹

- **Upper** bound \hat{u} to **P**'s value:
 - \circ a fast way to find \hat{u} is by using RANSAC
- **Lower** bound α^k to AUX-P:
 - **Use BnB instead:**² BnB is an iterative method, where at each iteration *t* finds lower bound α_t^k , and an upper bound γ_t^k to the value of AUX-P (tighter after each iteration; terminates when $\alpha_t^k = \gamma_t^k$, in the worst-case after exponential time).

Run BnB until $\alpha_t^k > \hat{u} \ (\Rightarrow y_k \text{ outlier}) \text{ or } \gamma_t^k \leq \hat{u} \ (\Rightarrow \alpha_t^k \leq \hat{u})$

Faster methods for $\min_{x, \mathcal{O}} |\mathcal{O}| \ s.t. \left\| r(x, y_{\mathcal{M} \setminus \mathcal{O}}) \right\|^2 \leq \epsilon$

Previous BnB method can be effective for even > 95% of outliers, but slow...

- RANSAC: ineffective > 50% of outliers; impractical for SLAM
- Greedy algorithms:¹ Can fail for > 50% of outliers (can quickly hit local minima); Quadratic running time so impractical for SLAM
- Adaptive trimming (ADAPT):^{2,3} Has been observed to withstand: < 90% registration < 70-80% two-view
 < 70% SLAM

Linear running time (slower than GNC in SLAM)

¹Nemhauser, Wolsey, Fisher 78; Rousseeuw 87

²Tzoumas, Antonante, Carlone, IROS 19 ³Antonante, Tzoumas, Yang, Carlone, arXiv:2007.15109, 2020.

ADAPT: ADAPtive Trimming

ADAPT adaptively rejects measurements with large residuals:


```
Noiseless Ground-Truth
```

ADAPT on SLAM 2D grid

Ground truth

This slide has been intentionally left blank.

Experimental results^{1,2}

Mesh registration

¹ Yang, Antonante, Tzoumas, Carlone, *Graduated Non-Convexity for Robust Spatial Perception: From Non-Minimal Solvers to Global Outlier Rejection,* IEEE Robotics and Automation Letters (RA-L), 2020, and IEEE ICRA 2020. ² Antonante, Tzoumas, Yang, Carlone, *Outlier-robust estimation: Hardness, Minimally-Tuned Algorithms, and Applications,* arXiv:2007.15109, 2020.

Pose graph optimization

CSAIL

Pose graph optimization

CSAIL

Shape alignment

What if \bar{c} is unknown?

Extension of Graduated Non-Convexity (GNC) and ADAPT to unknown \bar{c} :

Antonante, Tzoumas, Yang, Carlone, *Outlier-robust estimation: Hardness, Minimally-Tuned Algorithms, and Applications,* arXiv:2007.15109, 2020.

Certifiable Outlier-Robust Optimization?

Extension of Graduated Non-Convexity (GNC) and ADAPT to unknown \bar{c} :

Yang, Carlone, One Ring to Rule Them All: Certifiably Robust Geometric Perception with Outliers, NeurIPS, 2020.

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

16.485 Visual Navigation for Autonomous Vehicles (VNAV) Fall 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.