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|||"' Lecture 12-13: Feature Detection and Tracking

Part of the following slides are inspired and built on the lecture slides of Professor Frank Dellaert's course.
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Appearance: Light and Colors
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Perspective Projection Recap
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e depth?
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Perspective Projection

e what is lost?
depth?
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Parallel [ines which intersect ...
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Perspective Projection Recap

e what is preserved?
e straight lines remain straight/
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The final Touch: Adding a Lens

* Pinhole model is based on the geometry of the camera obscura
® |n practice: add a lens in front of the aperture to capture more light
¢ Pinhole model holds, but distortion may appear due lens imperfections

No Distortion Barrel Distortion Pincushion Distortion
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e distortion can be descrlbed mathematlcally usmg dlstortlon parameters
e can be estimated during calibration and compensated for (undistortion)
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Today

e Feature Detection

e Feature Iracking

e Feature Matching

Chapter 4

Image Primitives and Correspondence



Feature detection

What is a feature?

® a recognizable structure
in the environment
® |ines, corners
e geometric primitives (e.qg., circles)
e objects (high-level features)

Why extracting features?

e data compression
e # of pixels in a modern camera: 4416 x 1242 ~ 5M
e # of parameters to describe a line: 2 (4 for a segment)

e casier to describe mathematically: points, lines, ...

10



Corner Detection

- Why do we care”

e Motion tracking

LEFT REARWARD UEHICLE CAMERA
W s

e 3D reconstruction

e Object recognition

MEDIUM RANGE VEHICLE CAMERA
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Corner Detection

 corners: also known as interest points, keypoints, or point features
- easily identitiable points in the image

- or: If given a corner in image h, we can easily find corresponding
pixel in Iz (both images are picturing the same scene from
different viewpoints)
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Corner Detection
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Image Gradients

- 9Z(u,v) |
VI(z)=VI(u,v)=| s70%.
ov

- Z(uth,w)—Z(u,w) |
VI(:B) — VI(’UL, U) ~ I(u,v-l—h%—l’(u,v)
h

From gradients to finite differences




Corner Detection

* we can compute a “cornerness score” at each pixel in the image

e peaks are the most distinguishable corners

original image cornerness score (Harris)
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Corner Detection == { H *

- finding corners in images:

e Consider shifting window W by ¢
e How do the pixels in W change?

e compare the windows using sum of W
squared differences (SSD) error:

> Z(z +8) - Z()|

xcW(x)
P
X
%
¥ X
X
“flat” region: “edge”: “corner”:
no change in all no change along the significant change in all
directions edge direction directions, i.e., even the N

minimum change is large



“Cornerness” Scores

Calling A;and 4, the eigenvalues of the matrix G

)

S(G) = Amin(G) C(GR) = det(G) — k tr (G)°

Shi-Tomasi corner Harris corner
detector detector



Today

e Feature Detection

* Feature Tracking

e Feature Matching

Chapter 4

Image Primitives and Correspondence



Correspondences

given a corner in image I (and its neighborhood),
how can we find corresponding pixel in 2?7

-]

e Feature tracking (~ optical flow)
e Feature matching (descriptor-based)




Feature Tracking

]

Computing the corresponding pixel (x2) is the same as
computing the displacement 0

213‘2:331—|-5

(translational motion model)



Feature Tracking

]

Computing the corresponding pixel (x2) is the same as
computing the displacement 0

(translational motion model)




Feature Tracking

|

. 2
min ) |[Ti(y) — To(Ay + 9)|
yeW(x1)

(affine motion model)



Hidden Assumptions

L1

|

Pixel motion models not valid in presence of occlusions



Hidden Assumptions

L1

|

Matching image patches assume that the brightness
does not change due to viewpoint changes
(brightness constancy constraints)

True for Lambertian surfaces




Today

e Feature Detection
* Feature Tracking

e Feature Matching

Chapter 4

Image Primitives and Correspondence



Descriptor-based Feature Matching

Feature tracking does not typically
work for large changes of viewpoint Ilg i Al
(large baseline) e
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Descriptor is a signature we attach to a (point) feature,
that describes local appearance
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|[deal Properties of a Detector/Descriptor

Rotation invariance

(morg ggnerglly: I:I |:|

Viewpoint invariance)

lHHlumination I:I
invariance

]
invsac;iae:?\ce |:| |:|

(more in the Lab 5 handouts: repeatability, efficiency ..



Example: SIFT Descriptor (1/2)

SIFT: Scale-Invariant Feature Transform

Take 16x16 square window
around detected feature

Compute gradient orientation
and magnitude for each pixel * 0 27
Create histogram of gradients angle

weighted by magnitude histogram

Peak is orientation of feature
Image gradients
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D. G. Lowe, "Object recognition from local scale-invariant features," Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 1999, pp. 1150-1157 vol.2, doi: 10.1109/ICCV.1999.790410 © IEEE. All rights reserved. This content is excluded
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Example: SIFT Descriptor (2/2)

/

How to get SIFT descriptor?
e [ransform all gradients with
respect to (main) orientation | o -
° Spllt window in 16 s quares and Pformation, see Hips loow it suhaipfaciarusel o oS leense: Formore
for each compute a histogram
with 8 sectors
e Stack histogram into a
descriptor vector of
16 X 8 = 128 scalars
e Normalize to have norm = 1

D. G. Lowe, "Object recognition from local scale-invariant features," Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 1999, pp. 1150-1157 vol.2, doi: 10.1109/ICCV.1999.790410 © |EEE. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/

Lowe, David G. (1999). "Object recognition from local scale-invariant features”, CVPR’99
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Feature Matching

ion, see https://ocw.mit.edu/help/fag-fair-use/

e For each descriptor in I1 find closest descriptor in I>
(nearest neighbor)

e Speed up with approximate nearest neighbor algorithms
(FLANN library)
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Are Harris Corners Scale invariant?

e Other detectors have been proposed:
huge literature:
SIFT, SURF, ORB, BRIEF, MSER, ...

* blob detectors:
process the image at different scales

https://www.youtube.com/watch?time_continue=3964&v=NPcMS49V5hg
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/Zebras, Horsefly, and Optical Flow

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/

https://www.theatlantic.com/science/archive/2019/02/why-do-zebras-have-stripes-flies/583114/

But still controversial: https://www.cnn.com/2020/08/18/world/zebra-stripes-fly-bites-study-trnd-scn/index.html
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