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Recap… 
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       When Gaussian measurement noise, maximum likelihood estimation (MLE) gives: 

Perception as least squares optimization 

Measurements/data 

Estimate 

Residual 
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Outliers compromise least squares solutions 
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But if some !" are outliers, solution of can be wrong: 
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Outlier-robust least squares reformulations 

min
$ ∈ & 

' 
(∈ℳ 

* + ,, .( , ̅0 

L : Robust-cost “least squares” R : Outlier rejection “least squares” 

min
$ ∈&,1 ⊆ ℳ 

|1| 4. 6. + ,, .ℳ\1 
8 ≤ : 

Both L and R and harder than NP-hard 

Need for effective approximation algorithms 

• Fast 
• Finds correct , despite many outliers 
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 Last lecture’s focus 

Methods to solve min $ ∈ & 
∑(∈ℳ * + ,, .( 
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Optimal solvers and graduated non-convexity 

Final algorithm (GM case):1 

1. Initialize % ≫ ('. ). , 100) and 

2. Start by solving the least squares and let !(#) be the solution. 

- = 0. 

3. Weight update: Update /(#), given the fixed !(#) : 

4. - = - + 1. 

5. Variable update: Update !(#), given the /(#01) found at Step 3: 

6. % = %/2, and go to Step 3 until % = 1. 

1 Yang, Antonante, Tzoumas, Carlone, Graduated Non-Convexity for Robust Spatial Perception: From Non-Minimal Solvers to Global 
Outlier Rejection, IEEE Robotics and Automation Letters (RA-L), 2020, and IEEE ICRA 2020. 7 



Today’s focus 

Methods to solve min$ ∈&,( ⊆ ℳ 
|(| ,. .. / 0, 1ℳ\( 

3 ≤ 5 
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Why min
$,& 

|&| (. *. + ,, -ℳ\& 
0 ≤ 2 can be hard? 

Recall: Possible instances of the problem: 

min
$ ∈ 4,& ⊆ ℳ 

|&| (. *. + ,, -6 ≤ ̅8, ∀ : ∈ ℳ\& ( < = norm above) 

min$ ∈ 4,& ⊆ ℳ 
|&| (. *. ∑6 ∈ ℳ\& +0 ,, -6 ≤ 2. ( < 0 norm above) 

Both are combinatorial problems 

Maximum consensus: 

(Outlier rejection) “least squares:” 

Guaranteed outlier removal requires exponential 
time, e.g., via branch and bound (BnB) 
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Guaranteed outlier removal via BnB1 
1Guaranteed Outlier Removal with Mixed Integer Linear Programs, Chin et al. CVPR 16 

We’ll develop a method to verify whether a measurement is an outlier 

Let’s re-write min |(| ,. .. / 0, 12 ≤ 5,̅ ∀ 7 ∈ ℳ\( as:
$ ∈ &,( ⊆ℳ 
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where, for simplicity, / 0, (:2, 12) = 0= :2 − 12. 

Assume 1? is an inlier; then optimal value of AUX-P equals the value of P: 

(AUX-P) 

(P) 

Otherwise, 1? is an outlier! 

x 

x 

̅5 

̅5 

̅5 

large 

    

 

       

   

      

  



Guaranteed outlier removal via BnB1 

Goal: Show that P and AUX-P have different values to prove !" is outlier 

̅' ̅' 

̅' 

x x 

    

  

 

    

 
 

(P) (AUX-P) 

Recall: 
Finding values of AUX-P and P is hard Approximation method to reach Goal 

• Find upper bound #$ to P’s value 
• Find lower bound %" to AUX-P 
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Guaranteed outlier removal via BnB1 

 
 

    

   

How to efficiently find (' and "$? 

• Upper bound (' to P’s value: 

o a fast way to find (' is by using RANSAC 

• Lower bound "$ to AUX-P: 

o Use BnB instead:2 BnB is an iterative method, where at each 
iteration ! finds lower bound "#$, and an upper bound %#$ to the 
value of AUX-P (tighter after each iteration; terminates when
"#$ = %#$, in the worst-case after exponential time). 

Run BnB until α#$ > (' (⇒ ,$ outlier) or %#$ ≤ (' (⇒ "#$ ≤ (') 
2https://web.stanford.edu/class/ee364b/lectures/bb_slides.pdf 12 

https://web.stanford.edu/class/ee364b/lectures/bb_slides.pdf
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Faster methods for min$, & 
|&| (. *. + ,, -ℳ\& 

0 ≤ 2 

Previous BnB method can be effective for even > 95% of outliers, but slow… 

Approximation algorithms 

• RANSAC: ineffective > 50% of outliers; 
impractical for SLAM 

• Greedy algorithms:1 Can fail for > 50% of outliers (can quickly hit local minima); 
Quadratic running time so impractical for SLAM 

• Adaptive trimming (ADAPT):2,3 < 90% registration 
< 70-80% two-view 
< 70% SLAM 

Has been observed to withstand: 

1Nemhauser, Wolsey, Fisher 78; Rousseeuw 87 

Linear running time (slower than GNC in SLAM) 

2Tzoumas, Antonante, Carlone, IROS 19 
3Antonante, Tzoumas, Yang, Carlone, arXiv:2007.15109, 2020. 



 

 

  

 

 

ADAPT: ADAPtive Trimming 
ADAPT adaptively rejects measurements with large residuals: 

Correctly rejected outliers 

Incorrectly rejected inliers 

Non-rejected inliers 

Non-rejected outliers 

Odometries (priors) 

Outlier-free 
threshold 
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17Antonante, Tzoumas, Carlone | Outlier-Robust Spatial Perception |

ADAPT on SLAM 2D grid 



       

   SLAM (Intel dataset)2D Grid

18Tzoumas, Antonante, Carlone | Outlier-Robust Spatial Perception |

ADAPT Ground truth 



 Experimental results 
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Experimental results1,2 

Mesh registration 

1 Yang, Antonante, Tzoumas, Carlone, Graduated Non-Convexity for Robust Spatial Perception: From Non-Minimal Solvers to Global 
Outlier Rejection, IEEE Robotics and Automation Letters (RA-L), 2020, and IEEE ICRA 2020. 
2 Antonante, Tzoumas, Yang, Carlone, Outlier-robust estimation: Hardness, Minimally-Tuned Algorithms, and Applications, 
arXiv:2007.15109, 2020. 18 



 Experimental results 
Pose graph optimization 

CSAIL 
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 Experimental results 
Pose graph optimization 

CSAIL 
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 Experimental results 
Shape alignment 
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  What if "̅ is unknown? 

Extension of Graduated Non-Convexity (GNC) and ADAPT to unknown "̅: 

Antonante, Tzoumas, Yang, Carlone, Outlier-robust estimation: Hardness, 
Minimally-Tuned Algorithms, and Applications, arXiv:2007.15109, 2020. 
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  Certifiable Outlier-Robust Optimization? 

Extension of Graduated Non-Convexity (GNC) and ADAPT to unknown "̅: 

Yang, Carlone, One Ring to Rule Them All: Certifiably Robust Geometric Perception with 
Outliers, NeurIPS, 2020. 

23 



  
 

 
 
 

      
  

 
 
 

           
 

MIT OpenCourseWare 
https://ocw.mit.edu/ 

16.485 Visual Navigation for Autonomous Vehicles (VNAV) 
Fall 2020 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

https://ocw.mit.edu/terms
https://ocw.mit.edu



