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Part of the following slides are inspired and built on the lecture slides of Professor Frank Dellaert's course. 
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Digital Photography 

2D array of 
“light sensors” 

• CCD (charge-coupled 
device, 1960) 

• CMOS (complementary 
metal-oxide 
semiconductor, 1963) 
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Appearance: Light and Colors 

Perceived 
appearance is the 

result of (i) geometry, 
(ii) illumination, (iii) 
material properties 
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Perspective Projection Recap 

• what is lost? 
• depth? 
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Ames, 1946 

Ames Room 
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Perspective Projection Recap 
• what is lost? 

• depth? 
• length? 
• angles? 
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Parallel lines which intersect … 6
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Perspective Projection Recap 
• what is preserved? 

• straight lines remain straight 
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The final Touch: Adding a Lens 
• Pinhole model is based on the geometry of the camera obscura 
• In practice: add a lens in front of the aperture to capture more light 
• Pinhole model holds, but distortion may appear due lens imperfections 
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• distortion can be described mathematically using distortion parameters 
• can be estimated during calibration and compensated for (undistortion) 8

https://ocw.mit.edu/help/faq-fair-use/


 Today 

• Feature Detection 

• Feature Tracking 

• Feature Matching 
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Feature detection 
What is a feature? 

• a  recognizable structure 
in the environment 

• lines, corners 
• geometric primitives (e.g., circles) 
• objects (high-level features) 
• …  

Why extracting features? 
• data compression 

• # of pixels in a modern camera: 4416 x 1242 ~ 5M  
• # of parameters to describe a line: 2 (4 for a segment) 

• easier to describe mathematically: points, lines, … 
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Corner Detection 

• Why do we care? 
• Motion tracking 
• 3D reconstruction 
• Object recognition  
•  … 
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Corner Detection 
• corners: also known as interest points, keypoints, or point features

• easily identifiable points in the image
• or: if given a corner in image I1, we can easily find corresponding

pixel in I2 (both images are picturing the same scene from
different viewpoints)
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Corner Detection 
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Corner Detection 
• corners: also known as interest points, keypoints, or point features 

• easily identifiable points in the image 
• or: if given a corner in image I1, we can easily find corresponding 

pixel in I2 (both images are picturing the same scene from
different viewpoints) 

Let’s do 
some math 
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Image Gradients 

From gradients to finite differences 
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Corner Detection 
• we can compute a “cornerness score” at each pixel in the image
• peaks are the most distinguishable corners

original image cornerness score (Harris) peaks 

18



  

16.485: VNAV - Visual Navigation for 
Autonomous Vehicles 

© Davide Scaramuzza. All rights reserved. 
This content is excluded from our Creative 
Commons license. For more information, see 
https://ocw.mit.edu/help/faq-fair-use/

[Image courtesy of 
Davide Scaramuzza] 

Time 

Luca Carlone 
Lecture 14: Feature Detection and Tracking

Tracking 
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Corner Detection 
• finding corners in images:
• Consider shifting window W by

• How do the pixels in W change?

• compare the windows using sum of
squared differences (SSD) error:

W 

“flat” region: 
no change in all 

“edge”: 
no change along the 

“corner”: 
significant change in all 

directions edge direction directions, i.e., even the 
minimum change is large 

20



  

  

“Cornerness” Scores 
Calling λ1and λ2 the eigenvalues of the matrix G

Shi-Tomasi corner  Harris corner  
detector detector 21



Today 

• Feature Detection

• Feature Tracking

• Feature Matching
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Correspondences 
given a corner in image I1 (and its neighborhood),

how can we find corresponding pixel in I2 ? 

• Feature tracking (~ optical flow)
• Feature matching (descriptor-based) 23



Feature Tracking 

Computing the corresponding pixel (  ) is the same as
computing the displacement 

(translational motion model) 24



Feature Tracking 

Computing the corresponding pixel (  ) is the same as
computing the displacement 

(translational motion model) 25



Feature Tracking 

(affine motion model) 
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Hidden Assumptions 

Pixel motion models not valid in presence of occlusions 
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Hidden Assumptions 

Matching image patches assume that the brightness  
does not change due to viewpoint changes   

(brightness constancy constraints) 

True for Lambertian surfaces 
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Today 

• Feature Detection

• Feature Tracking

• Feature Matching
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Descriptor-based Feature Matching 

Feature tracking does not typically 
 work for large changes of viewpoint

(large baseline) 
© source unknown. All rights reserved. This content is excluded 
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Descriptor is a signature we attach to a (point) feature, 
that describes local appearance 30
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Ideal Properties of a Detector/Descriptor 

Rotation invariance  
(more generally: 

Viewpoint invariance) 

Illumination 
invariance 

Scale   
invariance 

(more in the Lab 5 handouts: repeatability, efficiency .. ) 31



 

 

  

Example: SIFT Descriptor (1/2) 
SIFT: Scale-Invariant Feature Transform 

• Take 16x16 square window
around detected feature

• Compute gradient orientation 
and magnitude for each pixel

• Create histogram of gradients
weighted by magnitude

• Peak is orientation of feature 

0 2π 
angle 
histogram 
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Lowe, David G. (1999). "Object recognition from local scale-invariant features”, CVPR’99 
32

https://ocw.mit.edu/help/faq-fair-use/
https://ocw.mit.edu/help/faq-fair-use/


 

  

Example: SIFT Descriptor (2/2) 
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How to get SIFT descriptor?
• Transform all gradients with 

respect to (main) orientation
• Split window in 16 squares and 

for each compute a histogram 
with 8 sectors

• Stack histogram into a
descriptor vector of 
16 x 8 = 128 scalars 

• Normalize to have norm = 1
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Feature Matching 

© Frank Dellaert. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

• For each descriptor in I1 find closest descriptor in I2
(nearest neighbor)

• Speed up with approximate nearest neighbor algorithms
(FLANN library)

34
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Are Harris Corners Scale invariant? 

• Other detectors have been proposed:
huge literature:  
SIFT, SURF, ORB, BRIEF, MSER, … 

• blob detectors:
process the image at different scales 

https://www.youtube.com/watch?time_continue=3964&v=NPcMS49V5hg 35
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Zebras, Horsefly, and Optical Flow 
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https://www.theatlantic.com/science/archive/2019/02/why-do-zebras-have-stripes-flies/583114/ 

But still controversial: https://www.cnn.com/2020/08/18/world/zebra-stripes-fly-bites-study-trnd-scn/index.html 
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