
16.485: Visual Navigation for Autonomous Vehicles (VNAV) Fall 2020

Lecture 15
Lecturer: Luca Carlone Scribes: -

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor(s).

This lecture covers:

• RANSAC (which we will use to estimate the relative pose from pixel correspondences, possibly including
wrong correspondences),

• estimation of the relative pose from 3D-3D correspondences (e.g., the ones given by an RGB-D camera).

For both topics, we follow the presentation of the original papers (ref. [2] for RANSAC, and ref. [1] for pose
estimation from 3D-3D correspondences).

15.1 Recap on Essential matrix Estimation

In the last lecture we saw how to estimate the essential matrix from 8 point correspondences. In particular,
we observed that, in the absence of noise, (a vectorized version of) the essential matrix can be obtained by
solving the linear system:

Ae = 0 (15.1)

where e is assumed to be nonzero (e.g., ‖e‖ = 1) and A is a suitable 8× 9 matrix computed from the pixel
correspondences. By solving the linear system (15.1) and re-arranging the entries of e into a 3×3 matrix, we
obtain the desired essential matrix E. Note that since Ae = −Ae = 0 both E and −E are valid solutions
to the linear system (15.1), so we need to consider both as potential essential matrices (we discussed how to
resolve this ambiguity in the previous lecture).

Noisy pixel measurements. Since the pixels measurements are typically affected by noise, the solution
of the linear system may not be an essential matrix. Therefore, it is common to project the solution onto
the essential space using eq. (13.15) in Lecture 13.

More than 8 points. If we have more than N > 8 point correspondences and in absence of noise, we can
still expect to compute the right essential matrix via (15.1) (in general, A ∈ RN×9). However, in presence
of noise, the linear equations will not be satisfied exactly and we might look for a solution that is as close as
possible to satisfying the linear equalities:

min
E∈SE

‖A vec(E)‖2 (15.2)

where we remarked that the minimization has to be restricted to valid essential matrices and vec(E) denotes
a vector of 9 elements stacking the entries of E. We can follow the same logic of the 8-point algorithm and
approximate the solution of (15.2) by the following steps:

• solve the relaxed problem: arg min‖e‖=1 ‖Ae‖2 (whose solution can be computed in closed form: it is 
simply the eigenvector corresponding to the smallest eigenvalue of ATA, see 
https://en.wikipedia. org/wiki/Rayleigh_quotient.)
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• project the result to the Essential space using eq. (13.15) in Lecture 13.

What if we have wrong correspondences? If some of the point correspondences are wrong, the mini-
mization (15.2) will not produce a meaningful result. Therefore, we introduce RANSAC, a method that will
allow computing the essential matrix even when a subset of the correspondences are wrong.

15.2 RANSAC

From the previous section:

• we know how to compute the essential matrix from 8 “good” point correspondences.

• issue: we are given N >> 8 point correspondences and some of them may be wrong.

RANSAC (Random Sample Consensus) is an approach to perform estimation (in our case: estimate the
essential matrix) in presence of outliers (in our case: wrong pixel correspondences).

The basic idea behind RANSAC is straightforward: say that in general we can compute a model from n
points (in the case of the 8-point method, clearly n = 8). Then the idea is to sample a subset of n elements
from the N available correspondences till we get a “good” set. What is a “good” set? A set for which the
corresponding model (i.e., the essential matrix) explains as many remaining correspondences as possible.

Example: Essential matrix estimation RANSAC proceeds as follows, when applied to the estimation of
the Essential matrix. Given (i) N point correspondences, possibly including wrong matches, (ii) a minimal
solver that can estimate the Essential matrix from n points (e.g., n = 8), RANSAC computes an estimate
of E as follows:

1. Randomly select a subset S of n point correspondences out of the N available correspondences.

2. Estimate the Essential matrix E from the correspondences in S

3. Compute the set S? of correspondences (i, j) that are such that:

yT
j Eyi ≈ 0 (15.3)

or more formally ‖yT
j Eyi‖ < ε for some small threshold ε. The set S? is called the consensus set of S.

4. Case (a): if the cardinality of S? (number of elements of S?, denoted as |S?|) is larger than a given
threshold T , accept S? as the set of inliers and use it to recompute a better estimate of the essential
matrix E via (15.2).

Case (b): if |S?| < T repeat from Step 1. Stop after a maximum number of iterations kmax.

General algorithm We can generalize the example above as follows. Given (i) N data points, possibly
corrupted by outliers, and (ii) a minimal solver that can estimate the unknown model P from from n data
points, RANSAC proceeds as follows:

1. Randomly select a subset S of n data points out of the N available points.

2. Estimate the model P from the data points in S
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3. Compute the set S? of correspondences (i, j) that are in agreement with the model P up to some given
tolerance ε.

4. Case (a): if |S?| ≥ T , accept S? as the set of inliers and use it to recompute a better estimate of the
model P.

Case (b): if |S?| < T repeat from Step 1. Stop after a maximum number of iterations kmax.

15.2.1 Parameter tuning

15.2.1.1 Error Tolerance ε

How to set the tolerance ε that is used to decided whether a given correspondence belongs to the consensus
set? Let us consider our Essential matrix estimation example, where the condition to satisfy is:

‖yT
j Eyi‖ < ε (15.4)

In this case one may select ε as a function of the pixel noise, but that would not account for the fact that
the matrix E estimated from the 8 points in the set S is also noisy. In some cases one may do some error
propagation, but it is more common to set this tolerance empirically by trial and error.

15.2.1.2 Maximum number of iterations kmax

Assume we know the probability w that a given correspondence is an inlier1 Moreover, call k the number of
trials required to select an outlier-free set (note: k is a random variable since we sample at random). Then
the expected value of k is:

E[k] =

∞∑
i=1

i P (k = i) = b+ 2ab+ 3a2b+ ... = b[1 + 2a+ 3a2 + ...] (15.5)

where b = wn and a = (1 − b). Intuitively: P (k = 1) is the probability of extracting all n“good points” at
the first iteration, hence P (k = 1) = wn; P (k = 2) is the probability of not extracting all good points at the
first iteration (probability: 1 − wn) and extracting all good points at the second (probability: wn), and so
on. The infinite series in the expression above is equal to:

1 + 2a+ 3a2 + ... =
1

(1− a)2
(15.6)

Recalling that a = (1− b):

E[k] = b
1

(1− a)2
= b

1

b2
=

1

b
= w−n (15.7)

Typically, one would set the maximum number of iterations kmax equal to 2 − 3 times the expected value
above. Ref. [2] provides a nice justification for that in terms of the variance of k.

15.2.1.3 Admissible size of an acceptable consensus set T

Calling q the probability that a given data point is within the tolerance of a wrong model, then qT−n is the
probability that T − n points agree with the incorrect model. Assuming q < 0.5 (i.e., it’s somehow unlikely

1More precisely, this is the probability that a correspondence falls in the consensus set built from a set of inliers.
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that a point agrees with an incorrect model by chance), then for T = n + 5, it holds qT−n < 0.55 < 0.03,
i.e., it is unlikely to have a consensus set larger than T = n+ 5 for an incorrect model.

Again, since these theoretical bounds are based on (often unrealistic) simplifying assumptions, it is more
common to set T to a larger number, e.g., T > N/2.

15.3 Relative Pose Estimation from 3D-3D Correspondences

Assume that we are given N (calibrated) pixel correspondences (ỹ1,k, ỹ2,k) for k = 1, . . . , N picturing
corresponding points in 2 cameras. Moreover, assume that we have an RGB-D camera which is also able to
measure the depth at each pixel. How can we estimate the relative pose between the cameras?

Since we have the depth λ1,k for each pixel ỹ1,k, we can reproject the corresponding 3D point as p1,k =
λ1,kỹ1,k (and similarly for the points in the second camera). Therefore the problem can be understood as
the estimation of the relative pose between 2 sets of 3D points observed by 2 cameras, given correspondences
(p1,k,p2,k), for k = 1, . . . , N .

In the absence of noise, each point k must satisfy:

p1,k = Rc1
c2 p2,k + tc1c2 k = 1, . . . , N (15.8)

i.e., the points seen by the two cameras only differ by a rigid-body transformation (Rc1
c2 , t

c1
c2) corresponding to

the relative pose between the cameras. For simplicity of notation, in the following we simply use R (instead
of Rc1

c2) and t (instead of tc1c2) since this is the only pose of interest in the rest of these notes. Therefore, in
absence of noise we can compute R and t by solving the set of linear equations (15.8).

In presence of noise, there is no pose (R, t) that exactly satisfies all the equations in (15.8) and we can only
look for a pose that makes p1,k − (Rp2,k + t) close to zero. This suggests estimating the pose (R, t) by
solving the following minimization problem:

min
R∈SO(3)

t∈R3

N∑
k=1

‖p1,k − (Rp2,k + t)‖2 =
N∑

k=1

‖p1,k −Rp2,k − t‖2 (15.9)

For any choice of R, the minimum over t is attained at

t? =
1

N

N∑
k=1

(p1,k −Rp2,k) (15.10)

[hint: from “the point of view” of t, problem (15.9) is the same as mint

∑N
k=1 ‖tk − t‖2, whose solution is

the average: t? = 1
N

∑N
k=1 tk].

Substituting t? back into (15.9) we get:

min
R∈SO(3)

N∑
k=1

∥∥∥∥∥p1,k −Rp2,k −
1

N

N∑
k=1

(p1,k −Rp2,k)

∥∥∥∥∥
2

= (15.11)

min
R∈SO(3)

N∑
k=1

∥∥∥∥∥
(
p1,k −

1

N

N∑
k=1

p1,k

)
−R

(
p2,k −

1

N

N∑
k=1

p2,k

)∥∥∥∥∥
2

(15.12)
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Redefining p′1,k = p1,k − 1
N

∑N
k=1 p1,k and p′2,k = p2,k − 1

N

∑N
k=1 p2,k:

min
R∈SO(3)

N∑
k=1

∥∥p′1,k −Rp′2,k
∥∥2 = min

R∈SO(3)

N∑
k=1

‖p′1,k‖2 + ‖Rp′2,k‖2 − 2(p′1,k)TRp′2,k = (15.13)

min
R∈SO(3)

N∑
k=1

−tr
(
p′2,k(p′1,k)TR

)
= min

R∈SO(3)
−tr

(
MTR

)
= max

R∈SO(3)
tr
(
MTR

)
(15.14)

where M =
∑N

k=1(p′2,k(p′1,k)T)T. Now we note that:

arg min
R∈SO(3)

‖R−M‖2F = arg min
R∈SO(3)

tr
(
(R−M)(R−M)T

)
(15.15)

(recall RTR = I and that constants are irrelevant for the optimization)

= arg min
R∈SO(3)

tr
(
I− 2MTR + MMT

)
= arg max

R∈SO(3)

tr
(
MTR

)
(15.16)

therefore maximizing tr
(
MTR

)
in eq. (15.14) is the same as solving arg minR∈SO(3) ‖R −M‖2F , which is

the definition of the projection of a matrix M onto the set SO(3). This projection has a closed-form solution
(if you are interested, you can find the closed-form solution in the Appendix below).

The solution to relative pose estimation from 3D-3D correspondences outlined in this section is often called
“Arun’s method” and was presented in [1]. One can also repeat a similar derivation by representing rotations
via unit quaternions, and get the so called “Horn’s method”, which is described in the beautiful paper [3].

15.3.1 Appendix: Projection onto O(n) and SO(n)

Given an arbitrary square matrix M ∈ Rn×n, projecting M onto O(n) (resp. SO(n)) consists in finding the
matrix Q ∈ O(n) (resp. R ∈ SO(n)) that is nearest to M :

ΠO(n) (M) = arg min
Q∈O(n)

‖Q−M‖2F ; ΠSO(n) (M) = arg min
R∈SO(n)

‖R−M‖2F . (15.17)

This is a notable example of tractable nonconvex problems. In fact, the two projection problems in eq. (15.17)
admit closed-form solutions, using singular value decomposition (SVD) [1, 4]. Formally, let M = USV T be
the SVD of M , where U ,V ∈ O(n), and S contains the singular values of M in descending order,2 i.e., S11 ≥
S22 ≥ · · · ≥ Snn ≥ 0, then the projections in (15.17) admit the following closed-form solutions:

ΠO(n) (M) = UV T, (15.18)

ΠSO(n) (M) = Udiag ([1, 1, . . . ,det (U) det (V )])V T. (15.19)

Proof. We only prove the solution for projection onto O(n) (eq. (15.18)), while we leave the proof for
projection onto SO(n) as an exercise. To prove eq. (15.18) is the solution for problem (15.17), we develop
the cost function of problem (15.17):

arg min
Q∈O(n)

‖Q−M‖2F = arg min
Q∈O(n)

tr
(

(Q−M) (Q−M)
T
)

(15.20)

= arg min
Q∈O(n)

tr
(
QQT

)
+ tr

(
MMT

)
− 2tr

(
QTM

)
= arg max

Q∈O(n)

tr
(
QTM

)
(15.21)

= arg max
Q∈O(n)

tr
(
QTUSV T

)
= arg max

Q∈O(n)

tr
(
SV TQTU

)
, (15.22)

2For example, Matlab svd returns the singular values in descending order.

https://www.mathworks.com/help/matlab/ref/double.svd.html;jsessionid=d6988916149be6a2139c70b9dc39
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and observe that V TQTU is an orthogonal matrix because V ,Q,U ∈ O(n). Therefore, as S is an diagonal
matrix with positive entries, the maximum of tr

(
SV TQTU

)
is attained if and only if V TQTU = In, i.e., Q =

UV T.
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