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Previously on VNAV: 2-view Geometry and VO 

Time tTime 0 Time 1 
Time 2 

Visual odometry (VO): motion estimation estimation 
based on cameras (monocular, stereo, RGB-D, …) 

others: wheel odometry, inertial, visual-inertial 
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Today: Beyond Cameras 

‣ wheel
odometry

‣ GPS
‣ Lidar
‣ Inertial

Measurement 830g 160g 4g 3g
Unit (IMU)

8 W 2.5 W 0.3W ~1 W‣ Event Cameras
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Lidar Odometry & Lidar SLAM 

DARPA Subterranean Challenge, in collaboration with JPL 4



Feature-based Lidar Odometry 

Time 0 Time tTime 1 Time t-1 
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Feature-based Lidar Odometry 

Time 0 Time tTime 1 Time t-1 

Registration: compute relative 
pose between scans: 
- extract features & descriptors
- use descriptors for matching
- compute relative pose 6



Feature-based Lidar Odometry 

Time 0 Time tTime 1 Time t-1 

Registration: compute relative 
pose between scans: 
- extract features & descriptors
- use descriptors for matching
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Feature-based Lidar Odometry 

Time 0 Time tTime 1 Time t-1 

- compute relative pose 

Registration: compute relative 
pose between scans: 
- extract features & descriptors 
- use descriptors for matching 
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Feature Detection: 3D Harris Corners 

2D Harris 
Corner  

Detector 
W 

igure 2 in Sipiran, I., Bustos, B. Harris 3D: a robust extension of the Harris operator for interest point detection on 3D meshes. Vis 
Comput 27, 963 (2011). https://doi.org/10.1007/s00371-011-0610-y © Springer Nature Switzerland AG. All rights reserved. This 

-Consider neighborhood of v
-Fit paraboloid to sets of points3D Harris 
-EvaluateCorner  gradients

Detector (+some magic)
-Apply Harris
corner-ness score

Others: SIFT3D, SUSAN, ISS3D 9
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Feature Descriptors: Point Feature Histograms (PFH) 

Idea: describe neighborhood of a point in the
point cloud as a multi-dimensional histogram 
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Feature Descriptors: Point Feature Histograms (PFH) 

Idea: describe neighborhood of a point in the
point cloud as a multi-dimensional histogram 

Define: 

(Others: FPFH, learning-based,…) 

For points (i,j), compute: 

Bin results into a 3D histogram ~ Angle between normals 
~ Angle between normal “i” 
and vector between points 

v

pj − pi

w 

“Local” direction of normal “j” 11



Feature-based Lidar Odometry 

Figure 13 (b) in Zhang, J., Singh, S. Low-drift and real-time lidar odometry and mapping. Auton Robot 41, 401–416 (2017). https://doi.org/10.1007/s10514-016-9548-2 © Springer Nature Switzerland AG. All rights reserved. This content is excluded from our Creative Commons 
license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

[Zhang and Singh: LOAM: Lidar Odometry and Mapping in Real-time, 2014] 12
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Dense Lidar Odometry 

Time 0 Time tTime 1 Time t-1 

Iterative Closest Point (ICP) 
•Alternative to feature-based approaches
•Simultaneous Pose and Correspondences
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Iterative Closest Point (ICP) 
•Observations:

1. Easy to
compute
alignment
given
ground-truth
correspondences

2. Easy to
compute
correspondences
given
ground-truth
alignment
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Iterative Closest Point (ICP) 

ICP algorithm: given initial guess, perform the following: 
1. Establish correspondences: associate to each point in

Cloud 1 the closest point in Cloud 2
2. Compute relative pose given correspondences   

(e.g., using Horn’s or Arun’s method) 
3. Transform point cloud and repeat  

(stop when alignment does not improve or after max iter.) 
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ICP 
Iterations 

Iterative Closest Point (ICP) 

ICP algorithm: given initial guess, perform the following: 
1. Establish correspondences: associate to each point in

Cloud 1 the closest point in Cloud 2
2. Compute relative pose given correspondences

(e.g., using Horn’s or Arun’s method)
3. Transform point cloud and repeat 

(stop when alignment does not improve or after max iter.)

© 2020 by Computer Science Department, Technion. All rights reserved. This 
content is excluded from our Creative Commons license. For more information, see 
https://ocw.mit.edu/help/faq-fair-use/

[courtesy: 
http://www.cs.technion.ac.il/~cs236329/tutorials/ICP.pdf]
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Iterative Closest Point (ICP): Issues and Extensions 

Extensions 

Local 
convergence 

[courtesy: http://www.cs.technion.ac.il/~cs236329/tutorials/ICP.pdf] 

•Kd-tree spatial subdivision
•Different error metrics
(e.g., point to plane)

•Reject outliers

Initial guess 1 Initial guess 2 

© 2020 by Computer Science Department, Technion. All rights reserved. This 
content is excluded from our Creative Commons license. For more information, see 
https://ocw.mit.edu/help/faq-fair-use/
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ICP-based SLAM: Failure Mode 

Source: public domain/DARPA

DARPA Subterranean Challenge, in collaboration with JPL 18



Today: Beyond Cameras 

‣ wheel
odometry

‣ GPS
‣ Lidar
‣ Inertial

Measurement
Unit (IMU)

8 W‣ Event Cameras

830g 160g 4g 3g 

2.5 W 0.3W ~1 W 
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Visual-Inertial Odometry 
20–120Hz 

100-800Hz no synchronization 

time 
imu data imu data imu data 

image   image   image   image   
pair pair pair pair 

- Fixed-lag smoother: estimate a fixed window of recent 
states from time k-T, k-T+1, .. k (sliding window) 20



MAP Estimation 

` k 

Challenges: 
• IMU measurements arrive at high-rate (~200Hz) IMU preintegration 

structureless • camera observes hundreds of landmarks per frame vision factors
• need to solve optimization problem quickly 21



IMU Preintegration 
Key idea: integrate IMU measurements between frames 

many measurements & states 

 

22

key messages:
- integration on manifold, with noise expressed in tangent space 
- integration is performed in local frame, to be invariant to initial state

few measurements & states

Preintegration

22



IMU Preintegration 
Standard integration Preintegration 

rotation rate initial rotation measurements 

Carlone, Kira, Beall, Indelman, Dellaert, Eliminating conditionally independent sets in factor graphs: a unifying perspective based on smart factors, ICRA’14.
Forster, Carlone, Dellaert, Scaramuzza, IMU Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation, RSS’15 (best paper finalist). 

23
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Pre-integration 

Preintegration 

After 10 seconds, original
problem has ~104 states 

After 10 seconds, 
preintegrated problem 
has ~102 states 

[Forster, Carlone, Dellaert, Scaramuzza. On-manifold preintegration for real-time visual-inertial odometry. TRO 2017] 
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Structureless Vision Model 

Marginalization
of 3D landmarks 

` k 

Schur complement 

Schur complement trick:
• solve for each landmark separately
• substitute back in the optimization

Further reduction of the number 
of variables in the optimization! 

25

Carlone, Alcantarilla, Chiu, Zsolt, Dellaert, Mining structure fragments for smart bundle adjustment, BMVC’14. 25 



Visual-Inertial Odometry 

Hand-held  
sensor 

Implemented
in GTSAM 

(ImuFactor) 
Others: OpenVINS, VINS-mono,

ORB-SLAM3, ROVIO, .. 
C. Forster, L. Carlone, F. Dellaert and D. Scaramuzza, "On-Manifold Preintegration for Real-Time Visual--Inertial Odometry," in IEEE Transactions on Robotics, vol. 33, no. 1, pp. 1-21, Feb. 2017, doi: 10.1109/TRO.2016.2597321 © IEEE. All rights reserved. This content is 
excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

[Forster, Carlone, Dellaert, Scaramuzza. On-manifold preintegration for real-time visual-inertial odometry. TRO 2017] 
26
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Today: Beyond Cameras 

‣ wheel
odometry

‣ GPS
‣ Lidar
‣ Inertial

Measurement 830g 160g 4g 3g
Unit (IMU)

8 W 2.5 W 0.3W ~1 W‣ Event Cameras
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Event-based Cameras 

•Speed of robot is constrained by speed at which it
can sense (and compute)

•Common cameras: 20-120fps

•event-based cameras (e.g.,
Dynamic Vision Sensor, DVS)
- Temporal resolution: 1 μs
- High dynamic range: 120 dB
- Low power: 20 mW
- Cost: 2,500 EUR

28



Event-based Cameras 
© Scaramuzza et al. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

29
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Scaramuzza et al. 2014: Neuromorphic camera 

https://ocw.mit.edu/help/faq-fair-use/


Event-based Cameras for SLAM 

Antoni Rosinol Vidal, Henri Rebecq, Timo Horstschaefer, Davide Scaramuzza Ultimate SLAM? Combining 
Events, Images, and IMU for Robust Visual SLAM in HDR and High Speed Scenarios R-AL 2018.

A. R. Vidal, H. Rebecq, T. Horstschaefer and D. Scaramuzza, "Ultimate SLAM? Combining Events, Images, and IMU for Robust Visual SLAM in HDR and High-Speed Scenarios," in IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 994-1001, April 2018, doi: 10.1109/
 

 30 LRA.2018.2793357 © IEEE. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/
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Event-based Cameras for SLAM 

Antoni Rosinol Vidal, Henri Rebecq, Timo Horstschaefer, Davide Scaramuzza Ultimate SLAM? Combining 
Events, Images, and IMU for Robust Visual SLAM in HDR and High Speed Scenarios R-AL 2018.

igure 4 in A. R. Vidal, H. Rebecq, T. Horstschaefer and D. Scaramuzza, "Ultimate SLAM? Combining Events, Images, and IMU for Robust Visual SLAM in HDR and High-Speed Scenarios," in IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 994-1001, April 2018, doi:31 
10.1109/LRA.2018.2793357 © IEEE. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/
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Next Lecture 

Overview of Open Problems  
in Robot Perception 

32
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Zoom poll 

Feedback on this Zoom lecture (single-choice): 

•A: audio and video are good! 

•B: audio and video are adequate   
(sometimes you break up)  

•C: audio quality is very bad 

•D: audio AND video quality is bad :-( 
33



  
 

 
 
 

      
  

 
 
 

        
 

MIT OpenCourseWare 
https://ocw.mit.edu/ 

16.485 Visual Navigation for Autonomous Vehicles (VNAV) 
Fall 2020 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

34

https://ocw.mit.edu/terms
https://ocw.mit.edu



