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Outlier-robust spatial perception...

... aka protecting spatial perception from misinformative data, called outliers

In previous lectures, we saw need for RANSAC to protect from misinformative correspondences:

Some correspondences are wrong
(outliers)

without
RANSAC

with RANSAC
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Outlier-robust spatial perception...

... aka protecting spatial perception against misinformative data, called outliers

In this and the following two lectures, we’ll learn more about:

* Rigorous formulations for outlier-robust perception
 Hardness: How easy is it to detect outliers?

« Algorithms: How to remove outliers?

« Guarantees: How do the algorithms perform?
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Perception in robotics and computer vision

Camera 1 R, t Camera 2

Point cloud registration Two-view geometry Rr: rotation
t: translation

Relative pose measurement

T; T¢_, = Pose at time t — 1 (to be found)

Pose graph optimization



Perception as least squares optimization

When Gaussian measurement noise, maximum likelihood estimation (MLE) gives:

/Measurements/data

O]

Estimate «——

Residual

Examples:

Point cloud registration:

N/

Rotation + translation Point clouds (data)
Correspondences between p;, p’;

SLAM:

Relative pose measurement

S l N

Loop closures between T;, T;




Outliers compromise least squares solutions

But if some y; are oultliers, solution of can be wrong:

Red: Incorrect correspondences Ideal alignment Failed alignment by solving
(outliers)

Green: Correct correspondences
(inliers)



Why least squares can fail?

Least squares penalizes large residuals a LOT (due to square).

‘ Least squares finds an estimate x where residuals will NOT be large.

But at x;,,. the residuals of the outliers will be large!

Example:

Xtrue = 0
* Measurements’ model: y; = x + gaussian noise of u=0,0 =1
Yy, = X + gaussian noise of u=0,0 =1
y3 = 2x + gaussiannoise of u =0,0 =1
» Observed measurements: y; =y, =0, y3=10
Least squares opt. solution is x = 3.33 # x4yye = 0!



Outlier-robust least squares reformulations
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Outlier-robust least squares reformulations

Recall what caused the problem:

Least squares penalizes large residuals a LOT (due to square).

So how about changing the penalizing function?

e

"Outlier-free” threshold ¢ :

Choose it so with high probability
any residual r = ¢ isoutlier.
(more later)

1 —Geman-McClure
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Outlier-robust least squares reformulations

Example (revisited): Now instead of solving

Xtrue = 0

we solvel

¢ Measurements’ model: y; = x + gaussian noise of u = 0,0 =1
Y2 = x + gaussiannoise of u=0,0 =1

y3=2x+

* Observed measurements: y; =y, =0, y3=10 T~

E with p as in figure has now opt. solution x = x;,,,, = 0!

=1

with probability .99 residuals < 3 are inliers
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Robust-cost “least squares”

Generally, instead of solving we solve, towards outlier-robustness,

for some robust cost function p, as the one before.



Robust-cost “least squares”

Can we do better from p before?

Possibly: if any residual r > ¢ can be treated as outlier,

we can immediately penalize it with a ¢? value:

Truncated least squares (TLS)

— Experimentally, TLS performs typically better, but no guarantees for superiority over green:
Issue algorithmic ability to find optimum solution (more later)




Robust-cost “least squares”

Other alternatives?

Sure: if any residual r < ¢ can be treated as inlier, why penalize it at all?

The indicator function:
¢z 1[r(x) > ]!



Robust-cost “least squares”

We ended up with a purely combinatorial problem, known as maximum consensus:

fcnelgl( Yiem U r(x,y) >c] = max Yiem U r(x,y) <]

Find x that maximizes number of
explained measurements (as inliers)

Equivalently:
min |0] s.t. r(x,y;) <, Vie M\O

A 4

Minimize number of rejected measurements s.t. the rest are explained

v

Outlier rejection approach



Outlier rejection “least squares”

Generalizing, instead of using robust cost functions, we can still do least squares
after rejecting outliers:

min  |0] s.t. ||r(x, yM\O)”Z S

xX€EXO0CEM

Cumulative
outlier-free threshold



Outlier-robust least squares reformulations

min Z p(r(x,y;),¢) min |0 s.t. |r(x yM\O)”z <e
ien

L

« Two formulations can become equivalent (see maximum consensus case)

* In what follows we’ll look into methods for solving L and

o L inspires mainly non-linear/non-convex optimization approaches
e instead combinatorial approaches

But is it easy (computationally) to solve either of them?




Outlier-robust reformulations are harder than NP-hard

In the worst case, even if true error is 0, we will reject many more measurements
(than the true outliers), and still incur larger than the true 0 error

Theorem (Chin et al. ‘18, Antonante et al. ‘19)
» Let 0" be the true number of outliers, whose rejection leads to 0 residual error.

 Lete =p;(IM]), where p, is a polynomial in number of measurements.
» Let p,(|M]) another polynomial.
Then:

No quasi-polynomial algorithm can reject less than p, (| M ])|0*| measurements.

j slower than polynomial no constant approximation

faster than exponential factor

Theorem applies to both L and ,
Truncated least squares (L): iréig Z p(T(x, yi)) with p(r) = {C_rz

IEM

if rel0,c]
if relc, +oo]

Maximum consensus (R): min |0 s.t. r(x,y;) < Vie M\0O
X c




But what if we could solve them optimally?

Even if ¢ is picked correctly, true outlier may be impossible to detect even if no noise.

Reason: we have 2 knowns but 3 unknowns:

M V1 X + 01
* 2 xTto: Cannot uniquely

/— i ‘ determine x, 01,07

Known: y; =0,y, =3 All 3 unknown

Generally, for the noiseless case: we need to have redundant correct measurements, so if all outliers
are rejected, remaining measurements can uniquely determine x (see [1])
(for the control oriented audience: observability)

[1] Stable Signal Recovery from Incomplete and Inaccurate Measurements, Candes and Tao, 2005



How to pick ¢ ?
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