
16.485: VNAV - Visual Navigation
for Autonomous Vehicles

Luca Carlone

Lecture 28: Incremental Solvers for SLAM

Today: Incremental Solvers for SLAM

Michael Kaess et al, "iSAM: Incremental Smoothing and Mapping." IEEE TRANSACTIONS ON ROBOTICS, MANUSCRIPT SEPTEMBER 7, 2008 © IEEE. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

iSAM: Incremental Smoothing and Mapping

Michael Kaess, Student Member, IEEE, Ananth Ranganathan, Student Member, IEEE, and Frank Dellaert, Member, IEEE

Abstract

We present incremental smoothing and mapping (iSAM), a novel approach to the simultaneous localization and mapping problem that is based on fast incremental matrix factorization. ISAM provides an efficient and exact solution by updating a QR factorization of the naturally sparse smoothing information matrix, therefore recalculating only the matrix entries that actually change. iSAM is efficient even for robot trajectories

counterintuitive at first, because more variables are added to the estimation problem, the simplification arises from the fact that the smoothing information matrix is naturally sparse. In contrast, in filtering approaches the information matrix becomes dense when marginalizing out robot poses As a consequence of applying smoothing, we are able to

iSAM2: Incremental Smoothing and Mapping Using the Bayes Tree

Michael Kaess, Hordur Johannsson, Richard Roberts, Viorela Ila, John Leonard, and Frank Dellaert

Abstract

IJRR 2011
We present a novel data structure, the Bayes tree, that provides an algorithmic foundation enabling a better understanding of existing graphical model inference algorithms and their connection to sparse matrix factorization methods. Similar to a clique tree, a Bayes tree encodes a factored probability density, but unlike the clique tree it is directed and maps more naturally to the square root information matrix of the simultaneous localization and mapping (SLAM) problem. In this paper, we highlight three insights provided by our new data structure. First, the Bayes tree provides a better understanding of the matrix factorization in terms of probability densities. Second, we show how the fairly abstract updates to a matrix factorization translate to a simple editing of the Bayes tree and its conditional densities. Third, we apply the Bayes tree to obtain a completely novel algorithm for sparse nonlinear incremental optimization, named iSAM2, which achieves improvements in efficiency through incremental variable re-ordering and fluid relinearization, eliminating the need for periodic batch steps. We analyze various properties of SAM2 in detail, and show on a range of real and simulated datasets that our algorithm compares favorably with other recent mapping algorithms in both quality and efficiency.

Keywords: graphical models, clique tree, junction tree, probabilistic inference, sparse linear algebra, nonlinear optimization, smoothing and mapping, SLAM

Solving SLAM Incrementally

Odometry measurement

- At each time the robot collects new data and solves an optimization problem to compute the MAP estimate
- Question: can we avoid solving the optimization from scratch each time? How can we reuse computation?

Solving SLAM Incrementally

Factor Graph Representation

Odometry measurement

- At each time the robot collects new data and solves an optimization problem to compute the MAP estimate
- Question: can we avoid solving the optimization from scratch each time? How can we reuse computation?

Previously on VNAV: Batch Solvers

Repeatedly solve linearized system (GN) $\operatorname{argmin}_{x}\|A x-b\|^{2}$

Previously on VNAV: Batch Solvers

Solve: $\operatorname{argmin}_{x}\|A x-b\|^{2}$

Normal equations

$$
A^{T} A x=A^{T} b
$$

From optimization lectures:

- we never compute the inverse (dense, O($\mathrm{n}^{\wedge} 3$) computational complexity)
- We perform sparse QR or Cholesky factorizations to solve linear system

Information matrix (of the estimate)

Measurement Jacobian

Covariance matrix (of the estimate)

Previously on VNAV: Batch Solvers

- QR on A: Numerically More Stable

Orthogonal Upper-triangular square matrix

Matrix factorization

- Cholesky on $\mathrm{A}^{\top} \mathrm{A}$: Faster

Previously on VNAV: Batch Solvers

Using QR factorization:

$$
\begin{aligned}
\|A x-\mathbf{b}\|^{2} & =\left\|Q\left[\begin{array}{c}
R \\
0
\end{array}\right] x-\mathbf{b}\right\|^{2} \\
\begin{aligned}
\text { (Norm invariant to } \\
\text { multiplication by Q) }
\end{aligned} & =\left\|Q^{T} Q\left[\begin{array}{c}
R \\
0
\end{array}\right] x-Q^{T} \mathbf{b}\right\|^{2} \\
\left(Q^{T Q}=\text { I) }\right) & =\left\|\left[\begin{array}{c}
R \\
0
\end{array}\right] x-\left[\begin{array}{c}
\mathbf{d} \\
\mathbf{e}
\end{array}\right]\right\|^{2} \\
& =\|R x-\mathbf{d}\|^{2}+\|\mathbf{e}\|^{2}
\end{aligned}
$$

QR transforms the problem into one where measurement Jacobian is a square upper-triangular matrix (note: $\boldsymbol{R x}=\boldsymbol{d}$)

Incremental Smoothing and Mapping (iSAM)

After applying QR at time " t ":
$\|A x-\mathbf{b}\|^{2}=\|R x-\mathbf{d}\|^{2}+\|\mathbf{e}\|^{2}$

At time " $\mathrm{t}+1$ ":
-The robot has a new state/pose to estimate

- The robot collects a new set of measurements

New variables

Incremental Smoothing and Mapping (iSAM)

iSAM - key ideas:

- Append new measurements to existing factorization (R)

- "Repair" using Givens rotations

$$
\|R x-\mathbf{d}\|^{2}
$$

ISAM - issues

- The world is nonlinear

$$
\operatorname{argmin}_{\mathrm{x}} \sum_{i}\left\|h_{i}(\mathrm{x})\right\|_{\Xi}^{2}
$$

Periodic
re-linearization

- Fill-in: ordering influences sparsity of sqrt info matrix R

[^0](c) The same factor R after variable reordering.

iSAM - results

Execution time per step in seconds - log scale

During
 re-linearization and reordering we still have to recompute everything from scratch

Not O(1), We need iSAM2!

Today: Incremental Solvers for SLAM

Michael Kaess et al, "ISAM: Incremental Smoothing and Mapping." IEEE TRANSACTIONS ON ROBOTICS, MANUSCRIPT SEPTEMBER 7, 2008 © EEE. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fairuse/

- iSAM (Incremental Smoothing And Mapping)

Bayes Tree and ISAM2

iSAM: Incremental Smoothing and Mapping

Michael Kaess, Student Member, IEEE, Ananth Ranganathan, Student Member, IEEE, and Frank Dellaert, Member, IEEE

Abstract

We present incremental smoothing and mapping (iSAM), a novel approach to the simultaneous localization and mapping problem that is based on fast incremental matrix factorization. ISAM provides an efficient and exact solution by updating a QR factorization of the naturally sparse smoothing information matrix, therefore recalculating only the matrix entries that actually change. iSAM is efficient even for robot trajectories

counterintuitive at first, because more variables are added to the estimation problem, the simplification arises from the fact that the smoothing information matrix is naturally sparse. In contrast, in filtering approaches the information matrix becomes dense when marginalizing out robot poses As a consequence of applying smoothing, we are able to

iSAM2: Incremental Smoothing and Mapping Using the Bayes Tree

Michael Kaess, Hordur Johannsson, Richard Roberts, Viorela Ila, John Leonard, and Frank Dellaert

Abstract

IJRR 2011
We present a novel data structure, the Bayes tree, that provides an algorithmic foundation enabling a better understanding of existing graphical model inference algorithms and their connection to sparse matrix factorization methods. Similar to a clique tree, a Bayes tree encodes a factored probability density, but unlike the clique tree it is directed and maps more naturally to the square root information matrix of the simultaneous localization and mapping (SLAM) problem. In this paper, we highlight three insights provided by our new data structure. First, the Bayes tree provides a better understanding of the matrix factorization in terms of probability densities. Second, we show how the fairly abstract updates to a matrix factorization translate to a simple editing of the Bayes tree and its conditional densities. Third, we apply the Bayes tree to obtain a completely novel algorithm for sparse nonlinear incremental optimization, named iSAM2, which achieves improvements in efficiency through incremental variable re-ordering and fluid relinearization, eliminating the need for periodic batch steps. We analyze various properties of iSAM2 in detail, and show on a range of real and simulated datasets that our algorithm compares favorably with other recent mapping algorithms in both quality and efficiency.

Keywords: graphical models, clique tree, junction tree, probabilistic inference, sparse linear algebra, nonlinear optimization, smoothing and mapping, SLAM

iSAM2 - key idea 1

Interpret linear algebra operations (e.g., factorization) as operations on a graphical model

(a)

(b)

$$
R=\left[\begin{array}{lllll}
l_{1} & l_{2} & x_{1} & x_{2} & x_{3} \\
\mathrm{X} & & \mathrm{X} & \mathrm{X} & \\
& \mathrm{X} & & \mathrm{X} \\
& & \mathrm{X} & \mathrm{X} & \\
& & & \mathrm{X} & \mathrm{X} \\
& & & & \mathrm{X}
\end{array}\right]
$$

Square root information matrix (= Bayes Net)

- factorization can be "understood as converting the factor graph to a Bayes Net using the elimination algorithm"

iSAM2 - key idea 2

Introduce a new graphical model (the "Bayes Tree") and show we can "add" new states and measurements by local operations on the Bayes Tree

(a)

(b)

Square root information matrix (= Bayes Net)

Bayes Tree

Variable Elimination and Bayes Net

Bayesian network (a.k.a. Bayes network, belief network): probabilistic graphical model that represents a set of variables and their conditional dependencies via a directed acyclic graph [wiki]

In linear Gaussian case, elimination is equivalent to sparse QR factorization of the measurement Jacobian

Backsubstitution: solve from root of Bayes Net ${ }^{16}$

Variable Elimination and Bayes Net

Alg. 2 Eliminating a variable θ_{j} from the factor graph.

- Choose ordering: $I_{1}, I_{2}, x_{1}, x_{2}, x_{3}$
- Eliminate one node at a time

1. Remove from the factor graph all factors $f_{i}\left(\Theta_{i}\right)$ that are adjacent to θ_{j}. Define the separator S_{j} as all variables involved in those factors, excluding θ_{j}.
2. Form the (unnormalized) joint density $f_{\text {joint }}\left(\theta_{j}, S_{j}\right)=\prod_{i} f_{i}\left(\Theta_{i}\right)$ as the product of those factors.
3. Using the chain rule, factorize the joint density $f_{\text {joint }}\left(\theta_{j}, S_{j}\right)=$ $P\left(\theta_{j} \mid S_{j}\right) f_{\text {new }}\left(S_{j}\right)$. Add the conditional $P\left(\theta_{j} \mid S_{j}\right)$ to the Bayes net and the factor $f_{\text {new }}\left(S_{j}\right)$ back into the factor graph.

Variable Elimination and Bayes Net

Alg. 2 Eliminating a variable θ_{j} from the factor graph.

1. Remove from the factor graph all factors $f_{i}\left(\Theta_{i}\right)$ that are adjacent to θ_{j}. Define the separator S_{j} as all variables involved in those factors, excluding θ_{j}.

- Eliminate one node at a time
- Choose ordering: $I_{1}, I_{2}, x_{1}, x_{2}, x_{3}$

Can be implemented via Schur complement in linear gaussian graphs

$$
p\left(I_{1}, x_{1}, x_{2}\right)=p\left(I_{1} \mid x_{1}, x_{2}\right) p\left(x_{1}, x_{2}\right)
$$

Variable Elimination and Bayes Net

Alg. 2 Eliminating a variable θ_{j} from the factor graph.

1. Remove from the factor graph all factors $f_{i}\left(\Theta_{i}\right)$ that are adjacent to θ_{j}. Define the separator S_{j} as all variables involved in those factors, excluding θ_{j}.

- Eliminate one node at a time

2. Form the (unnormalized) joint density $f_{\text {joint }}\left(\theta_{j}, S_{j}\right)=\prod_{i} f_{i}\left(\Theta_{i}\right)$ as the product of those factors.
3. Using the chain rule, factorize the joint density $f_{\text {joint }}\left(\theta_{j}, S_{j}\right)=$ $P\left(\theta_{j} \mid S_{j}\right) f_{\text {new }}\left(S_{j}\right)$. Add the conditional $P\left(\theta_{j} \mid S_{j}\right)$ to the Bayes net and the factor $f_{\text {new }}\left(S_{j}\right)$ back into the factor graph.

Alg. 2 in M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard and F. Dellaert, "iSAM2: Incremental smoothing and mapping with fluid relinearization and incremental variable reordering," 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 2011, pp. 3281-3288, doi: 10.1109/ICRA.2011.5979641 © IEEE. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

$$
p\left(I_{2}, x_{3}\right)=p\left(I_{2} \mid x_{3}\right) p\left(x_{3}\right)
$$

Variable Elimination and Bayes Net

Alg. 2 Eliminating a variable θ_{j} from the factor graph.

1. Remove from the factor graph all factors $f_{i}\left(\Theta_{i}\right)$ that are adjacent to θ_{j}. Define the separator S_{j} as all variables involved in those factors, excluding θ_{j}.

- Eliminate one node at a time

2. Form the (unnormalized) joint density $f_{\text {joint }}\left(\theta_{j}, S_{j}\right)=\prod_{i} f_{i}\left(\Theta_{i}\right)$ as the product of those factors.
3. Using the chain rule, factorize the joint density $f_{\text {joint }}\left(\theta_{j}, S_{j}\right)=$ $P\left(\theta_{j} \mid S_{j}\right) f_{\text {new }}\left(S_{j}\right)$. Add the conditional $P\left(\theta_{j} \mid S_{j}\right)$ to the Bayes net and the factor $f_{\text {new }}\left(S_{j}\right)$ back into the factor graph.

Alg. 2 in M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard and F. Dellaert, "iSAM2: Incremental smoothing and mapping with fluid relinearization and incremental variable reordering," 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 2011, pp. 3281-3288, doi: 10.1109/ICRA.2011.5979641 © IEEE. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/

$$
p\left(x_{1}, x_{2}\right)=p\left(x_{1} \mid x_{2}\right) p\left(x_{2}\right)
$$

Variable Elimination and Bayes Net

Alg. 2 Eliminating a variable θ_{j} from the factor graph.

1. Remove from the factor graph all factors $f_{i}\left(\Theta_{i}\right)$ that are adjacent to θ_{j}. Define the separator S_{j} as all variables involved in those factors, excluding θ_{j}.

- Eliminate one node at a time

2. Form the (unnormalized) joint density $f_{\text {joint }}\left(\theta_{j}, S_{j}\right)=\prod_{i} f_{i}\left(\Theta_{i}\right)$ as the product of those factors.
3. Using the chain rule, factorize the joint density $f_{\text {joint }}\left(\theta_{j}, S_{j}\right)=$ $P\left(\theta_{j} \mid S_{j}\right) f_{\text {new }}\left(S_{j}\right)$. Add the conditional $P\left(\theta_{j} \mid S_{j}\right)$ to the Bayes net and the factor $f_{\text {new }}\left(S_{j}\right)$ back into the factor graph.

[^1]

Variable Elimination and Bayes Net

Alg. 2 Eliminating a variable θ_{j} from the factor graph.

- Choose ordering: $I_{1}, I_{2}, x_{1}, x_{2}, x_{3}$
- Eliminate one node at a time

1. Remove from the factor graph all factors $f_{i}\left(\Theta_{i}\right)$ that are adjacent to θ_{j}. Define the separator S_{j} as all variables involved in those factors, excluding θ_{j}.
2. Form the (unnormalized) joint density $f_{\text {joint }}\left(\theta_{j}, S_{j}\right)=\prod_{i} f_{i}\left(\Theta_{i}\right)$ as the product of those factors.
3. Using the chain rule, factorize the joint density $f_{\text {joint }}\left(\theta_{j}, S_{j}\right)=$ $P\left(\theta_{j} \mid S_{j}\right) f_{\text {new }}\left(S_{j}\right)$. Add the conditional $P\left(\theta_{j} \mid S_{j}\right)$ to the Bayes net and the factor $f_{\text {new }}\left(S_{j}\right)$ back into the factor graph.

Alg. 2 in M. Kaess, H. Johannsson, R. Roberts, V. lla, J. Leonard and F. Dellaert, "iSAM2: Incremental smoothing and mapping with fluid relinearization and incremental variable reordering," 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 2011, pp. 3281-3288, doi: 10.1109/ICRA.2011.5979641 © IEEE. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

$p\left(x_{3}\right)$

Variable Elimination and Bayes Net - Summary

(a)

(d)

(b)

(e)

(c)

(f) 2011, pp. 3281-3288, doi: 10.1109/ICRA.2011.5979641 © IEEE. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

Linear algebra perspective

$$
A \rightarrow R
$$

Graphical model perspective

$$
P(\Theta)=\prod_{j} P\left(\theta_{j} \mid S_{j}\right)
$$

Bayes Tree

- Another directed graph: collects the cliques (fully connected subgraphs) of the Bayes Net
- Similar to a junction tree, but directed
 China, 2011, pp. 3281-3288, doi: 10.1109/ICRA.2011.5979641 © IEEE. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

Step 2: Find cliques in reverse elimination order:

iSAM2: Incremental Solver based on Bayes Tree

- New variables and measurements only affect part of the Bayer Tree
- No need for global re-linearization and re-ordering
- "When a new measurement is added, for example a factor $f(x 1, x 2)$, only the paths between the cliques containing x1 and x2 (respectively) and the root are affected." [Kaess et al.]

Re-linearization, backsubstitution, reordering, etc. can be performed locally!

iSAM2: Incremental Solver based on Bayes Tree

- Partial state updates: early stopping of backsubstitution

> O(1) complexity when no loop closure

iSAM2 - Results

Fig. 11: 2D pose-graph datasets, including simulated data (City20000, W10000), and laser range data (Killian Court, Intel). See Fig. 8 for the Manhattan

iSAM2:
 Incremental Smoothing and Mapping Using the Bayes Tree

Michael Kaess, Hordur Johannsson, Richard Roberts, Viorela lla, John Leonard, Frank Dellaert

Seq: Manhattan dataset

IJRR Multimedia Extension

iSAM2 - Results

(a) City 20000

Time step

(b) W 10000

Fig. 15: How time is spent in iSAM2: Percentage of time spent in various components of the algorithm for the W10000 dataset.

Today: Incremental Solvers for SLAM

- iSAM
(Incremental Smoothing And Mapping)

Figure 3 in Michael Kaess et al, "iSAM: Incremental Smoothing and Mapping." IEEE TRANSACTIONS ON ROBOTICS, MANUSCRIPT SEPTEMBER 7, 2008 © IEEE. Al rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

- Bayes Tree and ISAM2

Updates based on local operations on Bayes Tree

iSAM2 - Fluid Relinearization

Alg. 5 Fluid relinearization: The linearization points of select variables are updated based on the current delta Δ.
In: linearization point Θ, delta Δ
Out: updated linearization point Θ, marked cliques M

1. Mark variables in Δ above threshold $\beta: J=\left\{\Delta_{j} \in \Delta| | \Delta_{j} \mid \geq \beta\right\}$.
2. Update linearization point for marked variables: $\Theta_{J}:=\Theta_{J} \oplus \Delta_{J}$.
3. Mark all cliques M that involve marked variables Θ_{J} and all their ancestors.

Alg. 6 Updating the Bayes tree inclusive of fluid relinearization by recalculating all affected cliques. Note that the algorithm differs from Alg. 4 as it also includes the fluid relinearization; combining both steps is more efficient.
In: Bayes tree \mathscr{T}, nonlinear factors \mathscr{F}, affected variables \mathscr{J}
Out: modified Bayes tree \mathscr{T},

1. Remove top of Bayes tree:
(a) For each affected variable in \mathscr{J} remove the corresponding clique and all parents up to the root.
(b) Store orphaned sub-trees $\mathscr{T}_{\text {orph }}$ of removed cliques.
2. Relinearize all factors required to recreate top.
3. Add cached linear factors from orphans $\mathscr{T}_{\text {orph }}$.
4. Re-order variables, see Section 3.4.
5. Eliminate the factor graph (Alg. 2) and create a new Bayes tree (Alg. 3).
6. Insert the orphans $\mathscr{T}_{\text {orph }}$ back into the new Bayes tree.

iSAM2 - Partial State Updates

Alg. 7 Partial state update: Solving the Bayes tree in the nonlinear case returns an update Δ to the current linearization point Θ.
In: Bayes tree \mathscr{T}
Out: update Δ
Starting from the root clique $C_{r}=F_{r}$:

1. For current clique $C_{k}=F_{k}: S_{k}$
compute update Δ_{k} of frontal variables F_{k} from the local conditional density $P\left(F_{k} \mid S_{k}\right)$.
2. For all variables $\Delta_{k_{j}}$ in Δ_{k} that change by more than threshold α : recursively process each descendant containing such a variable.

MIT OpenCourseWare
https://ocw.mit.edu/
16.485 Visual Navigation for Autonomous Vehicles (VNAV)

Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: (b) Factor R.

[^1]: Alg. 2 in M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard and F. Dellaert, "iSAM2: Incremental smoothing and mapping with fluid relinearization and incremental variable reordering," 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 2011, pp. 3281-3288, doi: 10.1109/ICRA.2011.5979641 © IEEE. All rights reserved. This content is excluded from our
 Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

