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Outlier-robust spatial perception… 

… aka protecting spatial perception from misinformative data, called outliers 

In previous lectures, we saw need for RANSAC to protect from misinformative correspondences: 

Some correspondences are wrong 
(outliers) 

without 
RANSAC 

with RANSAC 
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Outlier-robust spatial perception… 

… aka protecting spatial perception against misinformative data, called outliers 

In this and the following two lectures, we’ll learn more about: 

• Rigorous formulations for outlier-robust perception 
• Hardness: How easy is it to detect outliers? 
• Algorithms: How to remove outliers? 
• Guarantees: How do the algorithms perform? 

so from here……we go here: 

S Fau imedssfullicce ageimage Successful SLAM FailedSu shcce epulassf alignmentshapeFailed SLAM 
stitching alignmentit i
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Perception in robotics and computer vision 

Point cloud registration Two-view geometry 

Camera 1 Camera 2 !, # 

$%&,&'( 

%& %&'( 

Relative pose measurement 

Pose at time # − 1 (to be found) 

!: rotation 
#: translation 

Pose graph optimization 
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When Gaussian measurement noise, maximum likelihood estimation (MLE) gives: 

Perception as least squares optimization 

Measurements/data 

Estimate 

Residual 

Examples: 

Point cloud registration: 

Rotation + translation Point clouds (data) 
Correspondences between !", !′% 

SLAM: 
Pose 

Relative pose measurement 

Loop closures between &", &% 
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Outliers compromise least squares solutions 

But if some !" are outliers, solution of can be wrong: 
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Red: Incorrect correspondences 
(outliers) 

Green: Correct correspondences 
(inliers) 

Ideal alignment Failed alignment by solving 

  

         

  

  

 



   

  

  
   

Why least squares can fail? 

Least squares penalizes large residuals a LOT (due to square). 

Least squares finds an estimate ! where residuals will NOT be large. 

But at !"#$% the residuals of the outliers will be large! 

Example: 

• !"#$% = 0 
• Measurements’ model: () = ! + +,-../,0 01/.2 13 4 = 0, 6 = 1

(8 = ! + +,-../,0 01/.2 13 4 = 0, 6 = 1
(9 = 2! + +,-../,0 01/.2 13 4 = 0, 6 = 1 

• Observed measurements: () = (8 = 0, (9= 10 
Least squares opt. solution is ! = 3.33 ≠ !"#$% = 0! 
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  Outlier-robust least squares reformulations 

This slide has been intentionally left blank. 
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Outlier-robust least squares reformulations 
Recall what caused the problem: 
Least squares penalizes large residuals a LOT (due to square). 

So how about changing the penalizing function? 

”Outlier-free” threshold ̅" : 
Choose it so with high probability 
any residual r ≥ ̅" is outlier. 
(more later) 

̅"% 

Geman-McClure 
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Outlier-robust least squares reformulations 
Example (revisited): Now instead of solving we solve 

• !"#$% = 0 E 
• Measurements’ model: () = ! + +,-../,0 01/.2 13 4 = 0, 6 = 1

(8 = ! + +,- 1../,0 01/.2 13 4 = 0, 6 = 
(9 = 2! + +,-../,0 01/.2 13 4 = 0, 6 = 1 

• Observed measurements: () = (8 = 0, (9= 10 
E with = as in figure has now opt. solution ! = !"#$% = 0! with probability .99 residuals ≤ 3 are inliers 
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Robust-cost “least squares” 

Generally, instead of solving  we solve, towards outlier-robustness, 

for some robust cost function !, as the one before. 
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Robust-cost “least squares” 

Can we do better from ! before? 

Possibly: if any residual r ≥ %̅ can be treated as outlier, 
we can immediately penalize it with a %̅& value: 

Truncated least squares (TLS) 

Experimentally, TLS performs typically better, but no guarantees for superiority over green: 
Issue algorithmic ability to find optimum solution (more later) 12 



  

            

  

Robust-cost “least squares” 

Other alternatives? 

Sure: if any residual r ≤ $̅ can be treated as inlier, why penalize it at all? 

% & = (0 *+ & ≤ ̅$ 
̅$, *+ & > ̅$ 

The indicator function:
̅$, . 1[ &(2) > ̅$ ]! 
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Robust-cost “least squares” 

We ended up with a purely combinatorial problem, known as maximum consensus: 

min ∑(∈ℳ 1 + ,, .( > 1̅ ≡ max ∑(∈ℳ 1 + ,, .( ≤ 1̅
$ ∈ & $ ∈ & 

Find , that maximizes number of 
explained measurements (as inliers) 

Equivalently: 

min |6| 9. ;. + ,, .( ≤ 1,̅ ∀ = ∈ ℳ\6 
$ ∈ &, 6 ⊆ℳ 

Minimize number of rejected measurements s.t. the rest are explained 

Outlier rejection approach 
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Outlier rejection “least squares” 

Generalizing, instead of using robust cost functions, we can still do least squares 
after rejecting outliers: 

min
$ ∈ &,( ⊆ ℳ 

|(| ,. .. / 0, 1ℳ\( 
3 ≤ 5 

Cumulative 
outlier-free threshold 
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Outlier-robust least squares reformulations 

min
$ ∈ & 

' 
(∈ℳ 

* + ,, .( , ̅0 min$ ∈ 1,2 ⊆ ℳ 
|2| 5. 7. + ,, .ℳ\2 

9 ≤ ; 

L R 

• Two formulations can become equivalent (see maximum consensus case) 

• In what follows we’ll look into methods for solving L and R: 

o L inspires mainly non-linear/non-convex optimization approaches 
o R instead combinatorial approaches 

But is it easy (computationally) to solve either of them? 
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Outlier-robust reformulations are harder than NP-hard 

In the worst case, even if true error is 0, we will reject many more measurements 
(than the true outliers), and still incur larger than the true 0 error 

Theorem (Chin et al. ‘18, Antonante et al. ‘19) 
• Let !⋆ be the true number of outliers, whose rejection leads to 0 residual error. 
• Let # = %& ℳ , where %& is a polynomial in number of measurements. 
• Let %(( ℳ ) another polynomial. 
Then: 

No quasi-polynomial algorithm can reject less than %(( ℳ )|!⋆| measurements. 

slower than polynomial no constant approximation 
faster than exponential factor 

Theorem applies to both L and R: 
= D 5

( BE 5 ∈ [0, @]̅
Truncated least squares (L): min 2 4 5 6, 83 with 4 5

/ ∈ 1 
3∈ℳ 

@̅( BE 5 ∈ [@, +∞]̅ 

Maximum consensus (R): min |!| ;. =. 5 6, 83 ≤ @,̅ ∀ B ∈ ℳ\! 
/ ∈ 9, ! ⊆ℳ 
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But what if we could solve them optimally? 

Even if #̅ is picked correctly, true outlier may be impossible to detect even if no noise. 

Reason: we have 2 knowns but 3 unknowns: 

• $% = ! + (% 
• $) = ! + () Cannot uniquely 

determine !, (%, () 

Known: $% = 0, $) = 3 All 3 unknown 

Generally, for the noiseless case: we need to have redundant correct measurements, so if all outliers 
are rejected, remaining measurements can uniquely determine ! (see [1]) 

(for the control oriented audience: observability) 

[1] Stable Signal Recovery from Incomplete and Inaccurate Measurements, Candes and Tao, 2005 
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  How to pick "̅ ? 

This slide has been intentionally left blank. 
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