
16.485: Visual Navigation for Autonomous Vehicles (VNAV) Fall 2020 

Lecture 6 
Lecturer: Luca Carlone Scribes: Markus Ryll, Luca Carlone 

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. 
They may be distributed outside this class only with the permission of the Instructor(s). 

This lecture introduces the Newton-Euler equation, basic aerodynamic effects of rotating propellers and the 
dynamical model of a quadrotor. Furthermore we derive the derivative of a rotation matrix and discuss 
differential flatness of the quadrotor dynamics. 
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Figure 6.1: Quadrotor - most important variables are labeled. 

6.1 Quadrotor model 

Let us introduce the Newton-Euler equation, describing the translational and rotational dynamics of a rigid 
body: � � � � � � � � 

fB BmI3 0 a 0 
= + , (6.1)

τB αB ωB × J ωB0 J 

with symbols as defined in Table 6.1. 
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fB ∈ R3 applied total forces expressed in the body frame 
τ B ∈ R3 applied total torques expressed in the body frame 
m ∈ R+ body mass 
J ∈ R3×3 moment of inertia about the center of mass 
In n × n identity matrix 
aB ∈ R3 translational acceleration of the center of mass expressed in the body frame 
αB ∈ R3 angular acceleration of the body expressed in the body frame 
ωB ∈ R3 angular velocity of the body expressed in the body frame 

Table 6.1: Symbol definitions 

For notational convenience, we express the forces in the world frame “w” while the torques remain in body 
frame: 

� � � � � � � � � � 
fw Rw 

B 0 mI3 0 aB 0 
= + (6.2)

τ B 0 I3 0 J αB ωB × J ωB 

In the following, we discuss the nature of the forces fw and the torques τ B when the rigid body is a 
quadrotor. The first external force we consider is gravity, which we make explicit in our model and move to 

wthe right-hand-side of (6.1) (note: g ∈ R3 is the gravity vector expressed in the world frame): 

� � � � � � � � � � 
fw Rw 0 mI3 0 aB −mgw 

= B + (6.3)
τ B 0 I3 0 J αB ωB × J ωB 

Other forces and torques are due to aerodynamic effects. The two main aerodynamic effects for a quadrotor 
are: 

• Thrust Force 

• Rotor Drag 

But there exist other effects 

• Hub Force 

• Hub Moment 

• Rolling Moment 

• Ground effect 

At low speed (< 10m/s), the latter are by more than one order of magnitude smaller than the rotor drag 
and the trust force, and can therefore be neglected. A more detailed explanation of these effects is given 
in [1]. 

Let us start modeling the thrust force of a full quadrotor. In a first approximation, the thrust force of a 
single rotor i, expressed in the reference frame of rotor i (a.k.a. propeller frame Pi), can be computed as 
T Pi = cf wi|wi|e3, with cf being a constant coefficient, mapping the signed square of the rotor spinning 
velocity wi to a force and e3 = [0 0 1]T . This means that the thrust force pushes in the direction of the 
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vertical axis of the propeller frame. For clarity, wi|wi| is the signed square of the rotor spinning velocity and 
is sometimes denoted as sign(wi)(wi)

2 . Therefore, the sum of all forces can be written as 

4 

fB RB T Pi= , (6.4)thrust Pi i 
i=1 

with RB being the rotation matrix from propeller- to body-frame (RB = I3 for standard quadrotors). Pi Pi 

The second force is the drag force due to the airflow around the body of the quadrotor. This is typically 
modeled as a term proportional to the velocity of the quadrotor (we will include it in the model as part of 
the Lab 3 exercises), but for now we will assume that it is negligible at low speeds (we will instead consider 
the impact of drag on the torque). 

Next we compute all torques. The torque consist of two components: 

τ B = τ B 
drag + τ B (6.5)thrust, 

the drag torque τ B and thrust torque τ B The drag torque provided by every single propeller (expressed 

X 

.drag thrust 

in the propeller frame Pi) corresponds in a first approximation to τ Pi = (−1)(i+1)cdwi|wi|e3, with cd being dragi 

the propeller drag coefficient. The factor (−1)i is used since half of the propellers rotate clockwise and the 
other half rotates counter-clockwise. The total drag torque expressed in body frame is therefore 

X 

X 
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τ B RB τ Pi= (6.6)drag Pi dragi 

i=1 

The thrust torque results from applying a non-centered force (thrust force) to a body. From physics we know 

4 

τ B = (ρB × RB T Pi ), (6.7)thrust i Pi i 
i=1 

with ρB being the position (vector) of the propeller i in the body frame.i 

We can now include the forces and torques in the model (6.3) and rearrange the terms: ����� � � ����� 
w w fB ma mg Rw 0 −mge3 Rw 0B thrust B= + = + Fw (6.8)

τ BJ αB −ωB × J ωB 0 I3 drag + τ B −ωB × J ωB 0 I3thrust 

where we defined w = [w1|w1|, w2|w2|, w3|w3|, w4|w4|]T , we defined a suitable matrix F , and we observed 
wthat for a typical choice of world frame (with the z axis pointing upwards) it holds g = −ge3. We remark 

that the vector Fw essentially includes the forces (except gravity) and the torques in the body frame, which 
using (6.4)-(6.7) and assuming RB

Pi 
= I3, can be written as: ⎤⎡ ⎢⎢⎢⎢⎢⎢⎣ 

fB 
x 
fB 
y 
fB 
z 
τB 

τB 
y 
τB 
z 

⎥⎥⎥⎥⎥⎥⎦ 

= Fw = 

�� 
cf e3 cf e3 cf e3 cf e3 

cde3 + cf ρ
B 
1 × e3 −cde3 + cf ρ

B 
2 × e3 cde3 + cf ρ

B 
3 × e3 −cde3 + cf ρ

B 
4 × e3 

w 

(6.9) 

Finally, we observe that (linear and angular) velocities and accelerations are related by: 

w w w w ṗ = v v̇ = a 
(6.10) 

Ṙ w = Rw[ωB]∧ ω̇B = αB 
B B 

3

x 



6-4 Lecture 6: September 16 

w w wwhere p , v , a are the position, velocity, and acceleration of the body frame “B” with respect to the “w” 
frame. Similarly, as mentioned above, ωB and αB are the angular velocity and acceleration of the body in 

˙ w wR R= BB [ωB]∧the body frame. The only expression in (6.10) which is nontrivial is , which we prove in the 
next section. 

We can now use (6.8) and (6.10) to finalize the dynamical model of a quadrotor in terms of first-order 
differential equations: 

� � � � � � 
w wRB

mv̇ −mge3 0 
Fw += J ω̇B −ωB × J ωB 0 I3 

w w (6.11)
ṗ = v 

Ṙ w = Rw[ωB]∧ 

wR, B 

BB 

, ωBw wwhere the state of the quadrotor is p and the control actions or inputs are the propeller , v 
velocities, included in the vector w. 

6.1.1 Derivative of the rotation matrix 

w wConsider the time-varying rotation matrix R RB 
wframe “w”. In the view of the orthogonality of Rrespect to B 

w wR ( )(Rt B 

B 

B 

(t), representing the rotation of the frame “B” with= 
, it holds: 

(t))T = I3 (6.12) 

w( )(Rt B 

which, differentiated with respect to time, gives 

˙ wRB (t))T ˙ w( )(Rt B (t))
T 

w( )(Rt B 

wR+ B 

˙ wRB 

Let us define the 3 × 3 matrix 

= 0. (6.13) 

(t))TS(t) = ; (6.14) 

wPostmultiplying both sides of (6.14) by RB 

It is easy to show that S(t) is skew-symmetric since from (6.13) it follows: 

S(t) + S(t)T = 0. (6.15) 

˙ w( ) S( )Rt t= B 
wRB 

(t) gives 

(t) (6.16) 

wEquation (6.16) relates the rotation matrix RB 

w w( ) Rt = B 

In order to get a physical insight on the nature of the skew-symmetric operator S, let us consider a position 
to its derivative by means of the skew-symmetric operator S. 

B and assume that this position is constant in the body frame. Clearly, we can express the same point inp 
B w(t) as (recall the point the world frame via: p (t)p . Now, let us compute the time derivative of p 

is fixed in the body frame): 
ṗ ˙w w( ) Rt = B (t)p B (6.17), 

w w( ) S( )Rt t= B 

which, in view of (6.14), can be expressed as 

B ṗ (t)p (6.18). 

w w w( ) ω ( ) R×t t= B 

If the vector ωw(t) denotes the angular velocity of the body frame with respect to the world frame (expressed 
in the world frame), we know from basic physics that: 

ṗw(t) = ωw(t) × p (t)p B (6.19) 
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Therefore, comparing (6.18) and (6.19), it follows: 

∧w w( ) ω ( ) Rt t= B 
∧ ˙w wS( ) ω ( ) and Rt t= B (t) (6.20) 

where the operator (·)∧ , seen in previous lectures, transforms a vector to a skew symmetric matrix (recall 
that for two vectors a, b, it holds: a × b = [a]×b = (a∧)b. 

Now in order to get the expression of the derivative of the rotation matrix in (6.10) we observe that for a 
vector a and a rotation matrix R, it holds (a)∧R = R (RTa)∧ , from which it follows:1 

˙ ∧w w w w w wR ( ) ω ( ) R ( ) R ( )(R Rt t t t= = = BBBBB (t)Tωw(t))∧ (t)(ωB(t))∧ (6.21) 

6.2 Differential flatness property 

A differentially flat system is one in which the state x and control inputs u can be expressed as functions of 
a subset of the system’s outputs, called the flat outputs and their time-derivatives. In other words, 

y = h(x, u, u̇, ü, . . . ) (6.22) 

is a flat output if there exists smooth functions gx and gu such that 

x = gx(y, ẏ, ÿ, . . . ) (6.23) 

and 
u = gu(y, ẏ, ÿ, . . . ) (6.24) 

wTo that Rsee B 

In this section we show that the quadrotor dynamics with the four angular velocities of the propellers w as 
inputs is differentially flat [2]. In other words, the states and the inputs can be written as algebraic functions 
of four carefully selected flat outputs and their derivatives. This facilitates the automated generation of 
trajectories since any smooth trajectory (with reasonably bounded derivatives) in the space of flat outputs 
can be followed by the underactuated quadrotor. Our choice of flat outputs is given by 

σ = [σ1 σ2 σ3 σ4]
T = [x, y, z, ψ]T , (6.25) 

wwhere p = [x, y, z]T are the coordinates of the center of mass of the quadrotor in the world coordinate 
system and ψ is the yaw angle. We will define a trajectory, σ(t), as a smooth curve in the space of flat 
outputs: 

σ(t) : [to, tm] → R3 × SO(2). (6.26) 

We will now show that the state of the system and the control inputs can be written in terms of σ and its 
derivatives. The following proof can be also found in [2]. 

w wPosition p and velocity v . The position and velocity of the center of mass are simply the first three 
terms of σ and σ̇ , respectively. 

Rotation matrix Rw 
B is a function of the flat outputs and their derivatives, consider the. 

equation of motion (6.11). From (6.11), the translational part can be rewritten as: ⎡ ⎤ 
σ̈ 1m m ⎣ ⎦w w w w w⇐⇒ = = σ̈ 2 = −mge3 + fz [a + ge3] ⇐⇒ (6.27)ma z zB B Bf f 

σ̈ 3 + g 

1Proof within the proof : to show (a)∧R = R (RTa)∧ , we can show that the i-th column of the matrix in the left- and 
right-hand side of the equation are identical. The i-th column of (a)∧R is (a)∧Rei (ei is a vector which is zero everywhere and 
has the i-th entry equal to 1). On the other hand, the i-th column of matrix in the rhs side is R(RTa)∧ei = R(RTa × ei) = 
a × Rei = a∧Rei, concluding the proof. 
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x̃B

Side view:

x̃B

z̃B

z̃B

Figure 6.2: Quadrotor Frames to prove differential flatness. 

where we noticed that the thrust force (with some magnitude f) is applied along the vertical direction in the 
w wbody frame, i.e., along the vector z Noticing that z must have unit norm, we realize we do not actually.B B 

mneed to compute , but we can simply write:f ⎡ ⎤ 
σ̈ 1 

w v ⎣ ⎦= with σ̈ 2 (6.28)z v = B kvk 
σ̈ 3 + g 

Given the yaw angle, σ4 = ψ, we can write the unit vector 

0]Tw x̃ = [cos(σ4), sin(σ4), (6.29)B 

w 
Bas shown in Figure 6.2. Note that x̃ 

= 0): 

is an auxiliary vector describing the x axis of a rotating frame having 
wthe same yaw angle as B but with no pitch and roll. This auxiliary vector allows computing the y axis asB 

w w 6× x̃(provided zB B 
w w× x̃zB Bw (6.30) 

BB 

= ,
||zw 

from which we can also compute the last axis of the body frame: 

yB ||× x̃w 

w w w (6.31)× zxB = y ,B B 

In other words, we uniquely determined 

wRB 

provided we never encounter the singularity where z 

w w w 
B yB zB = [x ] (6.32) 

w wis parallel to x̃ .B B 

Angular velocity ωB . To show the angular velocity ωB is a function of the flat outputs and their derivatives, 
take the first derivative of the first equation in (6.11): 

d dw) = w(−mge3 + u1z(ma ) (6.33)Bdt dt 
dw w mȧ (u1z ) (6.34)= 
dt B 

w w + ωw × u1z w 
Bmȧ u̇ 1z (6.35)= .B 

w 
B ).for some time-varying scalar u1 (note: we leveraged again the fact that the thrust force is aligned with z 

w w wmȧProjecting this expression along z , we obtain u̇ 1 (the cross product vanishes in the projection). ·= zB B 

Substituting u̇ 1 back into (6.35): 

w w w)z w 
B + ωw × u1z w w − m(z w 

B · ȧ w)z w 
B = u1ω

w × z w 
B (6.36)mȧ · mȧ ⇐⇒ mȧ= (zB B 
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Let us now define the vector hω as 

w 
B = 

m 
u1 

(ȧ w − (z w 
B · ȧ w)z w 

B ). (6.37)= ωwhω × z 

m ȧw w 
B 

w 
B−yhω is the projection of onto the x plane, hence it can be easily expressed as a function of the flat u1 

to the angular velocity ωB ωB , or, equivalently, to ωw w 
Boutputs. We are now only left to relate hω = R . If 

we write the body-frame components of the angular velocity (in the world frame) as ωw = pxw 
B 

w 
B 

w 
B ,+ qy + rz 

then the components can be found as in [2]: 

q = hω · x w 
B r = ψ̇e3 · z w 

Bp = −hω · y w 
B , (6.38) 

˙where ψ = σ̇4 is the first derivative of the yaw angle. 

Control inputs ω. We can repeat the reasoning in the previous paragraphs to prove that also the linear 
and angular accelerations are smooth functions of the flat outputs. Then, we can use the Newton-Euler 
equations (6.11) to conclude that also the inputs can be written as functions of σ in (6.25). 
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