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16.485: VNAYV - Visual Navigation
for Autonomous Vehicles

Luca Carlone

Lecture 26: Advanced Topics -
Beyond Cameras




Previously on VNAV: 2-view Geometry and VO

'ime 0O Time 1

Visual odometry (VO): motion estimation estimation
based on cameras (monocular, stereo, RGB-D, ...)

others: wheel odometry, inertial, visual-inertial



Today: Beyond Cameras
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Lidar Odometry & Lidar SLAM

DARPA Subterranean Challenge, in collaboration with JPL



Feature-based Lidar Odometry

Time O

! Time 1
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Feature-based Lidar Odometry

1me 0 Time 1 Timet1 Mel

Registration: compute relative

DOSe between scans:
- use descriptors for matching
- compute relative pose :



Feature-based Lidar Odometry

1me 0 Time 1 Timet1 Mel

Registration: compute relative
pose between scans:
- extract features & descriptors

- use descriptors for matching

- compute relative pose ;



Feature-based Lidar Odometry

1me 0 Time 1 Timet1 Mel

Registration: compute relative
pose between scans:
- extract features & descriptors

- use descriptors for matching
- compute relative pose



Feature Detection: 3D Harris Corners

2D Harris
Corner W

Detector C(G) = det(G) — k tr (G)°

igure 2 in Sipiran, |., Bustos, B. Harris 3D: a robust extension of the Harris operator for interest point detection on 3D meshes. Vis
Comput 27, 963 (2011). https://doi.org/10.1007/s00371-011-0610-y © Springer Nature Switzerland AG. All rights reserved. This
content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/

-Consider neighborhood of v
3D Harris .y~ [ e . -Fit paraboloid to sets of points

Corner | #a” D% ¢ -Evaluate
17’ gradients

Detector NS s (+some magic)
. ~——*  -Apply Harris
s corner-ness score

Vis Comput
DOI 10.1007/s00371-011-0610-y

ORIGINAL ARTICLE

Harris 3D: a robust extension of the Harris operator for interest

point detection on 3D meshes Othe [S. S | FTS D ; S U SAN ; |8983 D


https://ocw.mit.edu/help/faq-fair-use/
https://doi.org/10.1007/s00371-011-0610-y

Feature Descriptors:

Point Feature Histograms (

Idea: describe neighborhood of a point in the
point cloud as a multi-dimensional histogram

PFH)



Feature Descriptors: Point Feature Histograms (PFH)

Idea: describe neighborhood of a point in the
point cloud as a multi-dimensional histogram

Define:

u="n;, v=(pP;j—pi) XU W=uXUvV

For points (i,]), compute:

~ Angle between normals

~ Angle between normal "
and vector between points

Bin results into a 3D histogram

“Local” direction of normal j" (Others: FPFH, learning-based,...)



Feature-based Lidar Odometry

Figure 13 (b) in Zhang, J., Singh, S. Low-drift and real-time lidar odometry and mapping. Auton Robot 41, 401-416 (2017). https://doi.org/10.1007/s10514-016-9548-2 © Springer Nature Switzerland AG. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/fag-fair-use/

[Zhang and Singh: LOAM: Lidar Odometry and Mapping in Real-time, 2014] *



https://ocw.mit.edu/help/faq-fair-use/
https://doi.org/10.1007/s10514-016-9548-2

Dense Lidar Odometry

Time O

Time 1

terative Closest Point (ICP)

e Alternative to feature-based approaches
e Simultaneous Pose and Correspondences



terative Closest Point (ICP)

e Observations:

Easy to
compute
alignment
given
ground-truth
correspondences

Easy to

compute
correspondences
given
ground-truth
alignment

14



terative Closest Point (ICP)

ICP algorithm: given initial guess, pertorm the following:

1. Establish correspondences: associate to each point in
Cloud 1 the closest point in Cloud 2

2. Compute relative pose given correspondences
(e.g., using Horn’s or Arun’s method)

3. Transform point cloud and repeat
(stop when alignment does not improve or after max iter.)



terative Closest Point (ICP)

ICP algorithm: given initial guess, pertorm the following:

1. Establish correspondences: associate to each point in
Cloud 1 the closest point in Cloud 2

2. Compute relative pose given correspondences
(e.g., using Horn’s or Arun’s method)

3. Transform point cloud and repeat
(stop when alignment does not improve or after max iter.)

© 2020 by Computer Science Department, Technion. All rights reserved. This
content is excluded from our Creative Commons license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/

| C P [courtesy:

. http://www.cs.technion.ac.il/~cs236329/tutorials/ICP.pdf]
lterations

16


https://ocw.mit.edu/help/faq-fair-use/
http://www.cs.technion.ac.il/~cs236329/tutorials/ICP.pdf

lterative Closest

Point (IC

). |ssues and

oeKd-tree spatial subdivision
Extensions  eDifferent error metrics
(e.g., point to plane)
eReject outliers

| ocal
convergence

[courtesy: http://www.cs.technion.ac.il/~cs236329/tutorials/ICP.pdf]

Initial guess 1

—xtensions

N

Initial guess 2

content is excluded from our Creative Com

mons license. For more information, see


https://ocw.mit.edu/help/faq-fair-use
http://www.cs.technion.ac.il/~cs236329/tutorials/ICP.pdf

|ICP-based SLAM: Failure Mode

DARPA Subterranean Challenge, in collaboration with JPL
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Visual-Inertial Odometry

< » 20-120Hz
«+— 100-800Hz / no synchronization
time ) e | . I
- |mu data - imu data - imu data -
image image image image
pair pair pair pair

- Fixed-lag smoother: estimate a fixed window of recent
states from time k-T, k-T+1, .. k (sliding window)



MAP Estimation

"

L

Challenges:

e IMU measurements arrive at high-rate (~200Hz) $ IMU preintegration

e camera observes hundreds of landmarks per frame g» structureless
e , vision factors

* need to solve optimization problem quickly :



IMU Preintegration

Key idea: integrate IMU measurements between frames

many measurements & states

Zigm = J(@ozip1) +e
Z}-l\fle+2 = f(®ig1,Tiy2) + €

IMU
Zj—1,j

f(zj—1,75) +€



IMU Preintegration

Standard integration Preintegration

Rj — Rz . EXp (wi,Hldt) s EXp (wj_l,jdt)

l \ rotatioln rate

Initial rotation

AR;; = Exp (w;,i416t) - - - Exp (wj_1,;0t)

measurements

Carlone, Kira, Beall, Indelman, Dellaert, Eliminating conditionally independent sets in factor graphs: a unifying perspective based on smart factors, ICRA’14.
Forster, Carlone, Dellaert, Scaramuzza, IMU Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation, RSS’15 (best paper ﬁnalist)23



Pre-integration

Preintegration

v

After 10 seconds, original
problem has ~104 states

After 10 seconds,
preintegrated problem
has ~102 states



Structureless Vision Model

Marginalization

of 3D landmarks /

Schur complement

Schur complement trick:
e solve for each landmark separately
e substitute back in the optimization

Further reduction of the number
of variables in the optimization!

25
Carlone, Alcantarilla, Chiu, Zsolt, Dellaert, Mining structure fragments for smart bundle adjustment, BMVC’14. 25



Visual-Inertial Odometry

Hand-held
SEensor

e — [ - - = - - = - - =y -

C. Forster, L. Carlone, F. Dellaert and D. Scaramuzza, "On-Manifold Preintegration for Real-Time Visual--Inertial Odometry," in IEEE Transactions on Robotics, vol. 33, no. 1, pp. 1-21, Feb. 2017, doi: 10.1109/TR0O.2016.2597321 © |IEEE. All rights reserved. This content is
excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/

[Forster, Carlone, Dellaert, Scaramuzza. On-manifold preintegration for real-time visual-inertial odometry. TRO 2017]
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Event-based Cameras

eSpeed of robot is constrained by speed at which it
can sense (and compute)
eCommon cameras: 20-120fps

ecvent-based cameras (e.qg.,
Dynamic Vision Sensor, DVS)
- Temporal resolution: 1 us
- High dynamic range: 120 dB
- Low power: 20 mW
- Cost: 2,500 EUR



Event-based Cameras

© Scaramuzza et al. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/
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Fvent-based Cameras for SLAM

Antoni Rosinol Vidal, Henri Rebecq, Timo Horstschaefer, Davide Scaramuzza Ultimate SLAM? Combining
Events, Images, and IMU for Robust Visual SLAM in HDR and High Speed Scenarios R-AL 2018.x

R. Vidal, H. Rebecq, orstschaefer and D._Scaram , "Ultimate S| AM? Combinin ents, Images, and IMU for Robust Visual SLAM in HDR and High-Speed Scenarios," 'n%EE Robotics and Automation Letters, vol. 3, no. 2, pp. 994-1001, April 2018, doi: 10.1109
6RA.20|?§.279335b7 é)ql EEé_‘ AI? rs|g ts reserved. ?s Con%nzﬁs exlclu ecﬂ?om our (Enrelf:lt}vg E\c/)mmons ﬁgense. lgor more |nforr%at|o|n,usee lHt’[psl://ocw.rr‘we}t.edulf%elp%aq— aslr—use/I ! I . I Y PP pr I / 30
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Fvent-based Cameras for SLAM

Antoni Rosinol Vidal, Henri Rebecq, Timo Horstschaefer, Davide Scaramuzza Ultimate SLAM? Combining
Events, Images, and IMU for Robust Visual SLAM in HDR and High Speed Scenarios R-AL 2018~

4 |.H. Reb tschaef d ul LAM’?C bi Events, | dIMUf bust V | SLAM in HDR h- d.S |IEEE Roboti d Aut tion Lett 1.3, 2, 994-1001, April 2018, d 31
LSRR ?LéA 1'%327933567 %CI%EE }_Acflr?@ﬁtsa?egé%%dDl‘h%%anrpeunztzé exclmdagfsom our FQaHUQ o\rﬁ%osns cgnse or more% ?m%%onlsgge%ttps //clcvv m|tag u‘jhgelp%‘ggefalr 82273”08 n obotics and Automation LEHers, Vo no- < bp- pri of
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Next Lecture

Overview of Open Problems
INn Robot Perceptior




Z0oom poll

Feedback on this Zoom lecture (single-choice):

e A: audio and video are good!

¢ B: audio and video are adequate
(sometimes you break up)

e C: audio quality is very bad

e[): audio AND video quality is bad :-(
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