Homework 3: Two-Position Nozzle

a) $c^{*}=\frac{\sqrt{R T_{c}}}{\Gamma(\gamma)}$
$\Gamma=\sqrt{\gamma}\left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{2(\gamma-1)}}$
$\Gamma=\sqrt{1.2}\left(\frac{2}{2.2}\right)^{\frac{2.2}{2 * 0,2}}=0.6485$
$R=\frac{8.314 \mathrm{~J} / \mathrm{mol}-\mathrm{K}}{0.018 \mathrm{~kg} / \mathrm{mol}}=461.9 \mathrm{~J} / \mathrm{mol}-K$

Solving for \boldsymbol{c}^{*} and \boldsymbol{m} :
$c^{*}=\frac{\sqrt{461.9 * 3300}}{0.6485}=1903.7 \mathrm{~m} / \mathrm{s}$
$\dot{m}=\frac{P_{c} A_{t}}{c^{*}}=\frac{70 * 1.013 E 5 * 0.1}{1903.7}=372.5 \mathrm{~kg} / \mathrm{s}$

For the inner bell:
$\frac{P_{e 1}}{P_{a 0}}=0.4$

Therefore, the exit Mach number is given by:
$\frac{70}{0.4}=\left(1+\frac{1.2-1}{2} M_{e 1}^{2}\right)^{\frac{1.2}{0.2}}$
$M_{e 1}=3.695$

The area ratio is then:
$\frac{A_{e 1}}{A_{t}}=\frac{1}{M_{e 1}}\left(\frac{1+\frac{\gamma-1}{2} M_{e 1}^{2}}{\frac{\gamma+1}{2}}\right)^{\frac{\gamma+1}{2(\gamma-1)}}$
$\frac{A_{e 1}}{A_{t}}=18.234$
$A_{e 1}=1.8234 \mathrm{~m}^{2}$

The vacuum thrust is:
$F_{v 1}=\dot{m} u_{e 1}+P_{e 1} A_{e 1}$
$u_{e 1}=\sqrt{2 \frac{\gamma}{\gamma-1} R T_{c}\left[1-\left(\frac{P_{e 1}}{P_{c}}\right)^{\frac{\gamma-1}{\gamma}}\right]}$
$u_{e 1}=\sqrt{2 \frac{1.2}{0.2} 461.9 * 3300\left[1-\left(\frac{0.4}{70}\right)^{\frac{0.2}{1.2}}\right]}=3241 \mathrm{~m} / \mathrm{s}$

On the ground:
$F_{0}=F_{v 1}-P_{a 0} A_{e 1}$
$F_{0}=1.2842 E 6-1.013 E 5 * 1.8234=1.0995 E 6 \mathrm{~N}$
$F_{v 1}=\dot{m} u_{e 1}+P_{e 1} A_{w 1}=372.5 \times 3421+0.4 \times 1.013 e 5 \times 1.8234=1.2842 e 6 \mathrm{~N}$
b) $m \frac{d v}{d t}=F-m g=F_{v}-P_{a} A_{e}-m g$
$\frac{d v}{d t}=\frac{F_{v}}{m}-g-\frac{A_{e} P_{a}}{m}$
$m=m_{0}-\dot{m} t$
$d m=-\dot{m} d t$

Putting equations together:
$d v=-\frac{F_{v}}{m} \frac{d m}{m}-g d t-\frac{A_{e} P_{a}}{m} d t$
Integrating between $t=0$ and $t=t_{1}$ (with $F_{v}=F_{v 1}$ and $A_{e}=A_{e 1}$):
$v_{1}=\frac{F_{v 1}}{\dot{m}} \ln \left(\frac{m_{0}}{m_{1}}\right)-g t_{1}-A_{e 1} \int_{0}^{t_{1}} \frac{P_{a}(t)}{m(t)} d t$

Integrating between $t=t_{1}$ and $t=t_{b}$ (with $F_{v}=F_{v 1}$ and $A_{e}=A_{e 2}$):
$v_{b}-v_{1}=\frac{F_{v 2}}{\dot{m}} \ln \left(\frac{m_{1}}{m_{b}}\right)-g\left(t_{b}-t_{1}\right)-A_{e 2} \int_{t_{1}}^{t_{b}} \frac{P_{a}(t)}{m(t)} d t$

Adding equations (13) and (14):

$v_{b}=\frac{F_{v 1}}{\dot{m}} \ln \left(\frac{m_{0}}{m_{1}}\right)+\frac{F_{v 2}}{\dot{m}} \ln \left(\frac{m_{1}}{m_{b}}\right)-g t_{b}-A_{e 1} \int_{0}^{t_{1}} \frac{P_{a}(t)}{m(t)} d t-A_{e 2} \int_{t_{1}}^{t_{b}} \frac{P_{a}(t)}{m(t)} d t$
Here, of course:
$m_{1}=m_{0}-\dot{m} t_{1}$
So t_{1} appears in m_{1} and in the limits of integration.

To optimize, set $\frac{d v_{b}}{d t_{1}}=0$, using $\frac{d m_{1}}{d t_{1}}=-\dot{m}$
$\frac{-F_{v 1}}{m} \frac{1}{m_{1}}(-m)+\frac{F_{v 2}}{m} \frac{1}{m_{1}}(-m)-A_{e 1} \frac{P_{a}\left(t_{1}\right)}{m_{1}}+A_{e 2} \frac{P_{a}\left(t_{1}\right)}{m_{1}}=0$
$F_{v 1}-F_{v 2}+\left(A_{e 2}-A_{e 1}\right) P_{a}\left(\begin{array}{l}\sigma_{1}\end{array}\right)=0$
$P_{a}\left(t_{1}\right)=\frac{F_{v 2}-F_{v 1}}{A_{e 2}-A_{e 1}}$ (for optimum t_{1})
If this t_{1} is chosen, the thrust is:

Just before the transition:
$F_{1}\left(t_{1}-\varepsilon\right)=F_{v 1}-\frac{F_{v 2}-F_{v 1}}{A_{e 2}-A_{e 1}} A_{e 1}=\frac{F_{v 1} A_{e 2}-F_{v 2} A_{e 1}}{A_{e 2}-A_{e 1}}$
Just after the transition:
$F_{2}\left(t_{1}+\varepsilon\right)=F_{v 2}-\frac{F_{v 2}-F_{v 1}}{A_{e 2}-A_{e 1}} A_{e 2}=\frac{F_{v 1} A_{e 2}-F_{v 2} A_{e 1}}{A_{e 2}-A_{e 1}}$

Therefore,
$F_{1}\left(t_{1}-\varepsilon\right)=F_{2}\left(t_{1}+\varepsilon\right)$ There is no discontinuity in the thrust.
c) If we impose now $P_{e 2}=0.4 P_{a}\left(t_{1}\right)$ (incipient separation on the extended nozzle), we must have:
$P_{e 2}=0.4 \frac{F_{v 2}-F_{v 1}}{A_{e 2}-A_{e 1}}=0.4 \frac{\left(\dot{m} u_{e 2}+P_{e 2} A_{e 2}\right)-F_{v 1}}{A_{e 2}-A_{e 1}}$
Here, $\dot{m}, F_{v 1}$, and $A_{e 1}$ are already known (from part a), and all the other quantities $\left(u_{e 2}, P_{e 2}, A_{e 2}\right)$ depend on a single parameter like $M_{e 2}$. Hence the equation above determines $M_{e 2}$, and all other quantities. Equation (19) can be solved by trial and error as follows:
a) Guess $M_{e 2}$
b) Calculate $A_{e 2}=\frac{A_{t}}{M_{e 2}}\left(\frac{1+\frac{\gamma-1}{2} M_{e 2}^{2}}{\frac{\gamma+1}{2}}\right)^{\frac{\gamma+1}{2(\gamma-1)}}$
c) Calculate $T_{e 2}=\frac{T_{C}}{1+\frac{\gamma-1}{2} M_{e}^{2}}$, then $u_{e 2}=M_{e 2} \sqrt{\gamma R T_{e 2}}$
d) Calculate $P_{e 2}=P_{C}\left(\frac{T_{e 2}}{T_{C}}\right)^{\frac{\gamma}{\gamma-1}}$
e) Calculate the right hand side of equation (19), compare to $P_{e 2}$ from the left hand side.

Results of this process are plotted in Figures 1a and 1b, and the solution is seen to be $M_{e 2}=4.815$. From this, we find:
$\frac{A_{e 2}}{A_{t}}=90.13$
$A_{e 2}=9.013 \mathrm{~m}^{2}$
$u_{e 2}=3,575 \mathrm{~m} / \mathrm{s}$
$P_{e 2}=0.05236 \mathrm{~atm}$
$F_{v 2}=\dot{m} u_{e 2}+P_{e 2} A_{e 2}=1.3795 E 6 \mathrm{~N}$
$P_{a}\left(t_{1}\right)=\frac{F_{v 2}-F_{v 1}}{A_{e 2}-A_{e 1}}=0.1308 \mathrm{~atm}$
$z_{1}=6.8 \ln \left(\frac{1}{0.1308}\right)=13.83 \mathrm{~km}$

The thrust at transition (from either nozzle 1 or 2) is:
$F\left(t_{1}\right)=F_{v 1}-P_{a}\left(t_{1}\right) A_{e 1}=1.2570 E 6 \mathrm{~N}$
c) For the ideally expanded ("rubber") nozzle, $P_{e}=P_{a}(z)$, and then:
$u_{e}=\sqrt{2 \frac{\gamma}{\gamma-1} R T_{c}\left[1-\left(\frac{P_{a}(z)}{P_{c}}\right)^{\frac{\gamma-1}{\gamma}}\right]}$
$F=\dot{m} u_{e}$

For $z=0, z=z_{1}$, and $z \rightarrow \infty\left(P_{a}=0\right)$, and for the three types of nozzles, Table 1 collects the values of thrust:

Table 1: Thurst calculations for three nozzles at varying altitudes.

Thrust (MN)			
Nozzle	$z=0$	$z=z_{1}=13.83 \mathrm{~km}$	$Z \rightarrow \infty$
Fixed Geometry	1.0995	1.2570	1.2842
Two-Position	1.0995	1.2570	1.3795
Ideally Expanded	1.1348	1.2836	1.5931

Notice:

a) Thrust increases with altitude in all cases.
b) The two-position nozzle is equivalent to the fixed nozzle at z_{1}, but clearly superior at the vacuum condition.
c) The ideally expanded nozzle outperforms the others at all altitudes.

Figure 2 compares the thrust profiles of the thrust nozzles. The two-position nozzle would follow the curve for nozzle 1 up to $z=z_{1}$, then follow the nozzle 2 curve.

Notice how the ideally expanded curve touches that for nozzle 1 at $z \approx 6.23 \mathrm{~km}$; that is where this nozzle is matched $\left(6.8 \ln \left(\frac{1}{0.4}\right)=6.23\right)$. It also touches that of nozzle 2 at $z=6.8 \ln \left(\frac{1}{0.05236}\right)=$ 20.1 km , where nozzle 2 is matched.

Figure 1a) Solving equation (19).
Figure 1b) Solving equation (19) at a higher resolution. Solution is $M_{e 2}=4.815$.

Figure 2: Thrust profiles for the three nozzles.

MIT OpenCourseWare
http://ocw.mit.edu

16.50 Introduction to Propulsion Systems

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

