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Visual Odometry

Part |I: The First 30 Years and Fundamentals
Part Il: Matching, Robustness, Optimization, and Applications

By Friedrich Fraundorfer and Davide Scaramuzza

On-Manifold Preintegration for Real-Time
Visual-Inertial Odometry

Christian Forster, Luca Carlone, Frank Dellaert, Davide Scaramuzza

Abstract—Current approaches for visual-inertial odometry
(V'!O} are ahle to at!ain highly accurate state estimation via
H , real-time optimization quickly

becomes infeasible as the Iquctory grows over time; this problem
is further emphasized by the fact that inertial measurements
come at high rate, hence leading to fast growth of the number
of variables in the optimization. In this paptr, we address Ihl.s
issue by preintegrating inertial
keyframes into single relative motion constraints. Our first
contribution is a preintegration theory that properly addresses
the manifold structure of the rotation group. We formally discuss
the generative measurement model as well as the nature of the

of monocular vision and gravity observable [1] and provides
robust and accurate inter-frame motion estimates, Applications
of VIO range from autonomous navigation in GPS-denied
environments, to 3D reconstruction, and augmented reality.
The existing literature on VIO imposes a trade-off between
accuracy and computational efficiency (a detailed review is
given in Section II). On the one hand, filtering approaches
enable fast inference, but their accuracy is deteriorated by the
accumulation of linearization errors. On the other hand, full
smoothing approaches, based on nonlinear optimization, are

rotation nolse and derive the hr the i - a
Pposteriori state esti Our i
the computation of all necessary Jacobians for the opdmiul.ion
and a-posteriori bias correction in analytic form. The second
contribution is to show that the preintegrated IMU model can be
seamlessly integrated into a visual-inertial pipeline under the uni-
fving framework of factor graphs. This enables the application of
incremental-smoothing algorithms and the use of a structureless
model for visual measurements, which avoids optimizing over the
i pnints. l’u:tlur awe!mliug the wmpuuwm We perform an
VIO pipeline on real and
simulated datasets. The ruu]ts confirm that our modelling effort
leads to accurate state estimation in real-time, outperforming
state-of-the-art approaches.

, but computationally d ding. Fixed-lag smooth-
ing offers a compromise between accuracy for efficiency;
however, it s not clear how to set the length of the estimation
window so to guarantee a given level of performance.

In this work we show that it is possible to overcome
this trade-off. We design a VIO system that enables fast
incremental hing and p the optimal maximum
a posteriori (MAP) estimate in real time. An overview of our
approach is given in Section IV,

The first step towards this goal is the development o& novel
preintegration theory. The use of p ted IMU e
ments was first proposed in [2] nrld consists of combining




Visual Odometry

odometry: incremental motion estimation

Time 0  Time 1 Time t
T T g [ L

__________ .
T = 14 T, 15

Visual odometry (VO): motion estimation estimation
based on cameras (monocular, stereo, RGB-D, ...)

others: wheel odometry, inertial, visual-inertial



Feature Tracking




Monocular VO with 2D-2D Correspondences

, 7If t>17
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Stereo Matching
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Stereo VO with 3D-3D Correspondences

Stereo Pair
t-1

Stereo Pair t

Estimate
Feature Stereo

. matching/ matching Arun’s
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2-view Stereo VO
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(Parenthesis on Stereo Matching)

Fronto- ’ Left camera

_%_ Right camera
parallel
(a) @j Raw images ﬁ
t_._.»“‘} :h"‘t,: 3 ..'l
C CQI Undistortion '
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o

OpenCV: stereoRectity, initUndistortRectifyMap

Left view Right view



Parenthesis on Stereo Matching

9
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(Parenthesis on Stereo Matching)

After rectification, we can restrict search for left-right

matches to horizontal lines
Left image | | Right image

[courtesy of Frank Dellaert
and Pablo Alcantarilla]

i © Frank Dellaert and Pablo Alcantarilla. All rights reserved. This
content is excluded from our Creative Commons license. For
more information, see https://ocw.mit.edu/help/fag-fair-use/
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Comparing VO approaches

Drift (error
accumulation):

Mono VO:
- 5-point method accurate

Stereo VO:.
- scale

Can we do better?

To =14
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Refinement: Bundle Adjustment

(Windowed) Bundle Adjustment

Image t-1 @

Feature Triangulate
matching/ points
tracking

Normalize
scale

Feature
detection

undistort/
calibrate BESSIENE
Essential

Matrix

Recover

Relative . Time t-2

(5-point +
RANSAC)

Windowed Bundle Adjustment: optimization of the most recent
camera poses and points via non-linear least squares

r Eln Z N Nl — 7 (T pi)|I?

P k= N k=11€Cy

Can be applied to all the pipelines discussed today
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Stereo VO example (2)

I
Graund Truth
Yizual Odometry

Left Camera

1 1 1 1 1 1 1
1] -200 -100 1] 100 200 300 400 s00 .I
© Frank Dellaert. All rights reserved. This content is excluded from Our Creative Commons license.

For more information, see https://ocw.mit.edu/help/fag-fair-use/

Typical drifts: 0.1% to 2% of trajectory travelled

[courtesy of Fraﬁk Dellaert]
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Challenges for VO (1/3): lllumination and Features

Feature detection,
tracking,
matching ...




Challenges for VO (2/3): Dynamic Scenes

- Dynamic, crowded scenes present a real challenge
« Can'’t rely on RANSAC to always recover the correct inliers

- Example: Large van “steals” inlier set in passing

Inliers Outliers © Frank Dellaert. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

[courtesy of Fra&sk Dellaert]
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Challenges for VO (3/3): Fast Motion

Need good overlap between consecutive images

red:0 f#selected:10

Robot speed, camera framerate, ...

16



VO Tricks (1/2): Feature Distribution

Attention &
Anticipation:
(Carlone '17)

select features depending on motion of the robot



VO Tricks (2/2): Domain Knowledge and Keyframes

 Stereo VO Example: Cross-traffic while waiting to turn left at light

=
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pose if:

e Translation > 0.5m
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Stereo VO example (1)

Spirit and
Opportunity
Mars rovers:

e stereo VO

e 20-MHz CPU

® Up to three
minutes for
2-view VO

= o Drift ~0.5% of

Y trajectory travelled

Earlier implementation: Moravec’s PhD Thesis (1980)



Beyond VO

How to get scale and improve robustness”?

add more sensors!

» wheel odometry

» GPS

» Lidar

» Inertial |
Measurement 830g 1609 49 3g

Unit (IMU)

8 W 2.5 W 0.3W ~1TW
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Visual-Inertial Navigation (VIN)
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Visual-Inertial Odometry

o =

MLE/MAP Estimator

Feature FetaLL‘lreI Triang"ilate Normalize i s i I T
i matching points scale : g HE » t
tracking 1 P

undistort/
calibrate NS
Essential

Recover

. Relative
Matrix

(5-point + - :  a
RANSAC) a

Camera factors Imu factors

N

,min N Z Z ||$k,i - '}T(T?,:pk)H:Z + Z ||7'imu(Ti;Ti—|-1:Ui;’Ui+1; bi: bi—l—1)||2
pk’k_:l ,,,,, f\cf' k=11ieCy 1=1,..., Nc—1

Need to include velocities and IMU biases in the state ...



Visual-Inertial Odometry

< » 20-120Hz

<+<— 100-800Hz / no synchronization
L .

_ | |mu data - imu data - |mu data _

time

image image image image
pair pair pair pair
Challenges:

e IMU measurements arrive at high-rate (~200Hz) '-'b IMU preintegration

e camera observes hundreds of landmarks per frame gy Structureless
vision factors

® need to solve optimization problem quickly 2



Pre-integration

After 10 seconds, original
\ Py problem has ~104 states

After 10 seconds,
preintegrated problem
has ~102 states

Uy

[Forster, Carlone, Dellaert, Scaramuzza. On-manifold preintegration for real-time visual-inertial odometry. TF?6342017]



Visual-Inertial Odometry

Hand-held
sSensor

: RN - o oy )
g

[Forster, Carlone, Dellaert, Scaramuzza. On-manifold preintegration for real-time visual-inertial odometry. TF?C552017]



Recent Implementations / Products

© Nintendo. All rights reserved. This content is excluded
from our Creative Commons license. For more information,
see https://ocw.mit.edu/help/fag-fair-use/

Pokemon Go

.‘ 201 4 Oculus Rift e Pikachu / cp31

Project Tango

Reinvented as Announced in 2012.

ARCore in 2017 Acquired by
© Google. All rights reserved. This content is excluded from Facebook |n 201 4

our Creative Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/

© Google. All rights reserved. This content is excluded
- from our Creative Commons license. For more information,

' see https://ocw.mit.edu/help/fag-fair-use/

Navion Chip

2017
(http://navion.mit.edu/) 26
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Beyond VO

How to get scale and improve robustness”?

add more sensors!

» wheel odometry
» GPS

» Inertia

Measurement 8309 1609 49 39
Unit (IMU)

8 W 2.5 W 0.3W ~1TW



Lidar Odometry & Lidar SLAM

DARPA Subterranean Challenge, in collaboration with JPL



Feature-based Lidar Odometry

Time O

Time 1 Time t-1

29



Feature-based Lidar Odometry

Time O

Timet

Time 1 Time t-1

Registration: compute relative

DOSe between scans:
- use descriptors for matching
- compute relative pose 2



Feature-based Lidar Odometry

Time O

Time 1 Time t-1

Registration: compute relative
pose between scans:
- extract features & descriptors

- use descriptors for matching

- compute relative pose 3



Feature-based Lidar Odometry

Timet

Time t-1

Registration: compute relative
pose between scans:
- extract features & descriptors

- use descriptors for matchino
- compute relative pose



Feature-based Lidar Odometry

© Zhang and Singh. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/
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|[Zhang and Singh: LOAM: Lidar Ooio
Other approaches: based on lterative Closest Point (ICP)
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Removing Drift via Loop Closure

Visual(-inertial) odometry

SLAM requires:

e place recognition (loop closure detection)
e Re-detecting landmarks (e.g., objects)

Next lecture!

SLAM




Need for loop closure

ORB-SLAM

Raul Mur-Artal, J. M. M. Montiel and Juan D. Tardds

{raulmur, josemari, tardos} @unizar.es

nstituto Universitario de Investigacion T = =
Ie.'n lnguenierl'a delAra;sﬁn iae U n |VerS|dad
Universidad Zaragoza AlL  Zaragoza
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Monocular VO with 3D-2D Correspondences

Feature relative pose
.~ matching/ with PnP
tracking

Feature
detection

undistort/

calibrate .
Triangulate

points

(t-1,1)

2-view Mono VO
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