16.485 - Lab 2

Introduction to ROS

Overview

- ROS architecture
- ROS master, nodes and topics
- Command Line Tools
- Transform (tf) package

What is ROS?

Plumbing

- Process management
- Message passing
- Device drivers
- ...

Tools

- Simulation
- Visualization
- Debugging
- Data logging
- ..

Capabilities

- Control
- Planning
- Perception
- Manipulation
- ...

Ecosystem

- Package organization
- Software distribution
- Documentation
- Tutorials
- ...

ROS Computational Graph

ROS Nodes

Nodes: processes performing computation in the ROS system

- Vertices in the ROS computational graph
- Created by including and initializing a ROS client library in the program's source code
- Each instance must have a unique name (text string)

ROS topics and messages

Topics: named unidirectional communication links between ROS nodes – Form edges in the ROS computation graph

- Topics are named (text string)
- One or more nodes may publish messages to a topic
- One or more nodes may subscribe to messages on a topic
- Each topic is linked to a single message type
- Created dynamically at runtime by ROS nodes (using the ROS client library)

Messages: packets of data sent between ROS nodes

- Named data structure comprised of strictly typed fields, defined in .msg files Somewhat similar to 'C' structs
- Converted to client language data structures during build / compile

ROS Master

- Manages the communication between nodes
- Every node registers at startup with the master
- Behaves pretty much like a DNS

Start a master with

roscore

1 /camera node announces intent to publish (advertises) on the /image topic

2 /viewer node subscribes to the /image topic, requesting a list of the publishers

3 ROS Maser process returns a list of publishers on the /image topic

4 /viewer node contacts /camera node to request a peer-to-peer connection

5 peer-to-peer topic connection established

ROS Runtime tools

Starting nodes individually is impractical for large runtime graphs – Technically, you could call each executable directly

ROS provides several utilities to start and stop ROS processes

- rosrun execute individual nodes
- roslaunch starts multiple nodes per a .launch file specification

Note: roslaunch starts the ROS master if it is not already running

Inspection tools

Your robot application might not work the first time you try it...

ROS inspection tools help debug the computational graph

- rosnode information on ROS Nodes (publications, subscriptions)
- rostopic information on ROS Topics (e.g. rostopic list)

Workspace layout

```
example_ws/
src/ -- SOURCE SPACE
build/ -- BUILD SPACE
devel/ -- DEVELOPMENT SPACE
install/ -- INSTALL SPACE
```

- Source: Contains the source code for one or more packages.
- Development: Contains the built targets and the setup scripts.
- Build: Directory in which CMake builds the source files.
- Install: Directory for building the install target.

Catkin

- official build system of ROS
- combines CMake macros and Python

Create a catkin workspace with Build with

catkin init catkin build

Do not forget to source the catking environment before running

source devel/setup.bash

ROS and Coordinate Transformations

Many frames in a robot

- Base frame
- Camera / LIDAR frames
- (maybe) Joints or end effectors...

Who keeps track of them in ROS?

Nodes broadcast transforms to TF

tf::TransformBroadcaster::sendTransform()

WHY?

- 1. someone yells $T_{B}^{\mathbb{Z}}$
- 2. someone yells T_C^A
- 3. someone yells $T_B^C \neq T_B^A (T_C^A)^{-1}$

Nodes broadcast transforms to TF

tf::TransformBroadcaster::sendTransform()

WHY?

- 1. someone yells T_{B}^{2}
- 2. someone yells T_C^A
- 3. someone yells $T_B^C \neq T_B^A (T_C^A)^{-1}$

MIT OpenCourseWare https://ocw.mit.edu/

16.485 Visual Navigation for Autonomous Vehicles (VNAV) Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.